Fast Weak Learner Based on Genetic Algorithm*

Boris Yangel
Department of Computational Mathematics and Cybernetics
Lomonosov Moscow State University, Moscow, Russia
hrOnix @acm.org

Abstract

An approach to the acceleration of parametric weak classifier boost-
ing is proposed. Weak classifier is called parametric if it has fixed
number of parameters and, therefore, can be represented as a point
in multidimensional space. Genetic algorithm is used to learn pa-
rameters of such classifier. Proposed approach also takes cases
when effective algorithm for learning some of the classifier pa-
rameters exists into account. Experiments confirm that such an
approach can dramatically decrease classifier training time while
keeping both training and test errors small, at least for some widely
used pattern recognition algorithms.

Keywords: boosting, genetic algorithm, classification, haar fea-
ture.

1. INTRODUCTION

Boosting [1] is one of the commonly used classifier learning ap-
proaches. It is machine learning meta-algorithm that iteratively
learns additive model consisting of weighed weak classifiers that
belong to some classifier family W. In case of two-class classifica-
tion problem (which we will consider in this paper) boosted classi-
fier usually has form

s(x) = sgn (Z aiwi(:m)) . (1)

There x € X is a sample to classify, w; € W are weak classifiers
learned during boosting procedure, «; are weak classifier weights,
wi(z) € {-1,1}, s(z) € {—1,1}. Set W is referred to as weak
classifier family. That is because it elements should have error rate
only slightly better than random guessing. It expresses the key idea
of boosting: strong classifier can be built on top of many weak.

There are many boosting procedures that differ in the type of loss
being optimized for the final classifier. But no matter what kind of
boosting procedure is used, on each iteration it should select (learn)
a weak classifier with minimal weighed loss from W family us-
ing special algorithm called weak learner. For some widely used
families of weak classifiers that process can take a lot of time. For
example, simple classifiers called stumps are often used in boosting.
Those classifiers usually have form

wi(x) = sgnlg:(¢:(x) — t:)], 2)

where ¢; € ® is some object feature, ¢; is a threshold and g; €
{—1, 1} controls the sign of the weak classifier output. When given
some feature ¢;, optimal values for classifier parameters ¢; and g;
can be calculated rather fast for most of the widely used loss func-
tions. Problem of finding good feature ¢; is much harder. Exhaus-
tive search over feature space ® is often used. It’s not a problem
when object has few features, but sometimes feature space can be
really huge.

*This work was supported by the Russian Fund for Fundamental Re-
search through grant Nos. 08-07-445-a and 08-07-12081.

In pattern recognition, values of some function over various subre-
gions of an image are often considered as the features of that image.
Even small image has a lot of possible subregions, so exhaustive
search over feature space becomes very expensive. For example,
learning cascade of boosted stump classifiers based on haar fea-
tures with AdaBoost and exhaustive search over feature space took
several weeks in the famous work [2]. That’s why it is often very
important to decrease weak classifier learning time using some ap-
propriate optimization technique.

One of the widely used approaches to the numerical optimization
is genetic algorithm [3]. It is based on the biological evolution
ideas. Optimization problem solution is coded as chromosome vec-
tor. Initial population of solutions is created using random number
generator. Fitness function is then used to assign fitness value to
every population member. Solutions with the largest fitness val-
ues are selected for the next step. In the next step, genetic opera-
tors (crossover and mutation usually) are applied to selected chro-
mosomes to produce new solutions and to modify existing ones
slightly. Those modified solutions form up a new generation. Then
described process repeats. That’s how evolution is modeled. It con-
tinues until global or suboptimal solution is found or time allowed
for evolution is over. Genetic algorithms are often used for global
extremum search in big and complicated search spaces.

2. RELATED WORK

Usage of genetic algorithm for weak learner acceleration was al-
ready proposed in several works. For example, in [4] genetic weak
learner with special crossover and mutation operators was used to
learn classifier based on extended haar feature set. In [5] genetic
algorithm was used to select a few thousand weak classifiers with
smallest error on unweighted training set before boosting process
starts. Then exhaustive search over selected classifiers was per-
formed on each boosting iteration to select the one with minimal
weighed loss. In [6] boosting procedure was completely integrated
with genetic algorithm. Few classifiers were selected on each boost-
ing iteration from solution population and added to the strong clas-
sifier. Those selected classifiers were then used to produce new
population members by applying genetic operators. Then, in [7]
authors used special evolutionary algorithm they’ve called Evolu-
tionary Hill-Climbing as a weak learner. Crossover operator was
not used in it. Instead, 5 different mutations were applied to every
population member on each algorithm iteration. Result of each mu-
tation was rejected when it did not improve fitness function value.

There were two main reasons for using genetic search instead of
any other approaches in these works. Most of the classifiers used in
mentioned works were some extensions of the haar classifier family
originally proposed in [2]. So, huge size of the feature space and,
therefore, huge size of the weak classifier family did not allow to
apply exhaustive search based optimization. And complicated dis-
crete structure of a weak classifier blocked all other optimization
options.

Another important observation is the fact that all the authors of the
mentioned papers were forced to implement some specialized solu-

tion for genetic weak learner. So, ability to generalize evolutionary
approach to learning weak classifier is investigated in this work.

3. PROPOSED METHOD

We are interested in developing some general approach to weak
classifier learning. And we are especially interested in approach
that will handle classifiers of form (2) because those classifiers are
widely used in pattern recognition area. This approach should work
much faster than exhaustive search over classifier parameter space.
In the following document sections one such approach is presented.
It is based on the fact that when number of classifier parameters to
optimize is fixed, weighed loss optimization problem simply turns
out into multivariate function minimization problem which is well-
developed area of genetic algorithm application.

3.1 Population member

Let W be some parametric family of weak classifiers. It means
that every weak w € W can be described by a set of its n real-
valued parameters z1,...,x,. Let’s also assume that for the last
I parameters (I can be equal to zero) there exists some effective
learning algorithm Ly : R"~! — R!. We will refer to such pa-
rameters as to linked. For given values of parameters x1,...,Tn—1,
called free, L g finds optimal values for linked parameters that min-
imize loss function £ : R™ — R™. It means that our task is to
find values of free parameters that deliver the minimum to the loss
function E[z1,...,Zn—1, Le(z1,...,2n—1)]. So, set of parame-
ters x1, . .., Tn—; represents solution to our optimization problem
and form up a member of genetic algorithm population.

For example, for the weak classifier of form (2) parameters ¢; and g;
will be linked, while parameters describing feature ¢; will be made
free. It should be mentioned that if small changes of feature rep-
resentation can have unpredictable impact on the value of the loss
function, genetic optimization turns into random search. It happens,
for example, when feature can be simply described by its index in
the feature pool and features with close indices are not correlated.
On the other hand, small changes in the image region size or po-
sition usually lead to small changes in the region characteristic, at
least for some “good” stable characteristic functions like pixel in-
tensity sum in region. For such feature sets genetic optimization is
possible.

3.2 Fitness function

It is natural to assume that classifier with small error on training
set should have greater probability to get to the next generation of
the genetic algorithm. That allows us to introduce fitness function
F:R"! = RT as follows:

F(zy,...,2n) =

=1/E[x1,... |)

sy Tn—1, LE(xl, cee
We do not consider £ = 0 case. Classifier can not be called weak if
it has zero error value on training set. If such a classifier is presented

in a weak classifier family, we can select only that classifier as a
whole boosting procedure result.

3.3 Genetic representation

Every approach that allows us to encode a set of free parameters
is appropriate for population member representation. In this work
we have selected binary string representation which was confirmed
to be effective in function optimization problems. Some alternative
representations can be found, for example, in [3].

To form the binary string classifier representation, each classifier

parameter should be first represented as a binary string of fixed
length, using fixed-precision encoding. Then all the parameters
can be simply concatenated to form the final binary string of fixed
length.

Sometimes point p € R™ can have no corresponding classifier. For
the different families of image region classifiers it is possible, for
example, when one of the free parameters representing top-left cor-
ner of a classifier window is below zero. In this case fitness func-
tion value of the population member representing that point can be
forced to be zero. That is how such situations were dealt with in
experiments described in section 4.. Another possible approach is
to select representation and genetic operators in a way that simply
does not allow such points to appear. But that approach is less gen-
eral.

3.4 Genetic operators

In this work we’ve used the two most common genetic operators:
mutation and crossover. When binary string representation is cho-
sen, mutation and crossover are usually defined as follows:

e Crossover operator selects random position in the binary
string. Then it swaps all the bits to the right of the selected
position between two chromosomes. Such crossover imple-
mentation is called 1-point crossover.

e Mutation operator changes value of the random chromosome
bit to the opposite.

In our case, crossover operator produces two new solutions from
the two given chromosomes as following: some of the parameters
(placed to the left of the selected position) are taken from the first
classifier, some of the parameters (placed to the right) — from the
second. And one parameter, probably, can be made from both the
the first and the second classifier. Mutation operator simply pro-
duces new solution by changing value of the random classifier pa-
rameter.

3.5 Algorithm summary

Algorithm 1 Genetic weak learner

1: Generate initial population of N random binary strings;

2: fori=1,..., Kmae do

3: Add [NR.] members to the population by applying
crossover operator to the pairs of the random population
members;

4: Add [N R,] members to the population by applying muta-
tion operator to the random population members;

5. Calculate value of (3) for each population member;

6: Remove all the population members except of the N best
(those with largest value of (3));

7: end for

8: return weak classifier associated with point represented by

best population member as a result;

Algorithm 1 uses elitism as a population member selection ap-
proach. It has 4 parameters:

e N > 0 — population size.
® Kinaz > 0 — number of generations.
e R. € (0,1] — crossover rate.

e R, € (0,1] — mutation rate.

3.6 Discussion

Advantage of the proposed method lies in the fact that computa-
tional complexity of the weak learner does not depend on the size
of the weak classifier family. One can achieve balance between
training time and classifier performance only by changing values of
N, Kmae and S (discussed later). Similar effect can be achieved
by shrinking weak classifier family itself. But in most cases prior
knowledge about weak classifier performance in boosting is simply
not available.

One of the main disadvantages of the proposed weak learner is the
fact that many potentially interesting weak classifiers can not be
represented as a parameter vector of constant length. For example,
decision trees, widely used in boosting, can have variable number
of nodes. Also, as it was already mentioned, misclassification loss
we are trying to optimize should be more or less stable as a function
of classifier free parameters. If small perturbations of the free pa-
rameter vector lead to the unpredictable changes in the loss function
value, genetic optimization does not make much sense, becoming
just a random search.

4. EXPERIMENTS

4.1 Algorithms for experiments

Two boosting-based algorithms were implemented to compare pro-
posed genetic weak learner with original learners proposed by al-
gorithm authors. Viola-Jones [2] and Face alignment via boosted
ranking model [8] were selected for that purpose because both al-
gorithms use parametric weak classifiers applied to image regions.
These algorithms are based on distinct boosting procedures (Ad-
aBoost and GentleBoost), so loss, sample weight and classifier
weight functions used in them differ a lot. Another difference be-
tween selected algorithms is a problem they solve: two-class clas-
sification in [2] and ranking in [8]. Naive weak learner implemen-
tation is quite slow in both algorithms, so acceleration of boosting
process is necessary.

Weak classifiers used in both algorithms are based on haar
features and have common set of adjustable parameters. So,
weak classifier in both problems can be represented as w; =
(i, yi, width;, height;, type;, gi, t;). There x;, y;, width; and
height; describe image region, type; encodes haar feature type, g;
is a haar feature sign and ¢; represents weak classifier threshold.
Parameters g; and t; are linked because both algorithms have an ef-
fective algorithm for learning them. Parameter type; was also made
linked: changing feature type during genetic optimization does not
make much sense because it can change fitness function value sig-
nificantly after just one mutation or crossover. Separate algorithm
run was performed instead for each feature type. Best result from
all the runs was then selected. We’ve used the same 5 haar feature
types as in [8] for training both classifiers.

4.2 Run patterns

Comparison of two different genetic algorithm run patterns was also
performed in this work. One pattern considered was running ge-
netic optimization once with big population size. Another pattern
used was running optimization algorithm multiple times (denoted
as S) with small population size and then selecting best found clas-
sifier. When population size is small, final solution depends on
initial population a lot. So, considerably different results can be
obtained for different algorithm runs. While this run pattern pro-
duces worse classifiers, it can be implemented on multiprocessor
and multicore architectures very efficiently: each processing unit
can run its own genetic simulation. That makes perfect parallel al-
gorithm acceleration possible.

Table 1: Viola-Jones, acceleration

Run pattern Time (sec) Acceleration
S N Knaz
1 50 10 2.82 329.38
1 100 20 9.40 98.77
1 400 40 100.29 9.26
10 10 20 4.00 231.94
20 20 40 28.74 32.31
Brute force 928.52 1.00
Table 2: Viola-Jones, error
Run pattern Error
S N Kpmee Learning Test
1 50 10 0.0005 0.0356
1 100 20 0.0002 0.0380
1 400 40 0.0000 0.0328
10 10 20 0.0003 0.0378
20 20 40 0.0000 0.0391
Brute force 0.0000 0.0349

4.3 Training and test sets

As in work [4], [9] human faces database was used to train and test
classifier for Viola-Jones algorithm. Database was divided in half
to form the training and test sets. Each sample has size of 24 x 24
pixels.

Face images with landmarks from FG-NET aging database were
used to form the database for learning face alignment ranker pro-
posed in [8]. 600 face images were selected from database and
then resized to the size of 40 x 40 pixels. 400 images were used
to produce training set and other 200 — for testing. 10 sequential
6-step random landmark position perturbations were then applied
to selected face images to produce images of misaligned faces, as
described in the original paper. Training and test set samples were
then made of pairs of images with increasing alignment quality.

4.4 Hardware

All the experiments were performed on PC equipped with 2.33 GHz
Intel Core 2 Quad processor and 2 GB of DDR2 RAM.

4.5 Results

Tables 1 and 3 show average duration of 1 boosting iteration to-
gether with comparison to exhaustive search. Tables 2 and 4 show
error rate of the final classifiers on the training and test sets. We
have not trained any classifier using exhaustive search for boosted
ranking model because it would take about a year to finish the pro-
cess on our training set.

Experiments with Viola-Jones object detector have shown that clas-
sifier trained using genetic weak learner performs only slightly
worse than classifier trained using exhaustive search over feature
space. For N = 400 final classifier even shows better performance.
Classifier trained with S = 1, N = 50 and K4, = 10 acceler-
ates boosting nearly 300 times compared to exhaustive search while
still performing good on the test set. Classifiers trained with small
values of NV and big values of S (using second run pattern) perform
worse than any other. But, as it was mentioned before, such clas-
sifiers can be trained on multiprocessor or multicore systems very
efficiently.

Experiments with face alignment via boosted ranking model have
shown how exactly classifier performance depends on values of S,

Table 3: Face alignment via BRM, acceleration

Run pattern Time (sec) Acceleration
S N Kma:c
1 25 10 68.15 5195.88
1 50 10 173.33 2043.09
2 75 15 909.55 389.34
4 100 20 3582.37 98.85

Table 4: Face alignment via BRM, error

Run mode Error
S N Kpar Learning Test
1 25 10 0.0278 0.0317
1 50 10 0.0246 0.0297
2 75 15 0.0199 0.0268
4 100 20 0.0173 0.0259

N and Kq.. Increasing value of the each parameter results in in-
creased training time, but also in increased classifier performance.
Nevertheless, difference in training time is more significant com-
pared to the difference in prediction error. Classifier with S = 1,
N = 25 and Kpqz = 10 was trained 50 times faster than the best
obtained classifier for BRM, but its error on the test set is only 1.2
times worse. It makes such a classifier a perfect candidate for pre-
liminary experiments that usually take place before training of the
final classifier starts.

5. CONCLUSION

An approach to boosting procedure acceleration was proposed in
this work. Approach is based on usage of genetic weak learner for
learning weak classifier of special parametric form on each boost-
ing iteration. Genetic weak learner uses genetic algorithm with bi-
nary chromosomes. That genetic algorithm is designed to solve an
optimization problem of selecting weak classifier with the small-
est weighed loss from some parametric classifier family. Proposed
method was generalized for the case when there exists an effective
algorithm for learning some of the parameters of a weak classifier.
Experiments have shown that such approach allows us to accelerate
training process dramatically for practical tasks while keeping good
generalization properties.

Genetic weak learner proposed in this work can’t be used to boost
any tree-based classifiers. That fact limits its usage in many scenar-
ios because stump weak classifiers can not represent any deep inter-
actions between different object features. So, in the future work we
plan to generalize our approach for accelerating tree-based boost-
ing.

Another option for future research is performing additional experi-
ments with classifiers not related to haar features in any way. That
will confirm the profit of the proposed algorithm in computer vision
problems that are not biased towards haar feature usage. In fact, it
would be nice to determine different parametric classifier families
that can be efficiently boosted using proposed weak learner.

6. REFERENCES

[1] Robert E. Schapire, “The boosting approach to machine learn-
ing an overview,” in MSRI Workshop on Nonlinear Estimation
and Classification, 2002.

[2] Paul Viola and Michael Jones, ‘“Robust real-time object detec-
tion,” in International Journal of Computer Vision, 2001.

[3] David E. Goldberg, Genetic Algorithms in Search, Optimiza-

[4]

(5]

(6]

(7]

(8]

(9]

tion, and Machine Learning,
January 1989.

Addison-Wesley Professional,

Andre Treptow and Andreas Zell, “Combining adaboost learn-
ing and evolutionary search to select features for real-time ob-
ject detection,” 2004.

Geovany A. Ramirez, “Face and street detection with asym-
metric haar features,” 2007.

K. Masada, Qian Chen, Haiyuan Wu, and T. Wada, “Ga based
feature generation for training cascade object detector,” in Pat-
tern Recognition, 2008. ICPR 2008. 19th International Confer-
ence on, 2008, pp. 1-4.

Y. Abramson, F. Moutarde, B. Stanciulescu, and B. Steux,
“Combining adaboost with a hill-climbing evolutionary feature
search for efficient training of performant visual object detec-
tors,” in FLINS06, March 2006.

Hao Wu, Xiaoming Liu, and Gianfranco Doretto, “Face align-
ment via boosted ranking model,” in Computer Vision and
Pattern Recognition, 2008. CVPR 2008. IEEE Conference on,
2008, pp. 1-8.

P. Carbonetto, “Viola-jones training data,” http://www.
cs.ubc.ca/~pcarbo/viola-traindata.tar.gz,

2002.

