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Abstract

The paper describes an image matching method based on visual
attention and SURF keypoints. Biologically inspired visual atten-
tion system is used to guide local interest point detection. Interest
points are represented with SURF descriptors. One–to–one sym-
metric search is performed on descriptors to select a set of matched
interest point pairs. Pairs are then weighted according to attention
distribution and weights are summed up yielding a similarity score.
Images are considered to be near–duplicates if similarity score ex-
ceeds a certain threshold. Experimental results illustrate high accu-
racy and superior computational efficiency of proposed approach in
comparison with other matching techniques.

Keywords: image matching, visual attention, local interest points,
near–duplicate detection.

1. INTRODUCTION

Image matching problem had in recent years gained remarkable at-
tention in computer vision [1, 2], robotics [3, 4, 5] and information
retrieval [6, 7, 8, 9]. A broad spectrum of practical applications such
as object recognition [2, 10], content–based image retrieval [9],
news retrieval [8], medical imaging [11], copyright infringement
detection [7], robotic navigation [4], scene reconstruction [12] and
other depends on efficient techniques for finding correspondences
between images.

Image matching problem is also called near–duplicate image iden-
tification [6, 13, 7] or transformed image identification [14] in lit-
erature and consists of three stages: feature detection, feature rep-
resentation and feature matching [10]. Matching problem is quite
close to image registration problem [15], but, as opposed to reg-
istration, transform model estimation and image resampling are
not needed for matching. The goal of matching is to detect near–
duplicate images. Near duplicates are images that are equal despite
the slight degree of variations caused by geometric and photomet-
ric transforms, such as lighting and viewpoint changes, differences
in frame acquisition time, motion, editing etc. The complexity of
matching arises from a big multitude of possible transforms. Sev-
eral examples of near duplicate images are shown on Fig. 1.

In response to an increasing practical demand a variety of match-
ing methods was developed. The performance of these meth-
ods was evaluated in diverse scenarios resulting in conclusion
that local interest point matching methods are most promising
[16, 10, 17, 18, 6]. Local interest points (keypoints) are salient
regions detected over image scales [2]. Image matching in this case
becomes a keypoint descriptor matching, where descriptor is a vec-
tor of features extracted from image patch around interest point at
given scale. Different keypoint detectors and descriptors were pro-
posed for image matching [2, 19, 10, 20, 21]. Later several studies
were conducted to assess their quality (see e.g. [16, 20, 10, 18]).

Although local interest point matching remains to be the most ac-
curate matching method its major drawback is high computational
complexity: comparing two 640 × 480 images can take up a mil-
lion of descriptor comparisons. Real–time implementation (e.g. for

mobile robot vision) becomes prohibitively difficult. A variety of
hardware focused approaches was already proposed for most criti-
cal tasks: VLSI–based solutions [22], FPGA architectures [23, 24],
parallel [25] and DSP [26] systems.

Figure 1: Examples of near duplicate image pairs.

Software alternative lies in keypoint filtering. It is known that ge-
ometric verification techniques such as RANSAC [27] require a
small number of keypoint for reliable matching [28, 7, 2]. Dif-
ferent techniques were proposed to reduce the number of descriptor
comparisons. Most of them rely on two–stage matching, where first
stage is rough comparison (e.g. via descriptor discretization) to fil-
ter out non–neighbors, and second one is fine matching involving
remaining descriptors.

Such approaches successfully reduce computational load, however
they are still far away from real–time requirements. Best to our
knowledge matching time estimations reported in [6] and [13] are
0.028 sec and 0.015 sec respectively. These times do not include
detection time that is necessary to detect keypoints and compute
descriptors. According to results reported in [10] detection time
for widely used methods exceeds 0.45 sec per image. At the same
time, mobile robot operating at moderate 3 Hz frequency has 0.33
sec for whole control system loop execution. Considering content–
based retrieval where detection time is not as important as matching
time, we see that 0.015 sec per pair matching results in poor 66
comparisons per second.

To overcome this difficulty on software level much simpler detec-
tion and matching methods are employed, e.g. Shi–Tomasi operator
[21] or color histograms [29] that allow 10−5 sec matching time.
However, in general, these methods cannot achieve accuracy level
of their keypoint–based competitors.

Current paper proposes novel image matching method guided by
a biologically motivated visual attention system. The key advan-
tage of such system is suppression of detected keypoints number.
It is achieved during detection phase performed with SURF detec-
tor [10] by filtering out points that gain little attention. As a result
matching speed increases by more that an order of magnitude, de-
tection speed increases by 2 – 4 times. Experimental results show
high accuracy of matching, comparable to accuracy of descriptor
matching implemented without filtration.



The remaining sections are organized as follows. Section 2 surveys
related work in visual attention guided image matching and descrip-
tor filtering. Section 3 describes proposed visual attention system.
Interest point matching method is discussed in Sect. 4. Experiments
and evaluation results are presented in Section 5. Finally, Sect. 6
concludes the paper and outlines directions of further research.

2. RELATED WORK

Visual attention has emerged recently as a powerful tool to make
computational vision more effective, since it allows focusing anal-
ysis on restrained image areas [30, 4, 31]. This section presents
a survey of modern attention–based image matching methods and
descriptor filtering algorithms.

At the heart of modern computational attention theories is the con-
cept of saliency map. As originally proposed in [32], saliency map
refers to a “topographically arranged map that represents visual
saliency of a corresponding visual scene” [33].

Typically, attention–based matching methods employ saliency map
to detect interest points — point with high saliency. To describe
interest point various approaches are used in literature.

Saliency based image matching method is presented in [34]. The
foundation of this method is Scale – Saliency algorithm developed
by Kadir and Brady [35] aimed to detect image regions salient by
means of Shannon entropy measure [36]. There are two draw-
backs of such approach. First is the use of normalized intensity
histograms to describe interest points, since its invariance to geo-
metric and photometric transforms is debatable. Second, Scale –
Saliency algorithm suffers from the curse of dimensionality when
it is applied to multidimensional data, e.g. RGB images. Although
this issue was resolved recently [37], there is no experimental evi-
dence proving the efficiency of multidimensional Scale – Saliency
in image matching tasks.

The question of salient regions detection repeatability is considered
in [38]. Comparison with popular Difference–of–Gaussians [2] and
Harris–Laplace [19] detectors reveals the superior repeatability of
detection performed by biologically inspired visual attention sys-
tem. Therefore, it is concluded that filtering out descriptors corre-
sponding to regions that cannot be detected with high repeatability
can significantly reduce computational load. This result supports
the motivation of current research.

Works by Stentiford and colleagues [39, 40, 17, 41] focus on con-
structing attention based similarity measures with applications to
content–based image retrieval, motion detection and tracking. Re-
ported results show superior performance of their approach in terms
of recall–precision graph when compared to color histograms and
Gabor signatures. However, these techniques had not yet been
tested against local interest point detectors and no exact data con-
cerning matching speed is available.

More sophisticated bio–inspired attention system is proposed in [9]
for content–based image retrieval. In order to improve quality of de-
tection this system combines Stentiford model of attention [41] with
Itti–Koch model [30]. RGB and HMMD color intensity histograms
were used as descriptors. Reported experimental result suggest high
accuracy of this approach, however it was not compared to interest
point based detectors.

Broad comparative study described in [18] aimed to evaluate mod-
ern near–duplicate detection methods on a large scale collection
(more than one million web images) had revealed high performance
of bio–inspired retina–like image matching method. The study re-
ported poor performance of SURF [10], interest point detection
method, however descriptor matching algorithm used in experi-
ments in highly debatable, as it is mentioned by authors themselves.
Furthermore, image collection was built by applying image trans-

forms to an initial image collection, thus validity of evaluation re-
sult for natural near–duplicates detection is arguable in this case.

At the same time, question of interest point matching scalability
has already been tackled from the perspective of pruning the num-
ber of descriptors used to match [28]. SIFT [2] and PCA–SIFT [7]
descriptors were chosen in this research. Pruning was made on the
basis of point contrast. Experimental results show reduction of exe-
cution time to 1/50 of the original approach without any significant
loss of accuracy. Nevertheless, this study focuses on image retrieval
task, therefore only retrieval query speed is evaluated, while match-
ing speed is unknown.

Summing up, attention–based approaches to image matching be-
came quite popular along with the development of human vision
models. In the light of results presented in [28], employing vi-
sual attention to filter out insignificant interest points seems to be a
promising approach to improve efficiency of image matching.

3. VISUAL ATTENTION SYSTEM

The purpose of visual attention for image matching tasks if defined
as following: determine the importance of image regions in terms
of attention distribution.

Computation is performed at two stages: first, saliency map is com-
puted from an input image; second, an absolute measure of saliency
is built from the saliency map.

Figure 2: Overview–diagram of saliency map calculation.

In current research saliency map is implemented on pixel basis as
it was proposed in [30, 4]. For each pixel saliency is computed
from three feature channels mimicking human vision [42]: inten-
sity, color and orientation. After than, per–channel maps are nor-
malized and fused into a saliency map. Figure 2 illustrates process-
ing flow, its details are outlined in Sect. 3.1.

Absolute measure of saliency is necessary because saliency maps
contain relative values. Two distinct methods are proposed and de-
scribed in Sect. 3.3 to solve this problem.



3.1 Feature Computation

Feature computation is roughly based on procedures proposed for
visual attention system VOCUS [4]. In following subsections a brief
description of procedures for each feature channel is offered.

Input image I is used to build monochrome and LAB Gaussian
pyramids of five scales: (s0, . . . , s4) and (s̄0, . . . , s̄4) respec-
tively; and Difference–of–Gaussians pyramid [2] of four scales
(DoG1, . . . , DoG4). First two scales (s0, s1) are not considered
in calculations to ensure robustness to noise [30].

3.1.1 Intensity

Intensity feature maps are computed by applying center–surround
mechanism to images of Gaussian pyramid. On–center and off–
center intensity [4, 42] of a pixel is computed by comparing its
value with mean value of surrounding pixels. Such calculation is
consistent with recent findings about surround suppression mecha-
nisms in visual cortex [31]. Mean value is calculated by summing
pixel values in 7× 7 quadratic area Ω around pixel of interest:

I
[si]
on−center (x, y) = si(x, y)−

∑
(x̄,ȳ)∈Ω

si(x̄, ȳ)− si(x, y)

|Ω| − 1
. (1)

For efficiency reasons integral images [43] are used to compute a
sum in equation (1).

On–center and off–center intensity maps are built for scales
(s2, s3, s4). Resulting maps are summed up by across–scale ad-
dition (

⊕
) [4] — smaller maps are scaled to size of biggest one

and then maps are summed up by pixels — leading final intensity
maps Ion−center and Ioff−center :

Ion−center =
⊕

i∈{2,3,4}
I
[si]
on−center .

3.1.2 Color

Color feature maps are computed in terms of intensities for col-
ors red, green, blue and yellow. Such choice of basis colors corre-
sponds to human vision [44]. As original RGB image is converted
into CIE LAB universal color space [44], Euclidean distance ρLAB

between colors corresponds to human perception and can be used
to calculate color intensity:

Ccolor
i (x, y) = ρLAB(si(x, y), color) .

Feature maps are computed for each basis color by applying center–
surround mechanism and across–scale addition to corresponding
pyramids:

Ccolor
on−center =

⊕

i∈{2,3,4}
I
[Ccolor

i ]
on−center .

3.1.3 Orientation

Orientation feature maps highlight edges having basis orientations
θ: 0◦, 45◦, 90◦ and 135◦. Feature map for each orientation is
computed by applying corresponding Gabor filter [44] of specified
orientation to images of DoG pyramid:

Oθ
i (x, y) = (Gθ ? DoGi)(x, y) .

Gabor filters simulate response of orientation–selective neurons in
visual cortex[42]. Filtered pyramids are summed up via across–
scale addition yielding four orientation maps:

Oθ =
⊕

i∈{2,3,4}
Oθ

i .

3.2 Saliency Map

Feature maps are then normalized and fused into a combined map.
Normalization operator N (·) is adopted from [4]:

N (I)(x, y) =
1√
m

I(x, y) ,

where m is a number of local maxima above threshold that was
chosen to be 0.65% of map’s global maximum. This is necessary to
smooth maps having a lot of local maxima. Normalized maps are
summed up with equal weights yielding a combined map:

M =
1

3
N (Ion−center + Ioff−center )+

1

3
N


 ∑

color∈{R,G,B,Y }

(
Ccolor

on−center + Ccolor
off−center

)

 +

1

3
N


 ∑

θ∈{0◦,45◦,90◦,135◦}
Oθ


 .

Equal weights are used for simplicity reasons although it is known
that variable weights are preferable [45, 46].

Example of an image and its saliency map is shown on Fig. 3.

Figure 3: Saliency map example. On the left: source image. On
the right: final saliency map

3.3 Absolute Measure of Saliency

Saliency map contains relative values, but for purposes of descrip-
tor filtering it is necessary to have absolute measure of saliency,
reusable between images.

Two methods are proposed to solve this problem. First method is
based on introducing a measure of attention equivalency. Second
one is normalization of a saliency maps to a single scale.

3.3.1 Attention equivalency measure

To build measure of attendance it is convenient to divide an im-
age into a set of attended points and a set of unattended points.
Straightforward thresholding is ineffective because of saliency vari-
ations, even within a single object [47]. To overcome this difficulty
a fuzzy set theoretic methods can be developed. Method employed
for current research is a simplified variant of fuzzy growing [47].

Let Ω = {gk, k = 0, L− 1, L = 256} be a set of saliency val-
ues. Two fuzzy sets are defined: set of attended points BA and
set of unattended points BU with membership functions (2) and (3)
respectively.

µA(gk) =





1 gk ≥ a
gk − u

a− u
u < gk < a

0 gk ≤ u

, (2)



µU (gk) =





0 gk ≥ a
gk − a

u− a
u < gk < a

1 gk ≤ u

. (3)

Parameters a and u in (2) and (3) are constants that determine opti-
mal fuzzy 2–partition. Details on these calculations are to be found
in [47]. Function µA(gk) is an absolute measure of saliency.

3.3.2 Saliency Map Normalization

Less complicated way to introduce absolute saliency values it to
normalize all saliency maps to a single scale. In this case saliency
values can be compared. Further motivation for this kind of pro-
cessing is provided by an attention conservation hypothesis, pro-
posed in [48]. It claims that total amount of saliency is invariant:
perception causes only redistribution of that amount among input
stimuli (i.e. image pixels).

Neurobiological evidence is used to determine the total amount of
saliency. It is known that fovea comprises about 1% of retinal size
but is responsible for over 50% of information [42]. As saliency
map is a W × H table with values in [0, . . . , 255], total attention
amount is calculated as I = (255×1%(W ·H))

50%
. Value of I is then

used to scale the map.

4. INTEREST POINT MATCHING

Five step procedure is performed to match a pair of images:

1. Saliency maps are computed for both images according to
Sect. 3.. Either of methods described in Sect. 3.3 is used to
build absolute measure of saliency.

2. Local interest points are detected, non–salient points are
pruned; SURF descriptors are calculated for remaining.

3. One–to–one symmetric search is performed on descriptors to
select a set of matched interest point pairs.

4. Outlying false matches are identified and filtered out.

5. Remaining pairs are weighted by their saliency. Weights are
summed up yielding a similarity score. Images are considered
as near–duplicates if similarity score exceeds a threshold.

4.1 Interest Point Detection and Description

SURF detector and descriptor [10] were used in current research.
The motivation for such choice is two–fold. First, performance of
SURF is proved to be equal or superior to performance of other
methods, such as SIFT [2], PCA–SIFT [1] and GLOH [16], in in-
dependent evaluative studies [49, 10]. Second, its computational
efficiency is significantly better in comparison with aforementioned
methods. SURF was successfully applied in vision–based mobile
robot navigation [50, 49] and handle recognition [51].

The purpose of detector is to find scale–invariant points. SURF de-
tector is based on calculating approximate Hessian response for im-
age points. Although calculating Gaussian response is optimal for
scale–space analysis [52], it is shown in [10] that due to aliasing er-
rors its actual performance is not as perfect as in theory. Equal per-
formance can be achieved by approximating Gaussian with Hessian
calculated with box filters (Fast–Hessian [10]). This processing can
be very efficiently implemented on the basis of integral images [43].

After detection non–salient keypoints are pruned. Non–salient
points are points with saliency ḡ such that either µA(ḡ) = 0 or
ḡ < SaliencyThreshold in case of normalization.

Example of pruning results is illustrated on Fig. 4. Number of
points after filtration reduces to up to 1/10 of whole.

Figure 4: Attention–guided interest point filtering. On the left:
image is shown with whole set of detected interest points. On the
right: same image is shown with points remained after filtering.

Afterwards rotation invariant SURF descriptors (64–dimensional
vectors) are computed for remaining interest points. Descriptor cal-
culations are based on computing Haar wavelet responses in the
vicinity of interest point that is implemented with integral images
too. Exact details on above operations are given in [10].

4.2 Descriptor Matching

One–to–one symmetric search suggested in [6] is used in current re-
search: given two sets of descriptors {P} and {Q} extracted from
a pair of images (I1, I2), it returns pairs of closest descriptors. Al-
gorithm 1 describes proposed search strategy.

Algorithm 1 One–to–one symmetric search
Given two sets of descriptors {P} and {Q}
for ∀P̄ ∈ {P} do

Q̄ ⇐ NearestNeighbor(P̄ , {Q})
P ? ⇐ NearestNeighbor(Q̄, {P})
if P̄ == P ? then

if ρ(P̄ , Q̄) < DistanceThreshold then
pair (P̄ , Q̄) is added to the result

end if
end if

end for

Function NearestNeighbor(A, {B}) in Algorithm 1 returns de-
scriptor B̄ ∈ {B} nearest to given A. Distance between de-
scriptors is measured with Euclidean metric ρ(P, Q). Value of
DistanceThreshold is experimentally chosen to be 0.2.

Straightforward implementation of NearestNeighbor(A, {B})
via exhaustive search is computationally prohibitive. To overcome
this difficulty several solutions were proposed in literature: K–d
trees [20], locality sensitive hashing [28], LIP–IS (local interest
point index structure) [6], LIP–IS with inverted index [13]. For
this work an extension of the latter approach is proposed.

Threshold–based matching is used instead of nearest–neighbor–
distance–ratio, originally employed for SIFT descriptor matching
[2], because explicit threshold value is necessary for chosen index-
ing approach. Furthermore it was found in experiments that key-
point filtering makes difference between results obtained with both
algorithms almost negligible.

Basic idea behind LIP–IS is following. As soon as ρ(P, Q) is most
resource consuming part of matching procedure, performance can
be improved if distance value will not be calculated for descriptor
pairs such that ρ(P, Q) À DistanceThreshold. For this purpose



rough estimation of distance is computed. It is done with help of
descriptor quantization. Original 64–bit vector of double values
P = (p1, . . . , p64) is transformed to P̂ = (p̂1, . . . , p̂64), where
p̂i take on values from a discrete set H = (h1, . . . , hN ). It is
convenient to use N = 8, in this case distance can be estimated
with fast bit operations.

Inverted index is used to further reduce sets of descriptors to com-
pare — by indexing groups of descriptors P that have equal val-
ues in first k dimensions of corresponding P̂ vectors. Then each
descriptor is only compared to descriptors belonging to the same
group in inverted index. As reported in [13] inverted index reduces
matching time to 20–60% of original LIP–IS time. At the same
time, it is built only once for each image and has very moderate
memory footprint.

In this work an improvement to an inverted index is proposed. It
was noticed during experiments that indexing first k dimensions
often has a little effect because for most descriptors values corre-
sponding to these dimension become equal after quantization. It
makes inverted index useless in such cases. To get over this diffi-
culty is was proposed to index k dimensions having maximum vari-
ance across set {B}. With this modification preliminary filtration
time is steadily reduced to 20 ± 5% of original LIP–IS time. New
structure was called Maximum Variance Inverted Index (MVII).

4.3 False Match Identification

Due to quantization and overall descriptor design some degree of
false matches can appear in nearest–neighbor search results. Out-
lying false matches can be identified relatively easy.

For each descriptor pair angle and distance between corresponding
points are calculated. Then mean and standard deviation are com-
puted for angles and distances across all matched pairs.

Finally, pairs such that difference between angle or distance from
corresponding mean greatly exceeds respective standard deviation
are considered to be false matches and are thereupon pruned. Fig-
ure 5 illustrates described procedure.

Geometrical verification techniques, such as RANSAC [27], used in
several studies for same purposes (e.g. in [19]) are not employed in
this research because simple procedure described above was found
to be sufficient for images of test collection.

Figure 5: False match identification. White strokes depict correct
matches, red strokes depict false matches.

4.4 Similarity Score

As soon as matched descriptor pairs are identified and false matches
are pruned we need to make a decision of matching. For this pur-
pose a similarity score is computed

S =




1
255

∑
(P,Q)∈N

(gP + gQ), in case of normalization,

∑
(P,Q)∈N

(
µI1

A (gP ) + µI2
A (gQ)

)
, otherwise.

(4)

In (4) N is a set of matched interest point pairs; gP and gQ are
saliency values for points P and Q respectively; µ

Ik
A is membership

function of attended points set computed for image Ik.

If similarity score (4) exceeds threshold S̄ than images are said to
be near duplicates. Threshold value S̄ is a variable that determines
tradeoff between recall and precision.

5. EXPERIMENTS AND RESULTS

Experiments were conducted to assess the performance of proposed
image matching method against different approaches. Although
various setups can be used for assessment (for instance, content–
based image retrieval tasks and image collection clustering), in this
research we have chosen to focus solely on image pair matching.
Such decision is an attempt to reduce task specific bias, e.g. influ-
ence of clustering method on clustering results.

5.1 Data Set

Evaluation was carried out on real world images with different
geometric and photometric transforms. We have adopted a data
set from [16], that is widely used in comparative studies (e.g. in
[10, 19, 20, 53]). Collection consists of 8 groups of near duplicates,
49 images in total, and is publicly available on the Internet1. Images
are produced with lighting and viewpoint changes, blurring, zoom,
rotation and compression. Sample images are shown on Fig. 1.

5.2 System Implementation

Software used for experiments was implemented in Java to simplify
performance evaluation and analysis via code profiling. All tests
were run on Intel Core 2 Duo 1.83 GHz machine with 2 Gb memory
under Microsoft Windows XP operating system.

5.3 Experiment Setup

Four image matching methods based on SURF descriptors were
compared in quality and efficiency tests:

1. Naive matching without any filtering.

2. Matching with contrast filtering proposed in [28]: top M key-
points with highest contrast value are selected for matching.

3. Attention–guided matching with threshold filtering: top M
keypoints with highest saliency are selected for matching.

4. Attention–guided matching with similarity score (4).

Last method was tested with fuzzy measure and normalization.
In case of normalization a variety of SaliencyThreshold values
were used to assess its influence on matching quality and speed.

Following procedure was performed to evaluate the quality of
matching. Each image of test collection was compared with each of

1http://lear.inrialpes.fr/people/mikolajczyk/



Table 1: Performance evaluation results. N# denotes normalization with a given value of SaliencyThreshold.

Method Average precision Average Recall Saliency map time (ms) Detection time (ms) Matching time (ms)
Naive matching 1.0 0.94 0 340 294
Top–contrast 0.98 0.89 0 340 24
Top–saliency 0.99 0.90 106 340 24
Similarity (Fuzzy) 0.91 0.81 320 300 210
Similarity (N30) 0.93 0.85 118 300 95
Similarity (N50) 0.91 0.85 118 160 40
Similarity (N70) 0.91 0.80 118 115 12
Similarity (N90) 0.92 0.67 118 95 3
Similarity (N110) 0.91 0.59 118 85 0.8

remaining images. Results of comparisons: true and false matches,
were recorded. As soon as we know original groups of near dupli-
cates, number of correct matches can be calculated for each group.

To assess accuracy of matching two metrics were computed for
each group and in average: recall and precision:

recall =
# correct true matches

group size
,

precision =
# correct true matches

# true matches
.

Three metrics were also calculated to assess speed efficiency of
each method: saliency map computation time, detection time and
matching time. Saliency map computation time is spent to build
saliency map and equivalency classes. Detection time is spent to
detect interest points and compute their descriptors for a single im-
age. Matching time is spent to match a pair of images: it includes
time to build all relevant index structures. All metrics were calcu-
lated in average across all images and all pairs respectively.

For index efficiency test following methods were chosen: no index-
ing; LIP–IS; LIP–IS and inverted index; LIP–IS with MVII.

5.4 Results

Table 1 summarized method performances. Resulting recall–
precision graphs are shown on Fig. 6. Average precision is almost
unaffected by saliency threshold, however average recall decays as
threshold value increases. Exact dependencies of accuracy and av-
erage matching time on saliency threshold are also demonstrated
on Fig. 6. Analyzing these plots together we can see that variable
saliency threshold allows to find a suitable tradeoff between accu-
racy and speed.

In comparison between fuzzy measure and normalization the latter
approach is a clear winner. Experiments have shown that build-
ing optimal fuzzy partition of saliency map is computationally in-
effective. At the same time performance of this approach does not
exceed performance of normalization achieved with considerably
lower costs.

Performances of contrast–based filtering and implemented alike at-
tention thresholding are near equal. The reason for this is follow-
ing: to reach acceptable accuracy levels we have to use top 300
interest points for both approaches. Experiments have shown that
difference between set of top 300 points with highest contrast and
set of top 300 points with highest saliency is negligible for images
of test collection. Therefore we see nearly identical recall and pre-
cision. However attention thresholding is accompanied with addi-
tional costs because saliency map must be built. Thus top–contrast
method is preferable.
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Figure 6: Evaluation results. Upper plot: dependency of average
matching time on saliency threshold. Middle plot: dependency
of accuracy metrics on saliency threshold. Lower plot: recall–
precision graphs.

Table 2 contains obtained results that prove superior performance
of LIP–IS with MVII in comparison with other techniques. We
can see that original inverted index has a little effect on LIP–IS
performance. We also rely on results reported in [6] indicating that
LIP–IS outperforms locality sensitive hashing.



Table 2: Index structure efficiency.

Method Matching time (ms)
No indexing 340
LIP–IS 28
LIP–IS + Inverted Index 24
LIP–IS + MVII 7

6. CONCLUSION

The paper proposed an image matching method based on visual
attention and SURF keypoints. Biologically inspired visual atten-
tion system was used to guide local interest point detection and
significantly reduce the number of interest points used in match-
ing. Experimental results have shown attractive performance of
new method in comparison with several different methods.

For time–critical tasks attention–guided matching based on normal-
ization and similarity score is an attractive choice since it allows to
increase matching speed by more that an order of magnitude (24.5
times for N70) with performance loss near 10% for average preci-
sion and average recall. At the same time, computations required to
construct saliency map are a weak point of this approach. Although
detection time decreases by up to 4 times, additional costs related
to saliency map computation almost nullify this advantage.

In tasks where detection time is not constrained while match-
ing time is critical, for instance, in content–based image retrieval
tasks, top–contrast thresholding is most accurate method. But in
cases where performance can be sacrificed for the sake of match-
ing speed, similarity score methods can be applied as they reduce
matching time by up to 30 times (for N110) from top–contrast.

Although saliency map computations are a weak point from speed
efficiency standpoint, the use of visual attention has been proven as
an effective method to achieve near real–time matching efficiency
without significant loss of quality. Further research will be directed
towards development of faster saliency map computation methods.
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