Realistic Real-time Underwater Caustics and Godrays

C. Papadopoulos?, G. Papaioannot
! Department of Informatics, Athens University of Economaesl Business, Athens, Greece
2Department of Computer Science, State University of NevkaiStony Brook, New York, USA

Abstract

Realistic rendering of underwater scenes has been a sutbjgct
creasing importance in modern real-time 3D applicationshsas
open-world 3D games, which constantly present the user ayth
portunities to submerge oneself in an underwater enviromn@ru-
cial to the accurate recreation of these environments arefthcts
of caustics and godrays. In this paper, we shall present el abv
gorithm, for physically inspired real-time simulation dfeise phe-
nomena, on commodity 3D graphics hardware, which can ebasily
integrated in a modern 3D engine.

Keywords: 1.3.7, Three-Dimensional Graphics and Realism,

Color, shading, shadowing, and texture.

Figure 1: A screenshot of our caustic and godray creation algo-
rithm, running at an excess of 100 fps, at a resolution of 800x

1. INTRODUCTION

Caustics are a result of the convergence of light at a single point.
The phenomenon occurs when light interacts with a refledive
refractive surface, where rays deviate from their initisedtions
and focus on certain regionsCrepuscular rays or godrays are a
result of photons outscattering from their path due to tles@nce

of particles in a participating medium. In this paper we bhedsent

a novel method for a physically inspired simulation of thése
phenomena in real time (Figure 1).

2. PREVIOUS WORK

Even though the underwater illumination has been the stlbjec
extensive research (mostly in the domain of particle andtnag-
ing algorithms), real-time solutions to the matter of retédi caustic
formation are limited. Methods for the simulation of crequigar
rays (or godrays) are even sparser. In this section, a bretiew
of some of the existing work in the area will be presented,ciwhi
is mainly focused on offline rendering or interactive illuraiion
simulation, but also includes real-time techniques for efiog) and
displaying caustics and godrays.

Offline solutions can create extremely realistic undermeaistics
and godrays, at a significant computational cost. One of tke fi
methods that allowed for caustic creation is forward ragit@[1],
which differs from conventional ray tracing in the senset tlags
are cast from the light towards the scene. Rays that intetBec
camera clipping plane contribute to the intensity of thepeetive
pixel. An alternative (and faster) method is bidirectiorsgl tracing
[2],[3], that traces rays both from the camera and the lighirce
and 'connects’ the ray paths to find the radiance contributicthe
corresponding pixel. Photon mapping, a global illuminatimlu-
tion presented in [4], utilizes forward ray tracing alongiwproba-
bilistic techniques, importance sampling and an illunoragath-
ering step to achieve relatively high performance and higgiity
caustics. It also permits the creation of godrays in paudithg me-
dia (via ray marching). However, despite the improvemertierw
compared to conventional forward ray tracing, photon magpjsé
also limited to off-line applications.

One of the first proposals for real-time caustic creation lmafb]
and involved the projection of a precomputed texture orgcstiene
geometry using additive blending. Animation was achieved v
texture coordinate perturbation. Obviously, while beiagtf this
method did not produce physically correct caustics thatated

in tandem with the water surface. Another approach, by [6] as
sumes that caustics are formed by rays emanating from ther wat
surface directly above the point of interest and uses Snallv to
produce refracted rays. It modulates intensity based oditbetion

of these rays and alternatively uses the vectors to indegharap.
Obviously the caustics produced by this method are not palgi
correct, as a result of the above assumption.

Shah et al. [7] presented a novel method for creating réfeact
caustics in image-space. This method involves creatingri@xe
grid out of the refractive geometry and then splatting theises
onto the scene using an image-space ray-scene intersedgon
rithm. However caustic quality is directly related to thedellation
of this vertex grid. Furthermore, this method does not ffeva
solution to the issue of godrays that is part of the same ilhation
problem.

Research concerning godray creation falls into two maiegmies,
the first being the modeling of the rays as light shafts. [@pnted
a method that modeled lightshafts as the front-facing sedeaof
‘illumination volumes’. However, the computational cost this
method was very high and, at its time, it did not provide a real
time solution. Lanza [9] proposed a similar method that ysad
allelepipeds, which are transformed via a vertex shadegrpm

SO as to animate in tandem with the water surface. This method tain area and reduces aliasing. Our technique achieveshiginy

while producing very 'dramatic’ results, requires a higinsiey par-
allelepiped grid in order for the effect to be realistic, ahin turn
results in a very high fill rate cost. Furthermore, the finatisity
computation for the godrays does not account for individagl
attenuation, as it is done in a post-processing pass, duidiich,
information for each individual ray is not available.

The second category of godray creation algorithms focusemd
the sampling of the visible distance in front of the viewerrag-
terizing planar surfaces parallel to the near clipping eldbobashi
et al. [10] uses precomputed integral values (saved in 2ites)
in order to compute the intensity value at each plane, whieh a
then accumulated in the frame buffer. Jensen [11] perforpera
fragment projective texture read from a caustics map, foh éag-

ment on a sampling plane. Both of these methods present cone ma

drawback, since a large number of sampling planes is redjirirer-
der to avoid artifacting. As these planes are representedieen-
space quads, there is a significant fill-rate premium to payhfeir
rasterization. Furthermore, in the case of Dobashi etladretis
no direct way for the algorithm to control animation of thght
shafts (since it would require recomputation of the 2D |qokex-
tures), while as far as Jensen’s method is concerned, thi¢iresot
physically accurate. In addition, the non-linear natur¢éheke pro-
jection transformations on the view-oriented planes pcedunon-
uniformly spaced samples and may result in curved godrays.

Another type of method that can handle caustics and saaiteri
due to complex refractive objects involves ray-marchinguigh

a voxel grid of the refractive geometry. 'Eikonal rendefifi] is
such a technique, and while it allows for real-time framesadur-
ing viewport changes, if the refractive object or the ligbsjtion
are altered, the lighting distribution has to be recal@ddt process
that can take several seconds) making it unsuitable forlaiing
underwater effects due to their constantly shifting natémother
technique in this area is presented by Sun et al.[13] who ose a
oct-tree data structure to store voxel data along with aptada
photon-tracing step to recompute the radiance volumegextaic
tive frame rates (approximately 8 fps). However, while ssstully
dealing with arbitrary and non-uniform refractive georiesty this
method also is too computationaly intensive to be used irak re
time generic 3D application.

Finally, Kriger et al. [14] proposed a method for generiosti
simulation that utilizes the rasterization of lines contpdcas tex-
ture rows to compute the intersection points of photon raifh w
scene geometry. While this method can be quite accurate alhen
occluders lie inside the camera frustum and can also handlié m
ple bounces via depth peeling, it fails to calculate intetisa points
for off-frustum occluders, which is frequently the case nuerwa-
ter scenes. Furthermore, the brute-force texture-spaeeséction
algorithm imposes a high fill-rate cost and requires mudtjphsses
to calculate an adequate number of particle collisionshaglata
for each particle intersection estimation effectively @gies one
texture row (texture space scan-line).

Our method is a real-time approximation of the photon magppin
algorithm for underwater caustics (and volumetric cas}tigen-
eration. It utilizes the image-space ray-scene interseatiethod
by Shah et al. [7], but in contrast to the original techniquele-
couples the effect accuracy from the refractive geometryrég-
ing uniformly distributed photons from the light source s the
scene. Caustics are modeled as point primitives of varisizie
created on the intersection points, while scattering dudeqar-
ticipating medium is simulated using line rasterizatiotwsen the
water surface and these points. Intensity calculationsnage on a
per-photon basis (allowing for realistic attenuation antsoatter-
ing). Finally the equivalent of the photon mapping gathgstep
is a filtering pass that spreads the particle contributiogr @vcer-

framerates on commodity graphics accelerators and candily ea
integrated within any modern 3D engine.

3. METHOD OVERVIEW

Our method realistically approximates caustic creatigncasting
photons from the light source evenly distributed over a.gfidese
photons are intersected against the scene geometry, artcppiai-
itives of variable size are created at the intersection tpoirfor
godrays, the intersection points are discovered in a simig, but
line primitives are spawned instead. Our method utilizesfarded
rendering approach and makes extensive use of rendexitode
and programmable shader capabilities of modern graphidsvaae
(vertex/fragment and geometry shaders). Following is a-hegel
overview of the rendering pipeline:

1. Frame preparation

a. Calculate the new position and look-at vector for the
rendering pass from the light's perspective.

2. Shadow map creation

a. (Inlight-space) Render the shadowmap.

b. (Inlight-space) Optionally, render a mask representing
the water surface into the shadowmap’s color attach-
ment, allowing for the algorithm to test photons against
the water’s surface only and therefore eliminate those
that do not enter the water mass.

3. Render scene geometry

a. (In camera-space) Render the scene geometry into a
render target, from the camera’s point of view.

4. Optional reflection/refraction rendering passes

o

Caustics Rendering
a. (In light-space) Calculate intersection points of rays
with the scene geometry.

b. (In camera-space) Emit point primitives and rasterize
them with additive blend.

c. (Incamera-space) Filter caustics.

o

Godray Rendering

a. (In light-space) Calculate intersection points of rays
with the scene geometry.

b. (In camera-space) Emit line primitives and rasterize
them with additive blend.

c. (Incamera-space) Filter godrays.
7. Compose final image

a. (In camera-space) Use additive blending to compose
the final image using input from steps 3,4,5 and 6.

b. (In camera-space) Optionally apply other screen-space
post processing effects like ambient occlusion and mo-
tion blurring.

Since our goal was to focus around underwater caustics and go
drays, the algorithm supports the tracing of a single réifvac It

can however be extended to support multiple refractiverfates

via depth peeling ([7], [14]). A visual representation o€ thl-
gorithm process that demonstrates how results from eaphasée
combined, is presented in Figure 2.

Scene geometry

T

|

Photon grid

Render camera view

Render light view

8

\ 4
Shadow map Light mask

Depth buffer Color buffer

quametry sha

der

=

Compute godray lines
(light space)

Compute caustics points
(light space)

11

Transform to camera CSS, § Transform to camera CSS,
depth compare and filter § depth compare and filter

Godrays

Caustics

Render Reflected and
refracted environment

&

h 4
Reflected

$
Refracted

|

Final image

Figure 2: Overview of the godray and caustic creation algorithm.

3.1 Frame Preparation

Since we cast a concentrated but small number of photonsleaito
geometry, we must ensure that most of them intersect thbleisi
portion of the scene. Therefore, the light frustum (and thet@n
grid) is bound to follow the camera frustum.

For directional (infinite) light sources, their positign;gx: tracks
the camera frustum, whereas for point lights, the positemains

fixed. In both cases though, the look-at vecftpoints at the middle
of the camera view frustump, ;4.

1 = Pmid — Plight

ZneartZfar i' .
P * lviewer

Pmid = Puviewer +
whereznear, ztqr are the camera’s near and far clipping distances

andly;cwer IS its look-at vector.

3.2 Render Scene Geometry

In this step we render the scene geometry into an off-screfferb
If necessary, fog calculations can also be applied hergh&umore,
the Z-buffer information from this pass is captured, asieguired
in the following steps to depth-test the caustics and gadray

3.3 Caustics Rendering

We have mentioned that our process involved casting a plgridn
onto the scene. In this way, the emission of photons fromitfe |
source towards the scene is simulated. The grid is modeldtkin
light's canonical screen space as an array of points, wighréh
quired tessellation. During this step of the algorithm,\& tesolu-
tion grid is sent to the GPU for rendering. Then, using a gegpme
program, each grid cell is subdivided to produce the desited-
ber of points, ensuring a dense photon distribution. Arnriadtéve
adaptive subdivision scheme has been proposed by Wymaniret al
[15]. However, usage of this scheme is not justified in ourhoet
since it requires feedback during each subdivision stepigbdt-
ter suited for generic caustics simulations in which theaetbr
has limited screen-space coverage and possesses arradiiipe.
The geometry shader also performs the refraction, poirattpd
and godray modeling operations. The grid point currentlindpe
calculated is unprojected from light canonical screen sgaordi-
nates into world coordinates and modeled as a fay (hich is
then intersected against the water surface. With the suiifger-
section pointps and normalng of the water surface knowns; is
refracted to produce the refraction directich Both r; and ps
are passed to the image space intersection algorithm by &fsh
[7], along with the shadow map texture. The algorithm uses th
Newton-Rhapson (NR) derived iterative method to approkéntize
solution to a functiory (d) with d being the distance to intersection
point p; from ps alongry,. In order to do so, an estimated inter-
section pointpe = Ps + destimate * ¥t IS assumed, along with
its projection into light-spaceproj,, and the algorithm approxi-
mates the solution tgf(d) = pe — Pprojp, - 1N [7], it is shown
that this NR-derived estimator tends to converge to a valutso
thatps + d * ry is the surface intersection poipt. At p; we then
emit a point primitive. A schematic overview of the photostiag
process can be seen in Figure 3.

These primitives are transformed to camera space and ezhder
ing additive blending with their size corresponding to thsgireen-
space coverage. Consiquently, point size is actually afsignt
factor in computation of the final caustics intensity. If ptiints
emitted have a constant size then the projection of therdiptaint
primitives would overlap on the view plane, resulting in rhuc
brighter caustics than the ones close to the camera. On liee ot
hand, if the point size is not large enough, photons ragtéritose
to the viewer do not superimpose each other, leading to qede
splatting that cannot simulate the gathering stage ofgartiacing
and produces noise artifacts. The solution to this issuerisgulate
the size of the points based on their distance from the ca(ses
Figure 4). The final point size is calculated as follows:

Sfinal = @ + b/dpointF'ramViewer

With @ = $,q — “Lor (Smaz=Smin)

Zfar—Znear

andb = Znear 'zfar'(SWLam —Smin)

Zfar—Znear
Smaz aNdSnmin are minimum and maximum point sizes.

The emitted point primitives are then rasterized (with Hdeli
blending) in a high-accuracy render target and Z-testethsgtne
camera’s depth buffer (already available from step 3). Thal fi

Light source Mie(0) is a Mie scattering phase function withbeing the angle

between the ray direction and the vector from the viewer & th
fragment. dfromsurface iS the distance of the fragment from the
water surface.

Shader-generated point

3.5 Filtering and Composition

In both of the above steps, the result can display some radjasi
the low intensity areas. To counter this issue, after catmg the
effects, we apply a multi-tap low pass filter with a rotatirags
pling kernel that reduces noise. Comparison between tledilt
and unfiltered results can be see in Figure 5.

\

Original
point

surface

Finally, the intermediate images (color/reflection/refra
tion/filtered godray/filtered caustics buffers) from theoad
steps are combined into the end result. At this point, theemwat
surface geometry is rendered as well. The final product of our
algorithm can be seen in Figures 6,7,8.

K}
& Ray-surface|

intersection /
point

Eye e
position Pixe f
coverage T

Figure 4: Distance-regulated point size to account for the non-

projective hardware-based drawing of point primitives. Figure 5: Detail demonstrating the differences between unfiltered
(left) and filtered caustics (right).

intensity value is produced from this formula:

—~ed
[final = Iphoton - € Y @fromSurface

where~ is the medium attenuation parameter af)dom surface

is the distance of the photon from the water surface. Thinfie
only takesd tromsurface INtO @account, since the attenuation based
on the distance from the viewer is intrinsically handledthi@point
size regulation described above.

3.4 Godray Rendering

In this step, a grid of rays is cast and intersected with teas¢sim-
ilar to step 5). The main difference lies in that, insteadrofténg

a single point primitive at the ray-scene intersection ppina line
primitive that starts at water surfagge and ends ap; is emitted.
The line primitives are transformed to camera-space, theterized
with additive blending in a high-accuracy render targetasdsted
against the camera’s depth buffer. The formula that prositeefi- Figure 6: Our algorithm, rendering a small port, running at a reso-
nal intensity value per godray fragment is the following: lution of 1440 x 850, with a framerate of 60+ fps.

[final = Iphoton * Mle(@) . e_'Y'dfrom,VieweT . e_"/'dfTOWLSquace

Figure 7: A water tank scene rendered with our algorithm. The
scene runs at more than 120 fps in a windov#@d x 800 pixels.

Figure8: A flooded storage area scene rendered with our algorithm
in a1440 x 850 resolution. The scene runs at more than 60 fps.

4. IMPLEMENTATION AND RESULTS

4.1 Implementation Details

We have implemented the caustic and godray formation dkgori

using OpenGL and GLSL. The render targets are implemented as

OpenGL Frame Buffer Objects with textures of various sizasiol
to the respective attachment points.

In order to improve performance, we regulate the sizes afghder
targets to a fraction of the final frame buffer resolutione&fically,
in our demo application the caustic render target resalugio12 x
512 (compared to th&00 x 800 default resolution for the main
viewport), whereas the godray render targetds x 128 pixels.
This results in a significant performance boost (since trdrayo
rendering process is fill-rate intensive) with only a smalstcin
accuracy. If the application viewport is resized, the bhaKers
are also resized to preserve this scale factor.

In our implementation, the photon grids are initialized @pléeca-

tion startup and rendered during each frame. The volumediticre

of the godray effect requires a smaller amount of cast plsoidren
compared to the caustic effect in order to achieve satisfacte-
tail. Thus, two separate photon grids are created, with thedne
being200 x 200 points large, and the second one beidg x 100
points. Inside the geometry shader, these points can beefues-
sellated in order to improve detail. Dynamic tesselatiopassible
but greatly impacts peformance (by as much as 50%) as thesshad
compiler is unable to optimize the shader code by unwindirgg t
primitive generation loop.

For our test cases (and the respective demo application)awe h
created a single light positioned at a very large heigth atibe
scene in order to simulate a directional light source withiran
tensity of 9.222. The exponential attenuation factgrused is
0.13m~!. Also, we have utilized a simplified version of the
Henyey-Greenstein phase function [16] in order to compbee t
Mie() term.

We mentioned in the previous section that a crucial part ofte
production is the regulation of the size of the generatedtpoiln

our implementation we have set a minimum point size of 5 and a
maximum of 20. These numbers can be adjusted according to the
resolution of the cast photon grid (with lower resolutioaguiring
larger point sizes in order to compensate). Similarly, thdtkvof

the lines spawned in the godray portion of the algorithm baset
modified to compensate for a reduction in grid resolution.

In our tests, we provide two different models for the procatiu
generation of water surface elevation and normals. Theofirsis a
simple circular cosine function with a small noise conttiba that

is read off a Perlin Noise [17] texture, that provides a faamiand
easily comparable effect. The second model consists of iaeos
value along one of the world axes with a significant Perlindgoi
contribution, approximating the turbulent waves of a wateface.
In both models, the amplitude of the water surface can bdatsgli
by the user during run time.

4.2 Results / Tests

We conducted our tests on a system with an Intel Core 2 Duo
E4500 processor running at 2.2 Ghz, with 2 gigabytes of ragh an
an NVidia GTX260 GPU with 216 stream processors. With a view-
port resolution oB00 x 800 for the main window, with &12 x 512
caustics buffer, 28 x 128 godray buffer and grids for the caustics
and godrays 0200 x 200 x 4 and100 x 100 x 4 photons respec-
tively, the frame rate exceeds 110 fps. At a viewport resmiudf
1440 x 850, while maintaining the same grid resolutions, the frame
rate still remains highly interactive, exceeding 60 fps.

If the grid resolutions are increased300 x 500 x 4 (for a total
of 1000000 photons) for the caustics portion an@@0 x 300 x 4
(for a total of 360000 photons) for the godrays portion, tiaerfer-
ate still remains interactive on our test system (rangiognf20 to
30 fps). At these resolutions, aliasing effects are no longéice-
able, making the filtering passes unnecessary (as can bés¢lea
godray portion of the algorithm in Figure 9).

In order to test how the algorithm scales with respect to Hadfer
resolution, we performed measurements with a viewportiuéso
of 1440 x 850, while increasing the godray back-buffer@ x 272

(a 4-fold increase in resolution compared to the defaulirggt
To compensate, we also increased the screen-coverage lafighe
primitives to12 pixels. Finally, we augmented the grid resolutions
to 400 x 400 x 4 for caustics generation arz0 x 200 x 4 for
godrays and regulated the point primitive size (smallesix2lg,
largest 10 pixels) to sharpen the caustics. Despite theaserin
back buffer resolution and fill-rate cost, the frame-raiiéreimains
highly interactive (20 frames per second). Again, with thigsease

in back-buffer size and grid resolutions, filtering of théeefs be- 7. REFERENCES
comes unnecessary. Results of this configuration can beiseen . L
Figure 10. [1] J. Arvo, “Backwards ray tracing,” irf8l GGRAPH Course

. . . Notes, 1986, vol. 12, p. 100.
The screen captures presented in this paper have had their co

balance and gamma slightly enhanced in order to improvbilagi [2] E.P.Lafortune, “Atheoretical framework for physigabased
on printed media. rendering,” Computer Graphics Forum, vol. 13, pp. 97-107,
1994,

[3] E. Veach and L. J. Guibas, “Bidirectional estimatorslfght
transport,” inEurographics Rendering Workshop 1994, 1994,
pp. 147-162.

[4] H. W. Jensen,Realistic image synthesis using photon map-
ping, A. K. Peters, Ltd., Natick, MA, USA, 2001.

[5] J. Stam, “Random caustics: Wave theory and natural tegtu
revisited,” inVisual Proceedings of SGGRAPH 1996, 1996,
p. 151, Available atht t p: / / www. dgp. t or ont 0. edu/
peopl e/ stanl | NRI A/ caustics. htnl.

[6] J. Guardado and D. Sanchez-Crespo, “Rendering water cau
tics,” in NVidia GPU Gems, pp. 31-44. Addison-Wesley,
2004.

[7] M. A. Shah and J. Konttinen, “Caustics mapping: An image-
space technique for real-time causticdEEE Transactions
on Msualization and Computer Graphics, vol. 13, no. 2, pp.
272-280, 2007, Member-Pattanaik, S.

[8] K. Iwasaki, T. Dobashi, and T. Nishita, “An efficient metth
for rendering underwater optical effects using graphias-ha
ware,” in COMPUTER GRAPHICSforum, 2002, vol. 21, pp.
701-711.

[9] S.Lanza, “Animation and rendering of underwater godray
in SHADERX 5, pp. 315-327. Charles River Media, 2007.

[10] Y. Dobashi, T. Yamamoto, and T. Nishita, “Interactiven
dering of atmospheric scattering effects using graphicd-ha
ware,” inGraphics Hardware, 2002, pp. 99 — 108.

[11] L. Jensen, “Deep-water animation and rendering,” 2001
Available at: http://ww. gamasutra. com vi ew
f eat ure/ 3036/ deep_wat er _ani mati on_and_
renderi ng. php.

[12] 1. Ihrke, G. Ziegler, A. Tevs, C. Theobalt, M. Magnor,dan
H. P. Seidel, “Eikonal rendering: efficient light transpiorte-
fractive objects,” inS GGRAPH ' 07: ACM SIGGRAPH 2007

l:lﬂié
(b)

D- .
| @)
©

Figure 9: Figure demonstrating the results of the godray portion of papers, New York, NY, USA, 2007, p. 59, ACM.

the algorithm with different grid resolutions. Left colum(@) Final
result with 40000 photons. (c) unfiltered godrays. (e) fittstred
godrays. Right column: (b) Final result with 360000 photofth
unfiltered godrays. (f) post-filtered godrays.

[13] X. Sun, K. Zhou, E. Stollnitz, J. Shi, and B. Guo, “Intetige
relighting of dynamic refractive objects,” 88 GGRAPH ’08:
ACM S GGRAPH 2008 papers, New York, NY, USA, 2008,

pp. 1-9, ACM.
[14] J. Kruger, K. Burger, and R. Westermann, “Interagtereen-
5. CONCLUSIONS space accurate photon tracmg on gpus,”quderlng Tech-
niques (Eurographics Symposium on Rendering - EGSR),
We have presented a novel algorithm for the creation of ties- June 2006, pp. 319-329.
underwater caustics and godrays. The algorithm achieedistie [15] C.Wyman and G. Nichols, “Adaptive caustic maps using de

results at high framerates on consumer graphics hardware.t® ferred shading,” Computer Graphics Forum, vol. 28, no. 2

the utilization of rendering stages and buffers encoudtarenod- pp. 309-318 2’009 oo

ern graphics engine implementations, our method can bl éasi ' ’ '

tegrated into any 3D engine. [16] L. G. Henyey and J. L. Greenstein, “Diffuse radiatiortlie
Galaxy,” Annales d’ Astrophysique, vol. 3, pp. 117, 1940.

[17] K. Perlin, “Improving noise,” ind GGRAPH '02: Proceed-
The work presented in this paper is funded by the Athens Wsitye ings of the 29th annual conference on Computer graphics and
of Economics and Business Special Account for Researcht§&ran interactive techniques, New York, NY, USA, 2002, pp. 681—
(EP-1600-10/00-1). 682, ACM.

6. ACKNOWLEDGEMENTS

Figure 10: Final results of our algorithm with high grid resolutioms) increased godray back-buffer resolution, regulatedipivie sizes and
screen-space ambient occlusion approximation. For adkthest cases, the method still allows for interactive fraates.

ABOUT THE AUTHORS

Charilaos Papadopoulos received a BSc in Informatics froen t
Athens University of Economics and Business and commenced
his PhD studies in Computer Science at the State University o
New York at Stony Brook in the Fall of 2009. His research
and teaching interests focus around computer graphicktimea
photo-realistic rendering and visualization. His contawtail is
papado@ueb. gr and his personal website can be found at
http://graphics. cs. aueb. gr/ users/ papado.

Georgios Papaioannou received a BSc in Computer Scien@96 1
and a PhD degree in Computer Graphics and Pattern Recagnitio
in 2001, both from the University of Athens, Greece. From200
till 2007 he has been a virtual reality systems engineer avele
oper at the Foundation of the Hellenic World. Dr. Papaioanmas
been teaching elementary and advanced computer graph@s, p
gramming and human-computer interaction courses since. 200

is currently a lecturer at the Department of Computer S@erfithe
Athens University of Economics and Business and his rebdarc
focused on real-time computer graphics algorithms, pleaistic
rendering, virtual reality and three-dimensional shapsyais. He

is a member of IEEE, ACM and SIGGRAPH. His contact email is

gepap@ueb. gr.

