
 Disparity Estimation in Real-Time 3D Acquisition

 and Reproduction System

Artem Ignatov, Victor Bucha, Michael Rychagov

Samsung Research Center,
1-st Brestskaya St. 29, Moscow, 125047, Russia

{a.ignatov, v.bucha, michael.rychagov}@samsung.com

Abstract
The paper concerns the method of disparity estimation and
refinement based on iterative filtration of raw disparity estimate.
Raw disparity estimate is obtained by conventional stereo-
matching methods. In suggested algorithm, 6-8 iterations are
sufficient to compute high-quality disparity map, suitable for
virtual views rendering, which is essential step of any 3D
reproduction system. The method is suitable for highly-parallel
processing on modern GPU. In contrast to previous methods of
stereo matching implemented on GPU, the proposed approach
provides correct disparity computation for “problem areas”, i.e.
large uniform areas, occlusion areas and areas with repetitive
patterns. Presented method was implemented in a real-time 3D
acquisition and reproduction system. For GPU programming, an
extension of C programming language provided by NVIDIA
Compute Unified Device Architecture (CUDA) was used.
Experimental results confirm the usefulness and robustness of the
method.
Keywords: disparity estimation, real-time processing, GPU
computing, 3D reproduction, video processing.

1. INTRODUCTION

Nowadays, humanity enters new era of digital television, i.e. the
3D television. The attention of academic and business
environment is absorbed by the great opportunities for new
application possibilities, which advanced techniques may provide.
The 3D TV may bring an effect of real presence of participants in
real-time video conferences. Also, the reality of computer games
can be significantly improved by playing in 3D. Any synthetic
video rendered by computer graphics applications can be
immediately viewed on modern 3D auto-stereoscopic displays.
However, for the real scenes, captured by stereo-camera or multi-
camera setups there are still a lot of tasks to be solved. For
example, for video-conferencing, all calculations should be
computed in real-time. The necessary computations include
cameras calibration, disparity estimation, and several views
generation according to 3D reproduction device requirements.
Cameras calibration could be performed off-line, if the cameras
geometry is fixed. However, the disparity estimation of
participants, and simultaneous view rendering should be
performed on acceptable frame-rate, convenient to the users.
To cope with high volumes of calculations, some researches have
tried to realize stereo-matching algorithms on modern GPU of
video-boards. Recent works aiming stereo analysis proposed to
exploit very efficient parallel Single Instruction Multiple Data

(SIMD) architecture of modern GPU. Real-time implementation
of computationally intensive methods of disparity estimation
becomes possible thanks to SIMD architecture. J. Mairal et al. [1]
reported that he achieved nearly video frame rate stereo
reconstruction. The approach is from family of variational
methods based on deformable models. Proposed method
computes dense stereo from 3 cameras and entirely implemented
on a GPU.
R. Yang et al. in [2], tried to force OpenGL toward conventional
stereo computation, based on SAD window calculation with WTA
optimization. The authors applied several OpenGL features for
speeding-up of the algorithm, namely mip-map mechanism of
texture generation for aggregation raw costs of different scale; p-
buffers, which are the user-allocated off-screen buffers for
fragment output. Unlike the frame buffers, they can be used
directly as a texture, thereby eliminating excessive CPU memory
read-ins.
One more example of using GPU for stereo analysis is the work
of A. Brunton et all [3], which presents a novel implementation of
Bayesian belief propagation for graphics processing units found
in most modern desktop and notebook computers.
Most recent results of disparity estimation are obtained using
NVIDIA CUDA technology. S. Grauer-Gray et all [4] described
an efficient CUDA-based GPU implementation of the belief
propagation algorithm that can be used to speed up stereo image
processing and motion tracking calculations without loss of
accuracy. Achieved acceleration in comparing with CPU
realization is reported as a factor of five.
J. Gibson et al. [5] described how to accelerate the calculation of
depth from stereo images by using a GPU. The CUDA was
employed in novel ways to compute disparity using BT
(Birchfield–Tomasi) cost matching. The challenges of mapping a
sequential algorithm to a massively parallel thread environment
and performance optimization techniques were considered.

2. REAL-TIME 3D ACQUISITION AND
REPRODUCTION SYSTEM

We developed the system for acquisition of the dynamic 3D scene
and simultaneous reproduction on auto-stereoscopic display
(Figure 1). To manage the high demands on computation, the
system uses parallel computation architecture of modern GPU and
proposed method on disparity estimation was highly optimized
for such architecture.
A system for three-dimensional video acquisition and
reproduction includes a stereo content acquisition stage, disparity

estimation stage, virtual view synthesis stage and 3D reproduction
stage. The acquisition stage includes stereo cameras to acquire
multiple video streams of dynamic scene. The disparity estimation
stage includes computation units for real-time disparity estimation
using obtained video streams. The view synthesis stage includes
computation units for real-time virtual views synthesis on the
basis of the computed disparity. The 3D reproduction stage
includes computation units and 3D display for volumetric
reproduction based on several virtual views generated on the
previous stage.
The present system provides high-quality real-time 3D video
acquisition and reproduction on 3D display.
Developed 3D acquisition and reproduction system includes
stereo-camera Bumblebee 2 by Point Grey Research, modern PC
with video-board NVIDIA GeForce 8800GTX, which has 128
stream processors, and auto-stereoscopic 3D monitor by Phillips.
For effective control, playback and record of 3D video, the
corresponding software was developed. The acquisition part was
written on the basis of Point Grey Research SDK. The stereo-
matching, i.e. disparity/depth estimation was implemented using
CUDA technology. This is the software/hardware architecture,
which grants access to GPU stream processors for development of
any tasks which could be effectively parallelized. Stereo-
matching as image and video processing technique is the
exemplar of application, which is well suited for the parallel-
computation architecture. Since every pixel of image or video
frame could be processed independently of other pixels. One of
the main benefits of CUDA is a support of programmers-friendly
environment for easy application development.
To decrease excessive memory reads/writes the CUDA
application result was mapped to OpenGL Pixel Buffer Object
(PBO) with simultaneous rendering on 3D monitor.

3. PROPOSED METHOD FOR DISPARITY
ESTIMATION AND REFINEMENT

The dense disparity estimation problem consists of finding a
unique mapping between the points belonging to the two images
of the same scene (stereo pair). This is an ill-posed problem
especially for textureless and occluded image areas. The mapping
between corresponding points is called a disparity vector. In case
of rectified geometry, the vector is scalar, and it is called a
disparity. Thus, a depth is function of disparity with invert
proportional dependence.
According to recent taxonomy [6], disparity estimation (stereo
matching) algorithms generally perform the following four steps:

1. matching cost computation;
2. cost (support) aggregation;
3. disparity computation / optimization;
4. disparity refinement.
According to taxonomy, proposed method of disparity estimation
concerns to the methods of disparity refinement. And could be
applied for raw disparity estimate, obtained by disparity
computation with matching cost calculation.
Proposed method relies on an idea of convergence from rough
estimate toward the consistent disparity map through subsequent
iterations of the disparity filter. On each iteration, the current
disparity estimate is refined by filtration with accordance to
images from stereo-pair. The reference image is defined as a color
image from a stereo-pair, for which the disparity is estimated.
And, the matched image is defined as other color image from the
stereo-pair.
The disparity filter applies weighted average of neighboring
pixels to current pixel of disparity map. Pixels, which are
participated in filtration, are defined as disparity reference pixels.
Corresponding pixels of color image are defined as color
reference pixels. And pixels which are mapped by disparity
values of color reference pixels are defined as target pixels.
In previous approaches the filter weights were reflected by
proximity and similarity measures [7-8]. Proximity measure
assigns weight of reference pixel, based on distance between
current and reference pixels in spatial domain. While similarity
measure assigns weight of reference pixel based on similarity
between pixels of color image corresponding to reference and
current disparity pixels.
During our development we concluded that proximity measure is
less important, than similarity one. Since the filter usually
operates in small local area of the image, the spatial measure
constraint could be defined implicitly. And more attention should
be paid on color similarity evaluation.
We propose the following methods for similarity computation.

1. Similarity computation with two pixel area comparison.
2. Similarity computation with one pixel area comparison.
3. Similarity computation with two single pixels

comparison.
First two methods of similarity computation are concern to pixel
area comparison rather then comparison of single pixels. This is
done to strengthen the pixel similarity criterion. We studied that
similarity computation based on pixel areas comparison gives
more visually pleasant results, rather than individual pixels
comparison.

Figure 1: 3D acquisition and reproduction system

Reference image

Reference image

In the first method of similarity computation, the weight is
twofold and reflects the degree of similarity of current pixel with
reference ones and target ones. First comparison is done between
current pixel neighborhood with reference pixel neighborhood.
The second one is carried out between reference pixel
neighborhood with target pixel neighborhood (Exemplars of
comparisons are shown in Figure 2 a) by wide white arrows). In
this case the weights of disparity filter are computed as follows

 t

tt

r

rr yxCyxC

r ew σσ
),(),(11 −

−

= , (1)

Target image

Target image

where C1 () stands for a function used for pixel neighborhood
comparison, rσ and tσ are the parameters of filter strength
adjustment.
The second method of similarity computation is based on single
comparison of pixel neighborhood areas of current and target
pixels (Exemplar of comparison is shown in Figure 2 b) by wide
white arrow). This type of similarity computation assumes that
the current pixel is more or like similar with reference one due to
their proximity to each other. And penalty is given only when the
reference pixel is mapped to target pixel which is not similar with
current pixel. In this case the weights of disparity filter are
computed as follows

Figure 2: Pixels similarity measure computation: a) two comparisons of pixel neighborhoods,
b) one comparison of pixel neighborhoods

Current pixel Ic with
neighborhood

Reference pixel Ir with
neighborhood

Target pixel It with
neighborhood

Current pixel Ic with
neighborhood

Reference pixel Ir with
neighborhood

Target pixel It with
neighborhood

b)

a)

2
1),(

t

tt yxC

r ew σ
−

= ,

where C1() stands for a function used for pixel neighborhood
comparison. It is defined as

()
⎣ ⎦

⎣ ⎦

⎣ ⎦

⎣ ⎦

∑ ∑ ∑
∈ −= −=

++++ −×

×
⋅

=

B}G,{R,T

N/2

N/2j

M/2

M/2i

2
jrirTjcicT

rr1

)y,(xI)y,(xI

MN
1)y,(xC

where),(ccT yxI stands for current pixel intensity with

coordinates xc and yc for color channel T,),(rrT yxI denotes the
reference pixel intensity with coordinates xr and yr for color
channel T, N and M – are pixel area dimensions.
The third method of similarity computation is derived from the
first one, setting pixel area dimensions to one. The difference
from the first method is reflected in following equation for
disparity filter weight computation

 t

tt

r

rr yxCyxC

r ew σσ
),(),(22 −

−

= . (2)

In comparison with Eq. 1, Eq. 2 uses different function for pixel
comparison, which is defined as

()2
},,{

2),(),(),(∑
∈

++++ −=
BGRT

jrirTjcicTrr yxIyxIyxC ,

where),(ccT yxI stands for current pixel intensity with

coordinates xc and yc for color channel T,),(rrT yxI denotes the
reference pixel intensity with coordinates xr and yr for color
channel T.
According to selected method for similarity computation between
pixels in filter window the disparity map at k-th iteration is given
as

⎣ ⎦

⎣ ⎦

⎣ ⎦

⎣ ⎦

∑ ∑
−= −=

−⋅⋅=
2/

2/

2/

2/
1),(1),(

K

Ks

L

Lp
rrkrcck yxdw

Norm
yxd ,

where),(cck yxd stands for the disparity map at k-th iteration for

current pixel with coordinates),(cc yx ,),(1 rrk yxd − denotes the
disparity map at (k-1)-th iteration for reference pixel with
coordinates),(scrpcr yyxx ++ == , rw denotes the weight of

reference pixel, normalization factor is computed as

⎣ ⎦

⎣ ⎦

⎣ ⎦

⎣ ⎦

∑ ∑
−= −=

=
2/

2/

2/

2/

K

Ks

L

Lp
rwNorm .

4. GPU IMPLEMENTATION OF PROPOSED
METHOD

Proposed method was implemented for running on GPU. The
following modifications of the algorithm were considered:

1. Adaptation of filter strength according to iteration;
2. Filter kernel size estimation according to iteration;
3. Separable processing of image rows and columns;

4. Histogram-based implementation of post-processing
median filter.

Figure 3 represents algorithm flow-chart. According to flow-
chart, the first step of the algorithm is to compute a raw disparity
estimate. This could be done by utilization of conventional stereo-
matching methods based on window correlation computation. We
used SAD metric in 5x5 window. The exemplar of raw disparity
estimate is presented in Figure 7 a). It is worth to mention high
level of noise presented in raw disparity maps. Such noise will
cause eye-fatigue when viewing this content on? auto-
stereoscopic displays.

Figure 3: Disparity estimation algorithm flow-chart

After computation of raw disparity, the algorithm proceeds to
series of iteration of disparity filter. On each iteration, filter
strength (rσ and tσ are the parameters) is adjusted according to
following formula

11)(bkak +⋅=σ , (3)

where k is a number of iteration, a1, b1 are the linear coefficients.

After filter strength adaptation the algorithm for disparity
refinement estimate the filter kernel radius by following formula

22)(bkakR +⋅= , (4)

where k is a number of iteration, a2, b2 are the linear coefficients.
Since we did not interested in abrupt change of parameters from
iteration to iteration, a linear dependency has provided us with
simple solution to make parameters adaptable.
The idea behind the adaptation of parameters is the following.
Since the reliability of source disparity is low, the algorithm starts
with smallest filter strength and smallest kernel size. Then, the
filter strength and kernel size are increased from iteration to
iteration, allowing more resembling pixels to participate in
filtration process. Also the adaptation of filter radius leads to
decreasing of computational cost. This will be shown by concrete
example in Section 5.

After adaptation of parameters the disparity refinement filter is
applied. For speeding up of calculation the disparity filter could
be defined in separable manner formulated in two passes. The
first pass is row-wise processing. The second pass is column-wise
one. The parameters of computational grid for CUDA framework
is represented in Figure 4. The figure shows separable
configuration of disparity processing. The host side resided on
CPU has two kernels, which invoke corresponding two-
dimensional grids of threaded blocks on the device (GPU). In the
first grid, the blocks are organized to process rows of image.
Parameters of blocks are set as (blockDim.x = width / n,
blockDim.y = 1), where n is usually set to halfwarp value. This is
HW-dependent parameter and it designates a number of stream
processors on the multiprocessor. We set this value to 16, since
we have used the NVIDIA GeForce 8800GTX. For the future
generation of graphics boards this value will increase.
Since the method was implemented in GPU, it gave us the
possibility of immediate rendering of disparity estimation results
through CUDA – OpenGL interoperability option. More
precisely, the disparity estimation results with reference image
were locked in pixel-buffer object by CUDA. Then the OpenGL

Host (CPU) Device (GPU)

Kernel 1:
row-wise

filter

Figure 4: Computational grid arrangement for CUDA framework

Kernel 2:
column-wise

filter

Grid 1

Block (0,0):
blockDim.x = width / n
blockDim.y = 1

Block (1,0):
blockDim.x = width / n
blockDim.y = 1

Grid 2

Block (0,0):
blockDim.x = 1
blockDim.y = height / n

Block (1,0):
blockDim.x = 1
blockDim.y = height / n

Figure 5: Data flow in proposed implementation

Host (CPU)
Grab stereo-pair from
camera or load from

files

CUDA (GPU)
1) Copy stereo-pair to
the textures
2) Subsequent iterations
of the filter
3) Lock depth estimation
results in PBO

OpenGL (GPU)
Render PBO content

part of program used that buffers for rendering. This operation has
excluded additional data flow to CPU and again to GPU for
rendering. Proposed data flow is described in Figure 5. Note that
we used textures for storing the stereo-pair. The memory latency
during fetching from texture is less, than from global memory.
This happens due to texture caching.

5. EXPERIMENTAL RESULTS

Figure 6 represents result of disparity estimation from live stereo-
video, while Figure 7 presents the result of disparity estimation
for “Tsukuba” image from Middlebury image dataset.
Table 1 and Table 2 summarize objective evaluations of proposed
methods. Two metrics were considered: root-mean square (RMS)
distance to ground truth and bad pixel metric. Bad pixel is
considered as the one, which differs from ground-truth pixel for 1
value. In the tables, the “bad_pixels_all” parameter represents the
number of bad pixels in all image, while the “bad_pixels_nonocc”
parameter corresponds to the number of bad pixels in non-
occluded areas.
For “Tsukuba” image 4 types of filter were considered. The first
three of them are classified according to method of similarity
computation. For these experiments the radius and filter weight
were kept constant for all iterations. The fourth method is the
third method with adaptive parameters setting, according to Eq. 3
and Eq. 4.
According to Table 2, the best result for the “Tsukuba” was
achieved when using third method with normalization. The
resulted disparity map contains only 4 % of bad pixels. Here
normalization means the forcing disparity values to neighboring
disparity level. This operation decreases number of bad pixel
about 1.5-2 times. However, during rendering into auto-
stereoscopic display, the visual difference was not captured
between normalized and non-normalized results. In our opinion
the bad pixel metric does not reflect the quality of disparity
properly, since resulted disparity map could have strong
distortions of objects shape, and have small value of bad pixels
simultaneously.
Proposed methods increase the quality of disparity map in
occlusion areas also. This confirms by results in Table 1 and
Table 2 (The “rms_error_occ” and “bad_pixels_occ” parameters
correspond to value of RMS and number of bad pixels in
occlusion areas). According to tables the number of bad pixels in
occlusion areas is decreased by half in comparison with raw
disparity map. And the RMS is improved by almost 3 times.
Correct handling of disparity discontinues, especially in occluded
regions greatly facilitates virtual view rendering. The comparative
results of state-of-the-art stereo-matching methods and
explanation of comparison parameters could be found in [6].
The visual quality of rendering results on the auto-stereoscopic
monitor Phillips was nearly the same for 1-st, 3-rd and 4-th
methods, while 2-nd method shows the artifacts in the area of
lamp and bust. The 2-nd requires less computation than 1-st
method. The method works well for smooth areas, while for
strong depth discontinues it fails to compute disparity correctly.
To decrease computational burden without degrading in quality
the adaption of filter radius was introduced. This means that the
computational complexity of 4-th method is lower. This could be
illustrated by following calculation. Since we used 6 iterations
with radius 20 for the 1-st and 3-rd methods, this requires the 6 x

Figure 6: Live 3D capture from stereo camera:
Reference image with correspond disparity

20 = 120 computations of weights. For the 4-th method with
adaptive parameters a2 = 5 and b2 = 1, we get the following
computation for the 6 iterations: 1+6+11+16+21+26 = 81. The
computation of weight includes calculation of two color distances
with exponent. So decreasing the number of weight computation
introduces theoretical performance boost about 30% (1 – 81/120).
This confirms by software execution time also (Table 3).
Table 3 shows that maximum performance gain was achieved for
3-rd method. GPU implementation of the method executes 656
times faster than CPU one with float point arithmetic. Also the
adaptation of radius in the 4-th method has lead to the least
execution time with only 18 msec for frame. This corresponds to
50 fps. Correspondingly, the MDE (Million disparity estimation,
MDE = width*height*disp_levels*fps) for tsukuba image with
width=384, height =288 and disp_levels = 16 is equal to 97. At
the same time, proposed approach shows higher throughput for
real-time stereo-matching, and MDE is equal to 294 in this case.

6. CONCLUSION

Recent multi-view 3D displays require multiple views to be
synthesized and rendered for 3D scene reproduction. Such virtual
views can be generated from stereo content and disparity map.
The key factor of high quality virtual view generation is a
usability of disparity map which determined by the correct
disparities values.
Proposed method of disparity estimation outputs disparity map of
high quality computed on TV frame rates. Thus, developed
technique could be used for various real-time applications, such
as immersive videoconferencing or augmented reality.

7. REFERENCES
[1] J. Mairal, R. Keriven and A. Chariot, “Fast and efficient

dense variational stereo on GPU”, Proceedings of the Third
International Symposium on 3D Data Processing,
Visualization, and Transmission (3DPVT'06), pp. 97-104.

[2] R. Yang, M. Pollefeys, “Multi-resolution Real-Time Stereo

on Commodity Graphics Hardware” CVPR 2003, pp 211-
218.

[3] A. Brunton, C. Shu, G. Roth “Belief Propagation on the GPU

for Stereo Vision”, Proceedings of the 3rd Canadian
Conference on Computer and Robot Vision (CRV’06) 0-
7695-2542-3/06, 2006.

[4] S. Grauer-Gray, C. Kambhamettu, and K. Palaniappan “GPU

Implementation of Belief Propagation Using CUDA for

Cloud Tracking and Reconstruction”, 5th IAPR Workshop
on Pattern Recognition in Remote Sensing (PRRS 2008).

[5] J. Gibson and O. Marques “Stereo Depth with a Unified

Architecture GPU”, Computer Vision and Pattern
Recognition Workshops (CVPRW 2008), pp. 1 – 6.

[6] D. Scharstein and R. Szeliski. “A Taxonomy and Evaluation

of Dense two-frame stereo correspondence algorithms”,
IJCV, volume 47(1), pp. 7-42, 2002.

[7] K. J. Yoon and I. S. Kweon “Adaptive Supprot-Weight
Approach for Correspondence Search” IEEE Transactions on
Pattern Analysis and Machine Intelligence, Vol. 28, No 4,
April 2006

[8] F. Boughorbel “Adaptive Filters for Depth from Stereo and

Occlusion Detection”, Stereoscopic Displays and
Applications XIX, Proceedings of the SPIE, Volume 6803,
2008.

Table 1. Comparative results for Tsukuba image

Evaluation criteria*
Raw depth
(SAD 5x5
window)

1-st method
(2 pixel areas
comparison,
radius 20)

2-nd method
(1 pixel area
comparison,
radius 10)

3-rd method
(2 pixels

comparison
radius 20)

4-th method
(with adaptive

parameters
a2=5, b2=1)

rms_error_all 1.89 0.955 1.163 0.865 0.998
rms_error_nonocc 1.732 0.931 1.143 0.832 0.976
rms_error_occ 5.029 1.62 1.743 1.694 1.619
bad_pixels_all 0.154 0.099 0.159 0.096 0.135
bad_pixels_nonocc 0.137 0.09 0.149 0.086 0.126
bad_pixels_occ 0.826 0.444 0.573 0.458 0.478

*) For explanation of the evaluation criteria, i.e. “rms_error_all” etc. see [6]

Table 2. Comparative results for Tsukuba image with normalization

Evaluation criteria
Raw depth
(SAD 5x5
window)

1-st method 2-nd method 3-rd method 4-th method

rms_error_all 1.89 0.972 1.176 0.932 1.039
rms_error_nonocc 1.732 0.946 1.156 0.899 1.018
rms_error_occ 5.029 1.683 1.777 1.775 1.646
bad_pixels_all 0.154 0.073 0.092 0.042 0.073
bad_pixels_nonocc 0.137 0.065 0.083 0.034 0.065
bad_pixels_occ 0.826 0.382 0.434 0.323 0.361

Table 3. Performance analysis of Tsukuba image stereo matching

Time (msec)

1-st
method

2-nd
method

3-rd
method

4-th
method

GPU implementation
(nVidia 8800GTX)

3031.5 504.47 24.5 18.33

CPU implementation– 1 core
(INTEL Core2Quad Q6600, 2.4 GHz)

720305.5 126290.6 16069.2 11024.32

Performance gain (times) 237 250 656 601

a)

b)

c)

Figure 7: Experimental results for Tsukuba image a) color image, ground truth, raw depth (SAD with 5x5 aggregation window)

(from left to right) b) proposed 1-st, 2-nd 3-rd methods according to Table 1 (from left to right) c) proposed 1-st, 2-nd 3-rd

methods with normalization (from left to right) d) proposed 4-st method without and with normalization (from left to right)

d)

