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Abstract

Realistic rendering of underwater scenes has been a subjectof in-
creasing importance in modern real-time 3D applications, such as
open-world 3D games, which constantly present the user withop-
portunities to submerge oneself in an underwater environment. Cru-
cial to the accurate recreation of these environments are the effects
of caustics and godrays. In this paper, we shall present a novel al-
gorithm, for physically inspired real-time simulation of these phe-
nomena, on commodity 3D graphics hardware, which can easilybe
integrated in a modern 3D engine.
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Figure 1: A screenshot of our caustic and godray creation algo-
rithm, running at an excess of 100 fps, at a resolution of 800x800.

1. INTRODUCTION

Caustics are a result of the convergence of light at a single point.
The phenomenon occurs when light interacts with a reflectiveor
refractive surface, where rays deviate from their initial directions
and focus on certain regions.Crepuscular rays or godrays are a
result of photons outscattering from their path due to the presence
of particles in a participating medium. In this paper we shall present
a novel method for a physically inspired simulation of thesetwo
phenomena in real time (Figure 1).

2. PREVIOUS WORK

Even though the underwater illumination has been the subject of
extensive research (mostly in the domain of particle and raytrac-
ing algorithms), real-time solutions to the matter of realistic caustic
formation are limited. Methods for the simulation of crepuscular
rays (or godrays) are even sparser. In this section, a brief overview
of some of the existing work in the area will be presented, which
is mainly focused on offline rendering or interactive illumination
simulation, but also includes real-time techniques for modeling and
displaying caustics and godrays.

Offline solutions can create extremely realistic underwater caustics
and godrays, at a significant computational cost. One of the first
methods that allowed for caustic creation is forward ray tracing [1],
which differs from conventional ray tracing in the sense that rays
are cast from the light towards the scene. Rays that intersect the
camera clipping plane contribute to the intensity of the respective
pixel. An alternative (and faster) method is bidirectionalray tracing
[2],[3], that traces rays both from the camera and the light source
and ’connects’ the ray paths to find the radiance contribution to the
corresponding pixel. Photon mapping, a global illumination solu-
tion presented in [4], utilizes forward ray tracing along with proba-
bilistic techniques, importance sampling and an illumination gath-
ering step to achieve relatively high performance and high quality
caustics. It also permits the creation of godrays in participating me-
dia (via ray marching). However, despite the improvements when
compared to conventional forward ray tracing, photon mapping is
also limited to off-line applications.

One of the first proposals for real-time caustic creation wasby [5]
and involved the projection of a precomputed texture onto the scene
geometry using additive blending. Animation was achieved via
texture coordinate perturbation. Obviously, while being fast, this
method did not produce physically correct caustics that animated
in tandem with the water surface. Another approach, by [6] as-
sumes that caustics are formed by rays emanating from the water
surface directly above the point of interest and uses Snell’s law to
produce refracted rays. It modulates intensity based on thedirection
of these rays and alternatively uses the vectors to index a light map.
Obviously the caustics produced by this method are not physically
correct, as a result of the above assumption.

Shah et al. [7] presented a novel method for creating refractive
caustics in image-space. This method involves creating a vertex
grid out of the refractive geometry and then splatting the vertices
onto the scene using an image-space ray-scene intersectionalgo-
rithm. However caustic quality is directly related to the tessellation
of this vertex grid. Furthermore, this method does not provide a
solution to the issue of godrays that is part of the same illumination
problem.

Research concerning godray creation falls into two main categories,
the first being the modeling of the rays as light shafts. [8] presented
a method that modeled lightshafts as the front-facing surfaces of
’illumination volumes’. However, the computational cost for this
method was very high and, at its time, it did not provide a real
time solution. Lanza [9] proposed a similar method that usedpar-
allelepipeds, which are transformed via a vertex shader program



so as to animate in tandem with the water surface. This method,
while producing very ’dramatic’ results, requires a high density par-
allelepiped grid in order for the effect to be realistic, which in turn
results in a very high fill rate cost. Furthermore, the final intensity
computation for the godrays does not account for individualray
attenuation, as it is done in a post-processing pass, duringwhich,
information for each individual ray is not available.

The second category of godray creation algorithms focuses around
the sampling of the visible distance in front of the viewer byras-
terizing planar surfaces parallel to the near clipping plane. Dobashi
et al. [10] uses precomputed integral values (saved in 2D textures)
in order to compute the intensity value at each plane, which are
then accumulated in the frame buffer. Jensen [11] performs aper-
fragment projective texture read from a caustics map, for each frag-
ment on a sampling plane. Both of these methods present one main
drawback, since a large number of sampling planes is required in or-
der to avoid artifacting. As these planes are represented byscreen-
space quads, there is a significant fill-rate premium to pay for their
rasterization. Furthermore, in the case of Dobashi et al., there is
no direct way for the algorithm to control animation of the light
shafts (since it would require recomputation of the 2D lookup tex-
tures), while as far as Jensen’s method is concerned, the result is not
physically accurate. In addition, the non-linear nature ofthese pro-
jection transformations on the view-oriented planes produces non-
uniformly spaced samples and may result in curved godrays.

Another type of method that can handle caustics and scattering
due to complex refractive objects involves ray-marching through
a voxel grid of the refractive geometry. ’Eikonal rendering’ [12] is
such a technique, and while it allows for real-time framerates dur-
ing viewport changes, if the refractive object or the light position
are altered, the lighting distribution has to be recalculated (a process
that can take several seconds) making it unsuitable for simulating
underwater effects due to their constantly shifting nature. Another
technique in this area is presented by Sun et al.[13] who use an
oct-tree data structure to store voxel data along with an adaptive
photon-tracing step to recompute the radiance volumes at interac-
tive frame rates (approximately 8 fps). However, while successfully
dealing with arbitrary and non-uniform refractive geometries, this
method also is too computationaly intensive to be used in a real-
time generic 3D application.

Finally, Krüger et al. [14] proposed a method for generic caustic
simulation that utilizes the rasterization of lines compacted as tex-
ture rows to compute the intersection points of photon rays with
scene geometry. While this method can be quite accurate whenall
occluders lie inside the camera frustum and can also handle multi-
ple bounces via depth peeling, it fails to calculate intersection points
for off-frustum occluders, which is frequently the case in underwa-
ter scenes. Furthermore, the brute-force texture-space intersection
algorithm imposes a high fill-rate cost and requires multiple passes
to calculate an adequate number of particle collisions, as the data
for each particle intersection estimation effectively occupies one
texture row (texture space scan-line).

Our method is a real-time approximation of the photon mapping
algorithm for underwater caustics (and volumetric caustics) gen-
eration. It utilizes the image-space ray-scene intersection method
by Shah et al. [7], but in contrast to the original technique,it de-
couples the effect accuracy from the refractive geometry bytrac-
ing uniformly distributed photons from the light source towards the
scene. Caustics are modeled as point primitives of variablesize
created on the intersection points, while scattering due tothe par-
ticipating medium is simulated using line rasterization between the
water surface and these points. Intensity calculations aremade on a
per-photon basis (allowing for realistic attenuation and outscatter-
ing). Finally the equivalent of the photon mapping gathering step
is a filtering pass that spreads the particle contribution over a cer-

tain area and reduces aliasing. Our technique achieves veryhigh
framerates on commodity graphics accelerators and can be easily
integrated within any modern 3D engine.

3. METHOD OVERVIEW

Our method realistically approximates caustic creation, by casting
photons from the light source evenly distributed over a grid. These
photons are intersected against the scene geometry, and point prim-
itives of variable size are created at the intersection points. For
godrays, the intersection points are discovered in a similar way, but
line primitives are spawned instead. Our method utilizes a deferred
rendering approach and makes extensive use of render-to-texture
and programmable shader capabilities of modern graphics hardware
(vertex/fragment and geometry shaders). Following is a high-level
overview of the rendering pipeline:

1. Frame preparation

a. Calculate the new position and look-at vector for the
rendering pass from the light’s perspective.

2. Shadow map creation

a. (In light-space) Render the shadowmap.

b. (In light-space) Optionally, render a mask representing
the water surface into the shadowmap’s color attach-
ment, allowing for the algorithm to test photons against
the water’s surface only and therefore eliminate those
that do not enter the water mass.

3. Render scene geometry

a. (In camera-space) Render the scene geometry into a
render target, from the camera’s point of view.

4. Optional reflection/refraction rendering passes

5. Caustics Rendering

a. (In light-space) Calculate intersection points of rays
with the scene geometry.

b. (In camera-space) Emit point primitives and rasterize
them with additive blend.

c. (In camera-space) Filter caustics.

6. Godray Rendering

a. (In light-space) Calculate intersection points of rays
with the scene geometry.

b. (In camera-space) Emit line primitives and rasterize
them with additive blend.

c. (In camera-space) Filter godrays.

7. Compose final image

a. (In camera-space) Use additive blending to compose
the final image using input from steps 3,4,5 and 6.

b. (In camera-space) Optionally apply other screen-space
post processing effects like ambient occlusion and mo-
tion blurring.

Since our goal was to focus around underwater caustics and go-
drays, the algorithm supports the tracing of a single refraction. It
can however be extended to support multiple refractive interfaces
via depth peeling ([7], [14]). A visual representation of the al-
gorithm process that demonstrates how results from each step are
combined, is presented in Figure 2.



Figure 2: Overview of the godray and caustic creation algorithm.

3.1 Frame Preparation

Since we cast a concentrated but small number of photons ontothe
geometry, we must ensure that most of them intersect the visible
portion of the scene. Therefore, the light frustum (and the photon
grid) is bound to follow the camera frustum.

For directional (infinite) light sources, their positionplight tracks
the camera frustum, whereas for point lights, the position remains
fixed. In both cases though, the look-at vector~l points at the middle
of the camera view frustumpmid.

~l = pmid − plight

pmid = pviewer +
znear+zfar

2
·
~lviewer

whereznear, zfar are the camera’s near and far clipping distances

and~lviewer is its look-at vector.

3.2 Render Scene Geometry

In this step we render the scene geometry into an off-screen buffer.
If necessary, fog calculations can also be applied here. Furthermore,
the Z-buffer information from this pass is captured, as it isrequired
in the following steps to depth-test the caustics and godrays.

3.3 Caustics Rendering

We have mentioned that our process involved casting a photongrid
onto the scene. In this way, the emission of photons from the light
source towards the scene is simulated. The grid is modeled inthe
light’s canonical screen space as an array of points, with the re-
quired tessellation. During this step of the algorithm, a low resolu-
tion grid is sent to the GPU for rendering. Then, using a geometry
program, each grid cell is subdivided to produce the desirednum-
ber of points, ensuring a dense photon distribution. An alternative
adaptive subdivision scheme has been proposed by Wyman et al. in
[15]. However, usage of this scheme is not justified in our method,
since it requires feedback during each subdivision step andis bet-
ter suited for generic caustics simulations in which the refractor
has limited screen-space coverage and possesses an arbitrary shape.
The geometry shader also performs the refraction, point splatting
and godray modeling operations. The grid point currently being
calculated is unprojected from light canonical screen space coordi-
nates into world coordinates and modeled as a ray (~ri), which is
then intersected against the water surface. With the surface inter-
section pointps and normal~ns of the water surface known,~ri is
refracted to produce the refraction direction~rt. Both ~rt andps

are passed to the image space intersection algorithm by Shahet al.
[7], along with the shadow map texture. The algorithm uses the
Newton-Rhapson (NR) derived iterative method to approximate the
solution to a functionf(d) with d being the distance to intersection
point pi from ps along ~rr. In order to do so, an estimated inter-
section pointpe = ps + destimate ∗ ~rt is assumed, along with
its projection into light-spacepprojpe

and the algorithm approxi-
mates the solution tof(d) = pe − pprojpe

. In [7], it is shown
that this NR-derived estimator tends to converge to a value of d so
thatps + d ∗ ~rt is the surface intersection pointpi. At pi we then
emit a point primitive. A schematic overview of the photon casting
process can be seen in Figure 3.

These primitives are transformed to camera space and rendered us-
ing additive blending with their size corresponding to their screen-
space coverage. Consiquently, point size is actually a significant
factor in computation of the final caustics intensity. If allpoints
emitted have a constant size then the projection of the distant point
primitives would overlap on the view plane, resulting in much
brighter caustics than the ones close to the camera. On the other
hand, if the point size is not large enough, photons rasterized close
to the viewer do not superimpose each other, leading to inadequate
splatting that cannot simulate the gathering stage of particle tracing
and produces noise artifacts. The solution to this issue is to regulate
the size of the points based on their distance from the camera(see
Figure 4). The final point size is calculated as follows:

sfinal = a + b/dpointFromViewer

with a = smax −
zfar ·(smax−smin)

zfar−znear

andb =
znear·zfar·(smax−smin)

zfar−znear

Smax andSmin are minimum and maximum point sizes.

The emitted point primitives are then rasterized (with additive
blending) in a high-accuracy render target and Z-tested against the
camera’s depth buffer (already available from step 3). The final



Figure 3: The photon casting process.

Figure 4: Distance-regulated point size to account for the non-
projective hardware-based drawing of point primitives.

intensity value is produced from this formula:

Ifinal = Iphoton · e−γ·dfromSurface

whereγ is the medium attenuation parameter anddfromSurface

is the distance of the photon from the water surface. This formula
only takesdfromSurface into account, since the attenuation based
on the distance from the viewer is intrinsically handled viathe point
size regulation described above.

3.4 Godray Rendering

In this step, a grid of rays is cast and intersected with the scene (sim-
ilar to step 5). The main difference lies in that, instead of emitting
a single point primitive at the ray-scene intersection point pi, a line
primitive that starts at water surfaceps and ends atpi is emitted.
The line primitives are transformed to camera-space, then rasterized
with additive blending in a high-accuracy render target andZ-tested
against the camera’s depth buffer. The formula that produces the fi-
nal intensity value per godray fragment is the following:

Ifinal = Iphoton · Mie(θ) · e−γ·dfromV iewer
· e−γ·dfromSurface

Mie(θ) is a Mie scattering phase function withθ being the angle
between the ray direction and the vector from the viewer to the
fragment. dfromSurface is the distance of the fragment from the
water surface.

3.5 Filtering and Composition

In both of the above steps, the result can display some aliasing in
the low intensity areas. To counter this issue, after calculating the
effects, we apply a multi-tap low pass filter with a rotating sam-
pling kernel that reduces noise. Comparison between the filtered
and unfiltered results can be see in Figure 5.

Finally, the intermediate images (color/reflection/refrac-
tion/filtered godray/filtered caustics buffers) from the above
steps are combined into the end result. At this point, the water
surface geometry is rendered as well. The final product of our
algorithm can be seen in Figures 6,7,8.

Figure 5: Detail demonstrating the differences between unfiltered
(left) and filtered caustics (right).

Figure 6: Our algorithm, rendering a small port, running at a reso-
lution of 1440 × 850, with a framerate of 60+ fps.



Figure 7: A water tank scene rendered with our algorithm. The
scene runs at more than 120 fps in a window of800 × 800 pixels.

Figure 8: A flooded storage area scene rendered with our algorithm
in a1440 × 850 resolution. The scene runs at more than 60 fps.

4. IMPLEMENTATION AND RESULTS

4.1 Implementation Details

We have implemented the caustic and godray formation algorithm
using OpenGL and GLSL. The render targets are implemented as
OpenGL Frame Buffer Objects with textures of various sizes bound
to the respective attachment points.

In order to improve performance, we regulate the sizes of therender
targets to a fraction of the final frame buffer resolution. Specifically,
in our demo application the caustic render target resolution is512×
512 (compared to the800 × 800 default resolution for the main
viewport), whereas the godray render target is128 × 128 pixels.
This results in a significant performance boost (since the godray
rendering process is fill-rate intensive) with only a small cost in
accuracy. If the application viewport is resized, the back-buffers
are also resized to preserve this scale factor.

In our implementation, the photon grids are initialized on applica-

tion startup and rendered during each frame. The volumetricnature
of the godray effect requires a smaller amount of cast photons when
compared to the caustic effect in order to achieve satisfactory de-
tail. Thus, two separate photon grids are created, with the first one
being200 × 200 points large, and the second one being100 × 100
points. Inside the geometry shader, these points can be further tes-
sellated in order to improve detail. Dynamic tesselation ispossible
but greatly impacts peformance (by as much as 50%) as the shader
compiler is unable to optimize the shader code by unwinding the
primitive generation loop.

For our test cases (and the respective demo application) we have
created a single light positioned at a very large heigth above the
scene in order to simulate a directional light source with anin-
tensity of 9.2 w

sr
. The exponential attenuation factorγ used is

0.13m−1. Also, we have utilized a simplified version of the
Henyey-Greenstein phase function [16] in order to compute the
Mie() term.

We mentioned in the previous section that a crucial part of caustic
production is the regulation of the size of the generated points. In
our implementation we have set a minimum point size of 5 and a
maximum of 20. These numbers can be adjusted according to the
resolution of the cast photon grid (with lower resolutions requiring
larger point sizes in order to compensate). Similarly, the width of
the lines spawned in the godray portion of the algorithm has to be
modified to compensate for a reduction in grid resolution.

In our tests, we provide two different models for the procedural
generation of water surface elevation and normals. The firstone is a
simple circular cosine function with a small noise contribution that
is read off a Perlin Noise [17] texture, that provides a familiar and
easily comparable effect. The second model consists of a cosine
value along one of the world axes with a significant Perlin Noise
contribution, approximating the turbulent waves of a watersurface.
In both models, the amplitude of the water surface can be regulated
by the user during run time.

4.2 Results / Tests

We conducted our tests on a system with an Intel Core 2 Duo
E4500 processor running at 2.2 Ghz, with 2 gigabytes of ram and
an NVidia GTX260 GPU with 216 stream processors. With a view-
port resolution of800×800 for the main window, with a512×512
caustics buffer, a128×128 godray buffer and grids for the caustics
and godrays of200 × 200 × 4 and100 × 100 × 4 photons respec-
tively, the frame rate exceeds 110 fps. At a viewport resolution of
1440×850, while maintaining the same grid resolutions, the frame
rate still remains highly interactive, exceeding 60 fps.

If the grid resolutions are increased to500 × 500 × 4 (for a total
of 1000000 photons) for the caustics portion and to300 × 300 × 4
(for a total of 360000 photons) for the godrays portion, the framer-
ate still remains interactive on our test system (ranging from 20 to
30 fps). At these resolutions, aliasing effects are no longer notice-
able, making the filtering passes unnecessary (as can be seenfor the
godray portion of the algorithm in Figure 9).

In order to test how the algorithm scales with respect to back-buffer
resolution, we performed measurements with a viewport resolution
of 1440×850, while increasing the godray back-buffer to460×272
(a 4-fold increase in resolution compared to the default setting).
To compensate, we also increased the screen-coverage of theline
primitives to12 pixels. Finally, we augmented the grid resolutions
to 400 × 400 × 4 for caustics generation and200 × 200 × 4 for
godrays and regulated the point primitive size (smallest 2 pixels,
largest 10 pixels) to sharpen the caustics. Despite the increase in
back buffer resolution and fill-rate cost, the frame-rate still remains
highly interactive ( 20 frames per second). Again, with thisincrease



in back-buffer size and grid resolutions, filtering of the effects be-
comes unnecessary. Results of this configuration can be seenin
Figure 10.

The screen captures presented in this paper have had their color
balance and gamma slightly enhanced in order to improve legibility
on printed media.

Figure 9: Figure demonstrating the results of the godray portion of
the algorithm with different grid resolutions. Left column: (a) Final
result with 40000 photons. (c) unfiltered godrays. (e) post-filtered
godrays. Right column: (b) Final result with 360000 photons. (d)
unfiltered godrays. (f) post-filtered godrays.

5. CONCLUSIONS

We have presented a novel algorithm for the creation of real-time
underwater caustics and godrays. The algorithm achieves realistic
results at high framerates on consumer graphics hardware. Due to
the utilization of rendering stages and buffers encountered in mod-
ern graphics engine implementations, our method can be easily in-
tegrated into any 3D engine.
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[14] J. Krüger, K. Bürger, and R. Westermann, “Interactive screen-
space accurate photon tracing on gpus,” inRendering Tech-
niques (Eurographics Symposium on Rendering - EGSR),
June 2006, pp. 319–329.

[15] C. Wyman and G. Nichols, “Adaptive caustic maps using de-
ferred shading,” Computer Graphics Forum, vol. 28, no. 2,
pp. 309–318, 2009.

[16] L. G. Henyey and J. L. Greenstein, “Diffuse radiation inthe
Galaxy,” Annales d’Astrophysique, vol. 3, pp. 117, 1940.

[17] K. Perlin, “Improving noise,” inSIGGRAPH ’02: Proceed-
ings of the 29th annual conference on Computer graphics and
interactive techniques, New York, NY, USA, 2002, pp. 681–
682, ACM.



Figure 10: Final results of our algorithm with high grid resolutions,an increased godray back-buffer resolution, regulated primitive sizes and
screen-space ambient occlusion approximation. For all these test cases, the method still allows for interactive frame-rates.
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