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Abstract

We introduce a novel automated technique for segmentation of
anatomical structures in the images of Nissl-stained histological
slices of mouse brain. Segmentation method includes atlas-based
supervised learning. An experimental mouse brain slice is prelimi-
narily associated with the corresponding slice from the mouse brain
atlas. Then a preprocessing procedure is performed in order to en-
hance the quality of the experimental image and make it as close to
the corresponding atlas image as possible. An effective method of
luminance equalization, which is an extension to Retinex algorithm,
is proposed.

A supervised learning is performed on the atlas image associated
with the experimental slice. A Random Forest is trained on a data
derived from the atlas image along with its annotated map, and ex-
perimental image pixels are then classified into anatomical struc-
tures. The result is refined by Markov random field.

Preprocessing and segmentation procedures have been tested and
evaluated on real experimental Nissl-stained slices.

Keywords: automated segmentation, luminance equalization,
Retinex, random forest, Markov random field.

1. INTRODUCTION

Segmentation of mouse brain images into anatomical structures is
a very important problem. It is an essential step of any analysis
procedure performed on these images. Manual segmentation turns
out to be rather tedious and time-consuming process which requires
expert knowledge. Therefore, automated segmentation of mouse
brain images is a challenging task.

Fortunately, several publicly available mouse brain atlases exist
which can effectively aid the automated segmentation procedure.

Allen Brain Atlas [1] consists of 132 coronal sections evenly spaced
at 100 µm intervals and annotated to a detail of numerous brain
structures. The images were obtained using Nissl-staining pro-
tocol [1] and were manually enhanced using contrast adjustment,
etc. Both histological images and corresponding colored annotated
maps are presented in the Allen Brain Atlas.

In the present work, we deal with real experimental Nissl-stained
slices of mouse brain provided by P. K. Anokhin Institute of Normal
Physiology.

Each slice is considered separately. Assuming that for a given ex-
perimental slice we know which slice in the atlas it corresponds to,
we can use atlas anatomical annotation as a reference. If we put
an atlas annotated map directly over the experimental image, it will
give a very rough approximation of anatomical structures of the ex-
perimental slice because individual local differences in each brain
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structure’s shape and size are not taken into account. Therefore, an
annotated map from the atlas should not be used directly for auto-
mated segmentation. But, along with this annotated map, a corre-
sponding histological image from the atlas can serve as a labeled
training set for supervised learning algorithms for classification of
image pixels into anatomical structures. In this work, 17 basic brain
structures are considered, such as cerebral cortex, hippocampal for-
mation, thalamus, etc. A Random Forest [2] was chosen as a clas-
sification algorithm because it is a fast and highly accurate method
which can deal with a very large number of features.

Classification of individual pixels can produce some clutter, espe-
cially along the boundaries of anatomical structures. In order to
overcome this problem, probabilistic outputs from the random for-
est are incorporated into Markov random field for further refine-
ment of automated segmentation result.

In order to make the classification algorithm work properly, an ex-
perimental image should be preprocessed so that it looks as close to
the corresponding atlas image as possible. Preprocessing is always
necessary for real experimental images due to non-uniform light-
ing, low contrast, and other artifacts introduced by the slice image
acquisition procedure.

The rest of the paper is organized as follows. An overview of exist-
ing mouse brain segmentation methods is given in section 2. Auto-
mated preprocessing procedure for experimental images, including
luminance equalization, is described in section 3. Automated atlas
based segmentation algorithm is described in section 4. Experimen-
tal results are presented in section 5. Discussion and conclusion are
in section 6.

2. PREVIOUS WORK

Several works devoted to automated mouse brain segmentation ex-
ist.

The paper [3] describes a registration scheme to automatically an-
notate hierarchical brain structures in Nissl-stained mouse brain im-
ages using Allen Brain Atlas as a reference. A non-rigid deforma-
tion field which best maps the atlas onto the subject image is ob-
tained and it can be used to warp the atlas annotation image thus
automatically creating annotations for the subject. Although in our
case we know which slice from the atlas an experimental slice cor-
responds to, differences in shape and size of anatomical structures
can be too big for nonlinear warping methods. So, this class of
methods can hardly be used for our problem.

A method for segmentation of anatomical structures in histological
data is presented in [4]. Segmentation is carried out slice-by-slice
by minimizing a cost functional that enforces a compatibility of
partitions with corresponding models of region of interest and back-
ground (based on intensities and spatial locations) together with the
alignment of boundaries with image gradients. This method was de-
signed for segmentation of only one anatomical structure at a time;
it does not take into account spatial relations between structures.
Therefore it is only suitable for segmentation of anatomical struc-



tures with clear boundaries.

In [5], the classification of voxels in the mouse brain into structures
is accomplished by combining magnetic resonance intensity fea-
tures with spatial priors into a discriminant Bayes classifier. These
spatial priors integrate information about the location of structures
in the brain as well as the contextual relationship between struc-
tures. This contextual information is modeled using the concept of
Markov random field (MRF).

The authors of [6] proposed a segmentation method of mouse brain
magnetic resonance microscopy (MRM) images that guides the
Markov random field clustering with edge information of the MRM
images combined with information on the intensity distribution of
the various brain structures taken from the atlas.

In [7], authors developed an extended MRF method for automated
segmentation of 3D MRM mouse brain images. The eMRF em-
ploys the posterior probability distribution obtained from a sup-
port vector machine (SVM) to generate a classification based on
the MR intensity. To maximize the classification performance, the
eMRF uses the contribution weights optimally determined for each
of three potential functions: observation, location, and contextual
functions, which are traditionally equally weighted.

Magnetic resonance microscopy images of mouse brain differ from
Nissl-stained histological images. The latter have a grained, but
more accurate pattern. Due to such granulation, classification of
individual pixels into anatomical structures based on intensity gives
poor results in our case. Nevertheless, the boundaries of anatomical
structures are observable. Taking into account that we deal with
2D, not a 3D data, a superpixel-based approach, similar to [8] is
introduced in this paper.

3. LUMINANCE EQUALIZATION

Brain slice images obtained from the scanner have very non-
uniform illumination (Fig. 1a), which presents a problem for the
process of segmentation. A luminance equalization stage of our
algorithm restores the luminance uniformity and makes the appear-
ance of the image closer to reference images from the atlas.
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Figure 1: a: raw brain slice image from the scanner; b: brain slice
mask; c: retinex algorithm; d: padding of the image outside the
slice contour; e: proposed luminance equalization algorithm.

A well-known method for luminance equalization is Retinex [9].
It can be roughly summarized as division of the image by its
Gaussian-smoothed copy. The rationale behind the method is
that the observed image Z(x, y) can be represented as a product
Z(x, y) = R(x, y)I(x, y) of the ground-truth (“reflectance”) im-
age R(x, y) and a non-uniform illumination I(x, y). In the ab-
sence of accurate information about the illumination image I(x, y),

it is estimated as a Gaussian smoothing of the observed image:
I(x, y) = G(Z(x, y)). So, R(x, y) is estimated as R(x, y) =

Z(x,y)
G(Z(x,y))

.

This method has two drawbacks when applied to our problem
(Fig. 1c). First of all, since there is an abrupt change of luminance
at the boundary contour of the slice, Gaussian smoothing under-
estimates the luminance of outermost slice pixels. This results in a
bright halo at these areas after Retinex. Secondly, Retinex produces
visible halos around sharp image edges, for a similar reason.

To address the first problem, we only apply smoothing to the area
inside the previously localized brain slice contour (Fig. 1b). Con-
tour localization is performed with EDISON segmentation algo-
rithm [10]. Filtering can be done either by directly constraining
Gaussian filter taps to cover the interior area only. But a more com-
putationally effective procedure is possible. We are extending the
inner area of the brain slice into the outside (black) area of the im-
age by circular mirroring (Fig. 1d). After that, a fast filtering code
that works on the extended rectangular image E(x, y) can be used.

To address the second problem, we have replaced a Gaussian filter-
ing step G in the Retinex algorithm with a nonlinear kernel. A me-
dian filterM has been chosen for such a nonlinear kernel. Similarly
to a multiscale Retinex algorithm [9], we are using 3 median filters
of different sizeM1,M2,M3 in our implementation (whose radii
are chosen as 4%, 7%, and 11% of the image width). The result-
ing formulas for luminance equalization of the extended image are
given below:

R(x, y) =
E(x, y)

M(E(x, y)) + ε
, (1)

M(x, y) =
1

3

3∑
i=1

Mi(E(x, y)). (2)

Here ε (chosen as 2% of peak image brightness) is used to prevent
over-amplification of the noise in dark image regions.

The final stage of the process is histogram normalization (“auto-
levels” operation). An example of the resulting image can be seen
in Fig. 1e.

4. AUTOMATED ATLAS-BASED SEGMENTATION

4.1 Features calculation

As mentioned before, a mouse brain atlas can be used as a labeled
training data for classification algorithms. A training set is con-
structed of a number of training samples. Each sample is a pixel’s
feature vector along with its label — the ID of the anatomical struc-
ture which this pixel belongs to.

This section is devoted to calculation of pixel features. We pro-
pose a new combination of features for classification — superpixel
features together with location priors for each pixel.

4.1.1 Superpixel features

An individual pixel can only be characterized by three features:
(x, y)-position and intensity value. This information is not enough
to draw conclusions about its belonging to a particular anatomical
structure because a pixel neighborhood is much more informative
since it also contains texture information. If we consider an arbi-
trary neighborhood of the pixel, for example, a square window, it
may belong to more than one brain structure in the case when it
contains a structure boundary(-ies). Therefore, such pixel neigh-
borhoods cannot serve as training samples — they will confuse a



classifier. Pixel neighborhoods should be image patches (“super-
pixels”) lying inside the boundaries of anatomical structures. Such
superpixels are acquired by an extended Mean Shift segmentation
algorithm [11]. Then, a set of features is calculated for each super-
pixel. These features, taken from [12], are divided into 4 categories:

• average color statistics (mean intensity and intensity variance)

• average geometry statistics (square, X-Y covariance, etc.)

• neighborhood statistics (intensity difference with neighboring
superpixels)

• sorted color statistics (intensity quantiles).

Each pixel’s feature vector is assigned with features of a superpixel
it belongs to.

4.1.2 Location priors

Assuming that the experimental slice under consideration is asso-
ciated with a corresponding slice from the mouse brain atlas, we
can assume that its configuration is the same as the atlas slice’s one,
i.e. the same set of anatomical structures stays in similar positions.
Therefore, it is possible to calculate location priors for each pixel
X = (x, y) using the atlas annotated map. Location priors is a vec-
tor L of prior probabilities of belonging of a pixel (x, y) to each of
the anatomical structures:

L = [P (a(X) = s1), P (a(X) = s2), . . . , P (a(X) = sN )], (3)

where N is the number of anatomical structures and a(X) is a
mapping function from pixels space to anatomical structures labels
space.

The idea of location priors was previously used in several works,
for example in [5] and [7], but calculation of a probability vector
for each spatial location required a training set of several brain in-
stances in order to gather statistics. In our case there is only one
brain instance (one slice) so we introduce a new method of calcula-
tion of location priors.

The probability of belonging of pixel X to an anatomical structure
si, i = 1, . . . , N, is calculated as follows:

P (a(X) = si) =


1, a(Y ) = si, ∀Y ∈ U(X)

0, ∀Y ∈ U(X) @Y : a(Y ) = si
0.5, ∃Y1 : a(Y1) = si ∧ ∃Y2 : a(Y2) 6= si,

Y1, Y2 ∈ U(X)
(4)

U(X) = {Y : |Y − X| ≤ R}, i.e. U(X) is a circular neighbor-
hood of X with radius R.

4.1.3 Construction of a feature vector

The final feature vector for each pixel is constructed by concatena-
tion of superpixel features and location priors.

4.2 Classification of pixels

Random forest is a combination of tree predictors, such that each
tree depends on the values of a random vector of training samples
taken independently and with the same distribution for all trees in
the forest. Random forest outputs the class that is the mode of the
class outputs by individual trees. An output from this classifier for a
sample X can be represented in a probabilistic form, similar to (3):

C = [P (a(X) = s1), P (a(X) = s2), . . . , P (a(X) = sN )],
(5)

where

P (a(X) = si) =
Ntrees : a(X) = si

Ntrees
, i = 1, . . . , N. (6)

So, after random forest classification for each pixel we can obtain
a vector of probabilities of its belonging to each of the anatomical
structures.

4.3 Incorporation of the classifier output into MRF

Classification of individual pixels can produce some noise, espe-
cially near the boundaries of anatomical structures, because it does
not take into account spatial relations between pixels. Introduction
of Markov random field can effectively address this problem. An
image can be described by a Markov network where xj are observ-
able variables — pixels, and tj are latent variables — their labels.

The most probable values of latent variables are reconstructed from
observable variables:

TMP = argmax
T

P (T |X) (7)

The problem of finding the most probable distribution can be re-
duced to energy minimization problem:

E(T |X) =
∑

(i,j)∈E

Eij(ti, tj) +
∑
i

Ei(xi, ti)→ min
T
,

ti ∈ {1, . . . , N}
(8)

Minimization of energy by k-valued latent variables is an NP prob-
lem, nevertheless it is possible to construct an iterative procedure
which approximately converges to a global optimum.

Unary term in (8) stands for a correspondence of the pixel with each
of the classes. In our case it is calculated as follows:

E(x, t) = − log10 C, (9)

where C is the random forest output from equation (5).

Binary term in (8) reflects correlation between classes of neighbor-
ing pixels. In the present work, Potts model is used where non-
coincidence of neighboring pixel classes is penalized by a constant
value of 1:

Eij(ti, tj) = 1− δ(ti, tj) (10)

5. EXPERIMENTS

The described atlas-based segmentation algorithm was tested on
real experimental Nissl-stained mouse brain slice images prepro-
cessed by the proposed luminance equalization method. Results
are shown in Fig. 2. It can be seen that introduction of MRF is
necessary to make anatomical structures continuous.

Implementation details are given below.

Brain slice image size is 270×204 pixels. During random forest
classification each pixel was represented by a vector of 75 super-
pixel features and 17 location priors corresponding to 17 anatom-
ical structures. Radius of the location prior is equal to 8 pixels.
Random forest classifier was constructed of 100 trees with the max-
imum depth of 30.

The proposed segmentation algorithm was evaluated on 10 pairs
of neighboring slices from the Allen Brain Atlas. One slice from
each pair was used for training and the other one, its neighbor, for
testing. Pairs of slices were taken randomly from different parts of
the Allen Brain Atlas. Overall precision and precision per structure
averaged from 10 different pairs are presented in Table 1.
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Figure 2: a: segmentation result after pixel classification with ran-
dom forest; b: segmentation result after MRF refinement.

Table 1: Precision

Overall CBy FT G CBv
0.860589 0.902196 0.568939 0.500531 0.921488

MY MB P CLXg 6b
0.764072 0.948688 0.816145 0.929592 0.309266

HPFg HPF TH HY STR
0.905144 0.607194 0.952606 0.867327 0.949691

PAL CLXv
0.616833 0.738971

Precision was calculated as follows. First of all, the confusion ma-
trix for each pair of slices was calculated. It is a square matrix
M whose elements mij reflect the number of pixels of i-th true
anatomical structure that were (mis-)classified as j-th anatomical
structure during the automated segmentation procedure. Ideally,M
is a diagonal matrix, which means that all the pixels were correctly
annotated. Precision for i-th anatomical structure is calculated by
the formula:

pi =
mii∑
j mij

(11)

Overall precision for a pair of slices is calculated by the formula:

p =

∑
imii∑

i,j mij
(12)

6. CONCLUSION AND DISCUSSION

We have proposed a method for automatic atlas-based segmenta-
tion of Nissl-stained mouse brain slice images which takes into ac-
count texture peculiarities of images obtained by this protocol. An
effective technique for luminance equalization was introduced. It
significantly enhances the quality of real experimental images and
makes them close to Allen Brain Atlas images, which is essential
for segmentation based on supervised learning.

A novel segmentation framework is introduced. Visual analysis and
numerical results show that the algorithm performs rather well on
large anatomical structures such as cerebral cortex (CLXg), thala-
mus (TH), etc. Thin and small structures, especially with fuzzy
boundaries, such as 6b are difficult to segment. Classification errors
can occur across the boundaries of anatomical structures in cases
when these boundaries are not clear or when a boundary between
structures lies far from the corresponding boundary on the train-
ing brain slice. Similar problems are discussed in previous works
devoted to automated segmentation of MRM brain volumes. Nu-
merical results represented in Table 1 are comparable to those from
previous works.

In the future, we will add textons (texture elements) to feature vec-
tors in order to include local texture information, which is probably
helpful for classification of anatomical structures. Shape priors will
also be incorporated into the automated segmentation framework.
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