
Low Cost Adaptive Anti-Aliasing for Real-Time Ray-Tracing

Maxim Shevtsov, Mikhail Letavin and Alexey Rukhlinskiy
Intel Corporation

Nizhniy Novgorod, Russia
{maxim.y.shevtsov, mikhail.letavin, alexey.v.rukhlinskiy}@intel.com

Figure 1: Evaluation of the proposed adaptive anti-aliasing scheme in the context of simple packet ray-tracing pipeline. Left
is no-AA image (exactly one eye/shadow ray per pixel). In the middle additional samples are shown (notice how shadow
boundary is also detected for additional sampling). Right image is anti-aliased result. By computing additional samples only
where image-space color gradient is high, we significantly save computations. The resulting quality is identical to the 8X
super-sampling, with only doubling rendering time in compare to no AA version.

Abstract
This paper describes simple, practical scheme for adaptive anti-
aliasing, particularly suitable for packet style ray tracing. The
sampling patterns are organized in a SIMD-friendly fashion. The
technique explores image–space attributes to compute the
gradient. Only where value of the gradient is high, additional
samples are used. The final result is anti-aliasing with 8X super-
sampling quality, for just 2X rendering time increase (on
average).

Keywords: Rendering, adaptive anti-aliasing, ray-tracing,
SIMD, MSAA-patterns.

1. INTRODUCTION
Raster displays use a finite number of pixels to display the scene:
visible artefacts appear where pixels cannot adequately represent
high-frequency data.
Rasterization and ray tracing are combating aliasing in a different
manner. The two most popular ways within the rasterization
context are super-sampling (SSAA) and multi-sampling anti-
aliasing (MSAA). Super-sampling is brute-force approach
performed by rendering the scene at a higher resolution and then
down-sampling to the target resolution. Super-sampling is

expensive in terms of both performance and memory bandwidth.
Today’s GPUs use MSAA is an approximation to super-sampling,
avoiding unnecessary shader invocations, and CSAA [1] further
improves speed by decoupling coverage samples from color/z/etc
samples. Hardware CSAA/MSAA modes are characterized by the
pattern of the sampling grid, refer to the nice overview [2].
At the same time, both MSAA and CSAA are still brute-force
methods. Performing equally for the whole render target, they
lack adaptivity. The power is wasted on smooth areas, whereas
some problematic pieces of the image might still lack the samples.
For relatively low frequency effects an interesting alternative to
HW AA is mixed resolution rendering [3] which is more adaptive.
Finally, rasterization antialising considers quality of edges
primarily. For geometry aliasing (e.g. aliasing of
shadows/reflections) the existing GPU algorithms rely either on
filtering or increasing overall resolution, for shadow or
environment maps respectively. In contrast, for RT the true
shadow/reflection rays can be traced to get the additional data at
any specific frequency.
At the same time direct super-sampling methods are too expensive
for real-time ray tracing. Also computing pixel coverage that is
required for MSAA/CSAA would essentially mean shooting
additional rays anyway, thus falling back to super-sampling.

The iterative nature of ray tracing allows for adaptive schemas,
when additional rays are spawned only where it is necessary, so
high-quality results are obtained without significantly increasing
the storage resources and rendering time.
The major question for any adaptive scheme is the way how
troublesome pixels that would need additional samples are
identified. A recent scheme in [6] uses edge-detection filter that
again works well for edge smoothing, but doesn’t consider
geometry aliasing.
For RT there is an option to find discontinuities on the per-packet
basis, but smoother results are obtained, when some global (e.g.
frame-wide) information is used. In the paper we focused on
simple three-pass scheme. Initial pass is sparse stratified
sampling, sharing as many samples as possible with adjacent
pixels. Second pass is discontinuity detection. In the final pass
additional samples (i.e. rays) are traced.
Researchers proposed algorithms for tracing coherent ray packets
instead of single rays ([8]) using SIMD instructions. Thus a
sample pattern should also be packet-friendly. The paper
describes efficient grouping of the pattern rays for SIMD-aware
ray tracing algorithms. We consider the 4-way SIMD (e.g. SSE)
primarily.
We argue that to stay real-time one would need to consider inter-
pixel pattern design. We introduce 2x2 pixels pattern. At the same
time the proposed primary pattern still allows for sub-pixel
accuracy.

2. RELATED WORK
Whitted was first to suggest adaptive super-sampling with
recursively subdividing the pixels [9] for ray tracing. Mitchell
presented effective non-uniform sampling patterns and applied
contrast measure thresholds [10]. Painter and Sloan [11]]
presented hierarchical adaptive stochastic sampling for ray tracing
that worked in progressive manner.
Cone tracing [12] is an example of the instant ray-filtering
approach that overcomes the aliasing problems resulting from the
point sampling approach of ray tracing. The space is probed with
a finite-width cone instead of a ray. The intent is to prefilter by
computing the integral of the image function within a circle on the
image plane. Similar goals were pursued by different researchers
through the introduction of polygonal beams [13] and finally
frustum tracing with MLRTA [14]. MLRTA provides a natural
measure of the geometric complexity (i.e. aliasing probability) of
specific image regions. But no applications of the MLRTA for the
anti-aliasing are described by the best of our knowledge,
particularly for shadows/reflections, that are less advantageous for
frustum tracing.
Also, the geometry complexity is not the only mechanism that
contributes to unwanted high frequencies in ray-traced image:
shadow edges, specular highlights, mapped textures, reflected and
refracted details, etc. The only contribution that can be pre-filtered
in advance is the texture aliasing (combined with ray differentials
[15]). The rest require increasing the sampling rate.
We follow the previous adaptive sampling techniques in the
approach of detecting problematic regions via frame-buffer color
comparisons. This in fact, the very property that leads to the most
general discontinuity detection, while also efficiently accounting
for the aliasing mechanisms altogether. The only exception is
texture anti-aliasing that is done locally on a surface [15], rather
than in the image plane.
There are recent approaches [6] where geometry attributes (like
normal) and shadow existence contribute separately to the multi-
valued threshold vector. While this approach produces better
quality it does increase the resource and computational pressure.

Also it can be too conservative (and expensive) for areas where
some additional attributes might appear aliased thus causing
additional sampling, that would be avoided if final shading and
blending were performed first.

There are plenty of sampling patterns [2]. However most of
them are concerned with intra-pixel sampling strategies. It does
make sense for distribution ray tracing [4]. We consider inter-
pixel design by sharing samples within 2 x 2 block of pixels.
Since more sparse sampling may under-utilizes SIMD units, due
to lowered rays coherency, we pack the pattern rays in 3 coherent
groups.

3. SOLUTION
Adaptive super-sampling is a smart way of refining the

rendering of the scene at those exact places where it will deliver
the greatest benefit. In the paper we focused on simple three-pass
scheme, Figure 2, left. We consider each pass in details below,
leaving the analysis for the next section.

Initial pass is sparse pre-sampling, sharing as many samples as
possible with adjacent pixels (Figure 2 right). We use FLIPTRI
pattern [5] for inexpensive sampling during initial pass. FLIPTRI
costs only 1.25 samples per pixel on average. It is also exhibits
reasonable stratification for horizontal, vertical and diagonal
strata. FLIPTRI is the most efficient filter, in terms of quality/cost
for most cases [2].
We also tried scheme based on FLIPQUAD as a primary
sampling pattern, refer to analysis in section 4. Both FLIPTRI and
FLIPQUAD are determined for one pixel first, and the rest of the
sets are then obtained by mirroring along the axis of translation.
This implicitly results in interleaved sampling [16]:

A
Figure 2: Simple three-pass scheme for adaptive anti-aliasing,
left. An example how primary and secondary pattern rays are
shared for a 2x2 pixel block. Single FLIPTRI pattern is marked
with read, right.

To utilize available CPU’s SIMD units completely for primary
pattern, we group initial samples in SSE packets: 2 edge packets
and one corner package. These three packets are efficiently shared
for the 2x2 pixel block, Figure 3. Similarly are shared the samples
within four (3 edge/1 corner) packets of FLIPQUAD.

Figure 3: Packet-grouping of the rays within FLIPTRI-based

primary pattern. Two edge packets are shared within 2x2 block of
pixels, e.g. (edge) packets 1 with 2, or packets 3 with 4. The
corner (black dots) packet is also shared, but within another

 2x2
block. This irregularity breaks up symmetry somewhat, which
increases the quality.

Second pass is discontinuity detection. It involves computation
of gradients, performed pair-wise between samples in a primary
pattern, Figure 4. The gradients can be computed either for
luminance (i.e. brightness) value or separately per-color
component. Finally the average gradient magnitude is computed
for the frame. This value serves as a threshold in the final pass,
where additional samples (i.e. rays) are generated. If super-
sampling threshold value from the previous frame is used, then
storing all pre-sampling results for finding average gradient can
be avoided. Then, no dedicated pass is required, instead, the
decision to super-sample or not can be immediately applied, once
the values of initial sampling pattern are determined. This way the
original three-pass scheme (Figure 2, left) can be boiled down to a
single pass, while average gradient estimation (for the next frame)
can be coupled with post-processing routine like tone-mapping.
This approach improves cache utilization, resulting in overall
performance improvements of ~5%.

Figure 4: Gradient evaluation is performed pair-wise for

samples of the primary pattern. Three gradients are computed for
FLIPTRI (left), and six for FLIPQUAD (right).

For additional samples for FLIPTRI scheme we use

conventional instantiation of N-rooks sampling [17], known as
rotated grid super-sampling (RGSS), refer to Figure 2, right. The

final color value for pixel is computed via simple averaging with
equal weights for all samples (e.g. box-filter).

4. Results and analysis
Below is a performance for the scenes with the anti-aliasing
approach described in the previous section:
Fairy (178K triangles)
1 point light,
no reflections

16 fps

Conference(282K tris)
1 point light,
1 reflection bounce

12 fps

scene
lights
refl.

16 fps 12 fps

no
AA

8 fps 7 fps

FLIP
TRI

Table 1: Performance/quality results for the proposed adaptive
anti-aliasing scheme vs conventional no-AA rendering. FLIPTRI
is used for primary pattern. Models are ray traced at 1024x1024
on a Intel ®Core™ i7 @3.33 GHz machine with 4 Gb RAM. For
the Fairy scene close-up the material colors are turned off to better
demonstrate the effect.

The baseline time to frame is only 1.25X of the no-AA version
(due to inexpensive primary pattern). The rest is contributed by
additional sampling that costs from 20% to 30% of the frame
time, depending on the scene. The final result is anti-aliasing with
8X super-sampling quality, for just 2X rendering time (on
average).
The FLIPQUAD primary pattern is more expensive while
produces better quality, refer to Figure 5. In compare to other
sampling patterns costing 2 samples per pixel (e.g. Quincunx), it’s
behaviour is clearly preferable [2], [18]. It is also able to find and
fix more discontinuities than FLIPTRI. Coupled with more
additional samples, the FLIPQUAD might be recommended as a
good higher-quality preset:

 5

 1

2

 3

6 1

 2

3

4

Figure 5: Quality comparison for 2 anti-aliasing presets:

FLIPQUAD with 16 additional per-pixel samples (upper image)
and FLIPTRI with 4 samples shared for 2x2 pixels block (lower
image). The performance difference is not very high (just 2X) due
to better ray coherence of the FLIPQUAD-based preset.

Note on texture anti-aliasing. For scenes with textures exhibiting
large variations, discontinuity detection in the image space might
generate unnecessary sampling. Since texture anti-aliasing is
performed locally on a surface, it makes sense to estimate
gradients (section 3) separately from textures, in spirit of [7].
However we found that using local average texture intensity for
gradient estimation works fine, while avoiding many false
positives, see Figure 6.

Figure 6: When the texture exhibits high variation, only its

local average value is considered for gradient estimation. This
helps to avoid unnecessary super-sampling. Still other sources of
aliasing are detected correctly (e.g. reflection boundaries: at the
right).

5. FUTURE WORK
We consider using MLRTA as a topic for future research. This

would allow quickly skipping areas that don’t exhibit geometry
aliasing. While this is obvious for primary rays, the research is
required for secondary rays.
Currently we use box-shaped reconstruction filter and equal
weights for all samples. Increasing the size of the reconstruction
filter from 1×1 to 2×2 (or 3x3, which is advantageously
symmetric) pixels enables the sampling pattern to more accurately
approximate a wider reference filter [17]. This neither increase
resource consumption, nor complexity of the filtering algorithm.

6. REFERENCES
[1] NVIDIA Corporation Rendering. “CSAA (Coverage

Sampling Antialiasing)” (2007).
http://developer.nvidia.com/object/coverage-sampled-aa.html

[2] Hasselgren J., Akenine-Moller T., Laine S.: “A Family of
Inexpensive Sampling Schemes”, Computer Graphics Forum,
v. 24 (2005).

[3] Shopf J. “Mixed Resolution Rendering”, GDC 2009 slides.

[4] Boulos S., Edwards D., Lacewell J D., Kniss J., Kautz J.,
Shirley P., and Wald I. “Interactive Distribution Ray
Tracing” Tech. rep., University of Utah, 2006

[5] Akenine-Moller T.: “An Extremely Inexpensive
Multisampling Scheme”. Tech. rep., Chalmers University of
Technology, 2003.

[6] Iourcha K., Yangy J. C., Pomianowskiz A. “A Directionally
Adaptive Edge Anti-Aliasing Filter” , Proceedings of High
Performance Graphics, 2009.

[7] Bongjun Jin, Insung Ihm and Byungjoon Chang. “Selective
and Adaptive Super-sampling for Real-Time Ray Tracing ”,
Proceedings of High Performance Graphics, 2009.

[8] Wald I., Benthin C., Wagner M., and Slusallek P.,
“Interactive Rendering with Coherent Ray Tracing”.
Proceedings of Eurographics 2001.

[9] Whitted T., "An Improved Illumination Model for Shaded
Display", Comm. ACM, 23(6), 1980.

[10] Mitchell D.P., "Generating Antialiased Images at Low
Sampling Densities", Computer Graphics, 21(4), 1987.

[11] Painter J., and Kenneth S., "Antialiased Ray Tracing by
Adaptive Progressive Refinement", Computer Graphics,
23(3), 1989.

[12] Amanatides, J. "Ray Tracing with Cones", Computer
Graphics, 18(3), 1984.

[13] Heckbert P., Pat Hanrahan P., "Beam Tracing Polygonal
Objects", Computer Graphics, 18(3), 1984.

[14] Reshetov A., Soupikov A.. and Hurley J. ”Multi-level ray
tracing algorithm”. Proceedings of ACM SIGGRAPH
(2005).

[15] Keller A., Heidrich W. “Interleaved sampling”. Proceedings
of Eurographics Workshop on Rendering (2001).

[16] Igehy H. “Tracing ray differentials”. Proceedings of
SIGGRAPH(1999).

[17] Shirley P. “Discrepancy as a quality measure for sampling
distributions”. Proceedings of Eurographics 1991.

[18] Laine S., Aila, T. “A Weighted Error Metric and
Optimization Method for Antialiasing Patterns”, Computer
Graphics Forum, v.25 (1), 2006.

About the authors
Maxim Shevtsov is a Research Scientist in Nizhniy Novgorod
Laboratory of Intel Corporation. He received MS degree in CS
from Novosibirsk State University in 2003. His contact email is
maxim.y.shevtsov@intel.com

Mikhail Letavin is a Software Engineer in Nizhniy Novgorod
Laboratory of Intel Corporation. He received MS degree from
Nizhniy Novgorod State Technical University in 1998. His
contact email is mikhail.letavin@intel.com

Alexey Rukhlinskiy is a Graphics Software Engineer in Nizhniy
Novgorod Laboratory of Intel Corporation. He received MS
degree in CS from Novosibirsk State University in 2002. His
contact email is alexey.v.rukhlinskiy@intel.com

http://developer.nvidia.com/object/coverage-sampled-aa.html�
mailto:maxim.y.shevtsov@intel.com�

	1. INTRODUCTION
	2. RELATED WORK
	3. SOLUTION
	5. FUTURE WORK
	6. REFERENCES

