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Abstract

In this paper we develop a new statistical model for supervised
classification of high resolution synthetic aperture radar (SAR)
amplitude images. This model is based on the recently proposed
generalized gamma distribution (GΓD) for statistics of amplitude
SAR images. In order to improve the fit of GΓD when dealing
with inherently heterogenous high resolution SAR imagery, we
model the statistics of thematic classes as mixtures of GΓD. This
enables to consider not homogeneous thematic classes, which
is an often requirement in practice. We complete the developed
method by proving the identifiability of the developed GΓD finite
mixture model and the consistency of the involved parameter
estimation scheme (method of log-cumulants) for GΓD, which
renders the developed approach mathematically correct. In order
to improve the computational performance of the GΓD mixture
estimation we suggest the use of an approximative solution of
the equations involved, thus, avoiding time-consuming iterative
processes. The accuracy of the developed approach is validated on
a high resolution TerraSAR-X image and compared to related finite
mixture-based SAR classification techniques.

Keywords: Generalized gamma distribution, finite mixtures, iden-
tifiability, method of log-cumulants, consistency, synthetic aperture
radar, supervised classification, Markov random field.

1. INTRODUCTION

The recent progress in sensor and antenna construction enabled the
remotely sensed satellite imagery to become widely available and
to find its daily applications in fields such as: ecology, meteorology,
oceanography, cartography, natural risk management and many oth-
ers. After optical data, the second most used type of remote sensing
imagery is the synthetic aperture radar (SAR) imagery. It has some
very important advantages, such as insensibility to Sun-illumination
and meteorological conditions [1]. Yet the SAR image processing
has some challenges, which are not faced when dealing with optical
data. This is due to the speckle noise, which is an inherent phe-
nomenon of the microwave data [1]. In case of the high resolution
(HR) SAR, which can be up to 1 m/pixel resolution, the apprecia-
tion of details and statistics are heavily affected by speckle.

In this paper we develop an accurate and fast statistical model
to deal with one of the basic SAR image processing applications
- classification. The purpose of statistical modeling is to get an
accurate and concise probability density function (pdf) model
that estimates the statistics of a SAR image. In the literature a
number of pdf models have been suggested, see in details in [1]
and [2], for this purpose, yet in heterogeneous HR case most of
them fail. The only solution is to consider mixture-based models
and some successful attempts have been reported [2, 3]. In this
paper we approach this problem by considering a SAR amplitude
pdf as a finite mixture of generalized gamma distributions (GΓD).
This is a very flexible family of pdfs [4] that has already found its
applications in fields like speech signal processing [5], health and
economical applications [6]. GΓD has also been considered for

SAR amplitude statistics in a recent work [7]. Here we focus on
the mixtures of GΓD, that have not been studied so far mostly due
to parameter estimation problems [5].

The paper is organized as follows. In Section 2 we develop the finite
GΓD mixture model, state its identifiability (with the outline of the
proof in Appendix A), the consistency of the parameter estimation
scheme involved (outline of the proof in Appendix B) and suggest
an approximative solution of the equations involved (derivation in
Appendix C). In Section 3 we merge the statistical pdf model with
a Markov random field model to get a contextual SAR classifica-
tion approach robust with respect to speckle. Section 4 reports the
experiments on a high resolution TerraSAR-X image and compar-
ison to related finite mixture-based SAR classification techniques.
In Section 5 the conclusions are drawn.

2. GENERALIZED GAMMA MIXTURES

The pdf of the GΓD takes the following form:

G(r|ν, κ, σ) =
ν

σΓ(κ)

( r
σ

)κν−1

exp
[
−
( r
σ

)ν]
, r > 0, (1)

where ν, κ and σ are positive parameters corresponding to the
power, shape and scale, respectively, and Γ(·) is the gamma func-
tion [8]. The GΓD is a very flexible family of distributions:
it includes Gamma, exponential, χ2, Nakagami, Half-normal,
Rayleigh, Maxwell, Weibull, Lévy distributions as special cases
and lognormal as an asymptotic case [4, 7].

The use of GΓD to amplitude (intensity) statistics of SAR has been
recently suggested by Li et. al [7] and reported good results for HR
SAR. Yet the problem of mixed multimodal SAR statistics can not
be dealt with even with such a flexible pdf. Thus, in order to take
into account this heterogeneity scenario we propose to use a finite
mixture model [9] for the distribution of grey levels. We assume an
amplitude SAR image I to be a set {r1, . . . , rN} ofN independent
samples drawn from a GΓD mixture pdf with K components:

p(r) =

K∑
i=1

αiG(r|νi, κi, σi), r > 0, (2)

with mixing proportions
∑K
i=1 αi = 1, and ∀i : αi ∈ (0, 1).

The problem of mixture (2) estimation is equivalent to the estima-
tion of K̂ and {α̂i, ν̂i, κ̂i, σ̂i}K̂i=1. In order for this finite mixture
estimation problem to be well-posed we show that the following
statement holds.

Theorem 1. Finite mixtures of GΓD are identifiable, i.e. if there
are two finite GΓD mixtures:

H1 =

k1∑
i=1

α1iG1i, H2 =

k2∑
i=1

α2iG2i,

Gai ≡ Gaj , i.e. (νai, κai, σai) = (νaj , κaj , σaj) ⇔ i = j, for
a = 1, 2, and H1 ≡ H2, then k1 = k2 and {(α1i,G1i)}k1i=1 is a
permutation of {(α2i,G2i)}k1i=1.



The outline of the corresponding proof is given in Appendix A.

The problem of finite mixture estimation is usually too complicated
to find a solution directly by a maximum likelihood (ML) approach.
Thus, a family of iterative Expectation-Maximization (EM) meth-
ods is usually used to numerically find the local maximum of the
likelihood function [9]. There exists a considerable variety of EM-
method modifications each suitable for some specific problem set-
tings. In our case the optimal approach is presented by a Stochas-
tic EM (SEM) approach [9], which enables to avoid an unfeasi-
ble (due to very complex shape of likelihood function [5]) GΓD
pdf maximization and to improve the exploratory properties of EM,
which is very critical in case of inaccurate (random) initialization.
For the SEM algorithm the complete data is represented by a set
{(ri, si), i = 1, . . . , N}, where ri are the observations (SAR am-
plitudes) and si - the missing labels: given an mixture withK com-
ponents, a label si ∈ {σ1, σ2, . . . , σK} assigns the i-th observation
to one of the K components.

We embed the Method of Log-Cumulants (MoLC) [10] method for
parameter estimation in the M-step of SEM scheme. This is done
instead of the ML-estimate which come at too high computational
price for GΓD [5]. MoLC represents a parametric pdf estimation
technique suitable for distributions defined on [0,+∞), and it has
been widely applied in the context of SAR-specific parametric pdf
families due to its analytical adequacy for the multiplicative mod-
els, like “signal-speckle” system for SAR [2, 3, 7, 10]. MoLC
adopts the Mellin transform [10] by analogy to the Laplace trans-
form in the moment generating function. Given a non-negative ran-
dom variable u, one defines the “second-kind characteristic func-
tion” φu of u as the Mellin transform [10]M of the pdf of u, i.e.:

φu(s) =M(pu)(s) =

∫ +∞

0

pu(u)us−1du, s ∈ C.

The derivatives κν = [lnφu](ν)(1) are the νth order log-cumulants,
where (ν) stands for the νth derivative, ν ∈ N. In case of the trans-
form convergence, the following MoLC equations take place [10]:

κ1 = E{lnu}, κj = E{(lnu− κ1)j}, j = 2, 3

First, we find sample estimates for these log-cumulants [11]:

κ̃1 ≈ k1 =
1

N

N∑
i=1

ln ri, κ̃2 ≈ k2 =
1

N − 1

N∑
i=1

[ln ri − k1]2 ,

κ̃3 ≈ k3 =
N

(N − 1)(N − 2)

N∑
i=1

[ln ri − k1]3 .

Then, we analytically express κj as functions of unknown param-
eters and replacing then κj by their sample estimates kj we finally
get the system of MoLC-equations. In case of GΓD it writes [7]:

k1 = log σ +
Ψ(0, κ)

ν
, (3)

kj =
Ψ(j − 1, κ)

νj
, j = 2, 3, . . . , (4)

where Ψ(n, x), n ∈ {0}∪N, denotes the polygamma function [8].

The following theorem explores the asymptotical properties of the
MoLC estimates for GΓD.

Theorem 2. The sequence of MoLC estimates {(ν̂n, κ̂n, σ̂n)}∞n=1

calculated for GΓD from (3)-(4) and observations {ri}ni=1 is con-
sistent, i.e. it converges in probability to the true parameter values
(ν∗, κ∗, σ∗) as n→∞.

The outline of the corresponding proof is given in Appendix B.

As demonstrated in Appendix B the system (3)-(4) is invertible, yet
its analytical solution is unfeasible. We propose to use an approx-
imative solution of this system that is very simple computationally
and it is given by:

κ̂ =

([α
2

]2
+

[
β

3

]3
)1/2

− α

2

1/3

+

+
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2

]2
+

[
β

3

]3
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− α

2

1/3

− c2
3c3

ν̂ =

[
Ψ(1, κ̂)

k2

]1/2

σ̂ = exp

[
k1 −

Ψ(0, κ̂)

ν̂

]
,

with

c0 = k2
3 − 8k3

2, c1 = 6k2
3 − 16k3

2, c2 = 12k2
3 − 8k3

2, c3 = 8k2
3,

(5)

α =
27c23c0 − 9c3c2c1 + 2c32

27c33
, β =

c1
c3
− 1

3

(
c2
c3

)2

. (6)

The derivation of these solutions is presented in Appendix C.

Thus, the tth iteration of histogram-based SEM for GΓD mixture
estimation goes as follows:
• E-step: compute, for each greylevel z and i-th component, the
posterior probability estimates corresponding to the current pdf es-
timates, i.e. z = 0, . . . , Z − 1:

τ ti (z) =
αtiGti (z)∑Kt
j=1 α

t
jGtj(z)

, i = 1, . . . ,Kt,

where Gti (·) is the σi-conditional pdf estimate on the tth step.
• S-step: sample a label for each greylevel z according
to the current estimated posterior probability distribution
{τ ti (z) : i = 1, . . . ,Kt}, z = 0, . . . , Z − 1.
• M-step: ∀i, compute the sample estimates of the log-cumulants
(k1i, k2i, k3i) and mixture proportion αi. Find then the parameter
estimates (αt+1

i , νt+1
i , κt+1

i , σt+1
i ) as above.

• K-step: ∀i: if αt+1
i < γ, eliminate the i-th component, update

Kt+1. The choice of threshold γ is not critical, e.g. γ = 0.005.

3. SUPERVISED SAR CLASSIFICATION WITH
GΓD MIXTURES

The problem of classification consists in attributing to each pixel
of the considered image I a label assigning it to one of the M
thematic classes. Working in the mainframe of the supervised clas-
sification we consider some training pixels to be available for each
of the M classes. First, we perform the learning of the statistical
properties of each class by estimating a GΓD mixture pdf on its
training pixels, thus getting pdfs pi(r), i = 1, . . . ,M . It is possible
then to get the first classification by picking for each pixel the label
with the maximal value pi, i.e. the ML-classification, however this
gives very noisy results. This is especially critical for SAR images,
damaged by speckle [1]. Thus, some regularization has to be per-
formed. Here, we suggest the use of a Markov random field (MRF)
model which takes into account the local context information [12].
To implement the MRF-energy minimization we run the Modified
Metropolis Dynamics (MMD) algorithm, which is a compromise



(a) Initial VV pol SAR image (b) Ground truth (c) DSEM classification (d) GΓD classification (e) Nakagami classification

Figure 1: (a) Initial image, 800x1000 pixels, (b) Ground truth (black - water, dark grey - wet soil, light grey - dry soil), (c) DSEM, (d) GΓD
mixture and (e) Nakagami mixture classifications maps (black - water, dark grey - wet soil, light grey - dry soil, white - misclassification).

Table 1: Automatically estimated numbers of mixture components
K∗ and classification accuracies obtained by considered finite mix-
ture methods: class accuracies and overall accuracies.

Mixture method Water Wet soil Dry soil Overall

GΓD 88.55% 2 90.31% 3 68.46% 3 85.95%
DSEM [2] 88.67% 2 88.86% 2 72.51% 3 86.19%

Nakagami [3] 90.24% 2 84.97% 2 64.51% 3 81.38%

solution between Iterative Conditional Modes and Simulated An-
nealing, and, as such, is computationally feasible and provides rea-
sonable results in real classification problems [13]. The employed
here MRF and MMD algorithms and their settings are not novel
and we refer the reader to an earlier work for more details [14].

4. EXPERIMENTAL RESULTS

The algorithm settings are the following. We initialize K0 = 5 as
an overestimate for each class, so that SEM finds K∗ by annihilat-
ing the redundant components. The number of iterations for SEM
is set to T = 300. We run the MRF coefficient estimation on the
ML-classification and the MMD settings are as in [14].

The experiments were performed on a VV polarization, 6.5 m
ground resolution, 2.66-look TerraSAR-X ( c©Infoterra GmbH,
2008) image acquired over Sanchagang, China. The application
was to epidemiological monitoring and the thematic classes were:
water, wet soil and dry soil. Figure 1 presents the classifica-
tion results and comparisons with other mixture-based SAR statis-
tics models, i.e. DSEM model [2] and Nakagami-gamma mixture
model based on SEM (as described above), analogical to [3] for am-
plitudes. Table 1 reports K∗ estimates and the obtained accuracies.
We observe that DSEM slightly outperforms our model, however
this was to be expected as DSEM is based on a mixture of several
pdf families, of which GΓD is part. The Nakagami-gamma fit is
worse due to a lower flexibility of the parametric pdf model, and we
remind that Nakagami (and gamma) pdfs are special cases of GΓD
corresponding to ν = 2 (ν = 1) in (1). From the performance point
of view, the estimates (averaged overM = 3 classes) were obtained
in: TDSEM = 93s, TGΓD = 22s, TNakagami = 18s on an Intel Core 2
Duo 1.83GHz, 1Gb RAM, WinXP system. This result confirms our
GΓD mixture model’s flexibility and fast performance.

5. CONCLUSIONS

In this paper we have introduced a novel GΓD mixture estimation
approach and demonstrated its efficiency in the application to high

resolution SAR image classification. We have proved the identi-
fiability of this type of finite mixtures and demonstrated the con-
sistency of the exploited parameter estimation procedure. In or-
der to improve the performance of the GΓD mixture estimation
we suggested the use of an approximative solution of the equa-
tions involved, thus, avoiding time-consuming iterative processes.
The experimental comparison demonstrated a high potential of this
model in the problem of high resolution SAR statistical modeling:
it performs almost as well as the most general dictionary-based
stochastic expectation maximization (DSEM) problem, and as fast
as a very simple Nakagami-gamma mixture-based one. We want
to point out that the use of GΓD mixtures and the developed esti-
mation procedure can be interesting to other applications, such as,
e.g., speech signal processing, health management and economical
applications.

APPENDIX A. OUTLINE OF THEOREM 1 PROOF

To prove the identifiability of finite mixtures of GΓDs we show that
the necessary identifiability conditions are fulfilled in the form pro-
posed by Atienza et al. [15]. In order to do so we demonstrate a
linear transform MG(t) : G(x)→ φG , and a point t0 from the sup-
port of φG that enable us to find the total parametric-space ordering
of pdfs G(t|ν, κ, σ) that fulfills the following condition:

F1 ≺ F2 ⇔ lim
t→t0

φF2(t)

φF1(t)
= 0, (7)

where F1, F2 are two GΓDs.

We define the transform M as follows:

M : φG(t) =

∫ ∞
0

txG(x)dx = σt
Γ(κ+ t/ν)

Γ(κ)

and t0 =∞. We then show that when t→ t0 we have

φF2(t)

φF1(t)
∼ C exp{

[
1

ν2
− 1

ν1

]
t log t+ [κ2 − κ1] log t+

+

[
(log σ2 − log σ1)−

(
1

ν2
− 1

ν1

)
−
(

log σ2

ν2
− log σ1

ν1

)]
t}

with a constant C, and prove the following ordering satisfies (7):

[ν2 > ν1]

F1 ≺ F2 ⇔ [ν2 = ν1, σ2 < σ1]

[ν2 = ν1, σ2 = σ1, κ2 < κ1].

Thus, finite mixtures of GΓDs are identifiable.



APPENDIX B. OUTLINE OF THEOREM 2 PROOF

To prove the consistency of the sequence of MoLC estimates
{ξ̂n}∞n=1 = {(ν̂n, κ̂n, σ̂n)}∞n=1, i.e. that it converges in probability
to the true parameter values (ν∗, κ∗, σ∗), we first demonstrate the
invertibility of Θ : (0,+∞)3 → R3 and the continuity of mapping
ξ̂n = Θ−1(k̂n), where k̂n = (k̂1n, k̂2n, k̂3n) is the sequence of
sample log-cumulants [11]. According to (3), (4),

Θ(ξ) =

(
log σ +

Ψ(0, κ)

ν
,

Ψ(1, κ)

ν2
,

Ψ(2, κ)

ν3

)
.

This is proved by referring to the implicit function theorem and
properties of polygamma functions [8].

Then we take advantage of the fact that the expressions for vari-
ances of the sample log-cumulants are well known [11] and show
that for any value of ε > 0, if ||k̂n − k∗|| < δ(ε), and the central
moments E

[
(logX)j

]
, X ∼ G, till order j = 6 exist and are

finite, then we get

P{|ν̂n−ν∗| < ε, |κ̂n−κ∗| < ε, |σ̂n−σ∗| < ε} > 1−
√
L(n)

δ(ε)
,

where L(n) = O(n−1). The derivation of explicit expressions for
the necessary log-moments of GΓD demonstrates them to be finite
whatever the values of parameters. Thus, we get the required

lim
n→∞

P {|ν̂n − ν∗| < ε, |κ̂n − κ∗| < ε, |σ̂n − σ∗| < ε} = 1.

APPENDIX C. DERIVATION OF THE CLOSED-
FORM ESTIMATOR FOR GΓD PARAMETERS

In order to find a numerical solution of the system (3)-(4) and render
the solution computationally as fast as possible we suggest to use
an asymptotic decomposition of the polygamma functions [8]:

Ψ(1, x) = x−1 + 0.5x−2 + ō(x−2),

Ψ(2, x) = −x−2 − x−3 + ō(x−3),

with x ∈ R, x→∞.

Isolating ν in (4) for j = 2, 3 we search for the solutions of the
algebraic equation c3κ3 + c2κ

2 + c1κ+ c0 = 0, with ci as in (5).
By substituting y = κ + c2/(3c3) we get to the reduced equation
y3 + βy + α = 0 with α and β as in (6). Now we apply the
Cardano’s formula and pick the positive solution. Thus, we get the
formula for κ̂, and the solutions for ν̂, σ̂ follow from (3)-(4).

We point out that to have a required real value solution κ̂ using the
involved decomposition and Cardano’s formula we need the weak
following condition fulfilled: 3k2

3 6 8k3
2 . Dealing with real SAR

imagery we never stumbled upon a case when this condition fails.
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