
Applying one approach to geometric modelling

Vasyl Tereshchenko
Faculty of Cybernetics

National Taras Shevchenko University , Kiev, Ukraine
v_ter@ukr.net

Abstract
The current state of computer technology allows formulate of

new problems and develop effective solutions for them. This
requires developing of complex computer models and ways of
their formation.Thus, when designing and building a visual model
of thermal processes at welding turbine blades of aircraft engines,
must be extremely accurate model the welding bath, the welding
seam and region adjacent to them. Getting the exact solution of
this problem requires simultaneous solution the whole complex of
heat physical and geometrical problems which demand significant
computing resources. This paper’s main result is presenting a
generalized effective parallel-and-recursive algorithm with the
optimal bound of time complexity O(log2N) which solves in
unified manner the variety of interrelated geometrical problems
for the construction of visual models of complex phenomena and
processes. This algorithm belongs to the class of the solvability
NC2.
Keywords: parallel-and-recursive algorithm, visual model,
interrelated geometrical problems.

1. INTRODUCTION

The paper’s main result is presenting the generalized effective
parallel algorithm which solves in unified manner the variety of
interrelated geometrical problems for the construction of visual
models of complex phenomena and processes. Such an algorithm
is based on well-known technique ”divide-and-conquer”. An
algorithm consists of two basic stages: recursive dividing, which
is general for the whole set of problems, and recursive merging.
Steps of the merge stage could be executed simultaneously for
each problem. The parallel computing model is asynchronous, so
merge stage is executed independently for each problem. An
application of this algorithm can be, for example, the modeling of
thermo-physical and thermo-mechanical processes which arise up
at welding. In this case it is necessary to build the exact visual
model of the welding bath, the welding seam and region adjacent
to them. To have an exact model of welding bath at every moment
of time there is the need to simultaneously solve the following
geometrical problems: constructing convex hull, triangulation,
Voronoi diagram, searching for all nearest neighbors, nearest
pairs, geometrical search, spline approximation and so on. Figure
1 shows a fragment modelling welding bath.

In this paper a paradigm is offered - an effective algorithm of
parallel solution the set of interrelated geometrical problems for
multitask modeling of complex dynamic processes. This paradigm
is illustrated on the examples of Voronoi diagram and ”all nearest
neighbors” problem. It is important to note that main idea of this
paper is not to describe the well-known paradigm ”divide-and-
conquer”. In works [1-4] there have been described efficient
parallel algorithms for solving some problems of computational
geometry, including the mentioned above technique.

Figure 1: Fragment modeling welding baths: convex hull and

triangulation.

For accurate modelling it is necessary to solve simultaneously
a set of interrelated problems. The best strategy in this case would
be one that uses a common tool for implementing the tasks: data
structures, steps of procedures and presentation of results. The
most suitable in this case, in our opinion, may be technique
”divide-and-conquer”. In this technique, the stage of dividing is a
common and unified for all tasks, and at the merge stage is
proposed to use a common and unified data structure (weighted
concatenable queue) at which the procedures are performed
quickly. Moreover, the results of the individual steps of some
procedures used by other procedures, that ensures high efficiency.

Problem. Let S be the given set of N points in space Ed. It is
necessary to develop the generalized effective parallel-and-
recursive algorithm for simultaneous solving problems of
computational geometry, which are defined on single set of data
S, for which the low bound of complexity is Ω(NlogN) (for one
processor machines).

2. THE GENERALIZED ALGORITHM

One of main application problems of the ”divide-and-conquer”

technique for solving problems of computational geometry is
nonlinearity of the merge stage and linear inseparability of the set
of points. In the considered approach for problems, due to the
composition of successful data structures at the stage of
preliminary processing and the use of parallel processing at stages
of dividing and merge it is possible to construct the effective
parallel-and-recursive algorithm which removes the restrictions
specified above. We will consider the technique of the algorithm
for the two dimensions case.

2.1 Mathematical model of the algorithm

The mathematical model of the offered parallel algorithm
consists of such basic stages: preliminary processing, dividing set

of points (recursive descent)and recursive merge of results for
subsets (recursive ascent)

Stage 1. Preliminary processing. Let S be the given set of N

points in the plane S = {P1, P2, …, PN } and there are O(N)
processors. The ordered array of points U = {Pij ; i, j = 1,…, N} is
formed at the stage of preliminary processing. Here, i is an index,
which specifies the number of points in the list sorted by the x
coordinate, and j is an index, which specifies the number of points
in the list sorted by the y coordinate. Constructing the sorted lists
for O(N) processors can be carried out by means of one of the
algorithms described in details in articles [5-7]. An array formed
by such a method is given to the input of the algorithm. The graph
of this algorithm it is binary tree, Figure2. In this graph, every
node is marked by an integer number k. Number k divides the list
of points in nodes into two lists of equal power, on the median,
after comparison of the first indexes of points in the array U. And
every number of node k is determined by the single iteration on a
tree, if the quantity of points of the set is known.

Figure 2: Graph of algorithm. NN(S), Vor(S), CH(S) – merge
procedures; l - median.

Stage 2. Dividing the set of points (recursive descent). This

stage of an algorithm consists of dividing the set of points in the
form of list U into equipollent subsets U1, U2, searching for a
median l and transferring U1, U2 at the next step of recursion. The
search median in sorted by x indexed array U is performed in
constant O(1) time. Time necessary for recursive descent in the
parallel algorithm is defined by a following lemma.

 Lemma 1. Using O(N) processors it is possible to execute in
time O(logN): a stage of recursive separating the set S from N
points on equal capacity of subsets S1 and S2 in the plane, search of
a median l and transfer of subsets S1 and S2.

Proof. Let the given set of points to be presented in the form
of an indexed two-dimensional ordered array U ={Pij ; i, j = 1,…,
N}. For constructing of such a structure of data it is possible to
take advantage of parallel algorithm of sorting with complexity

O(logN), offered Colle [7]. Such a representation of points set
allows constructing a tree of dividing, if the quantity of points N
in the list U is known. According to the algorithm, first index i of
each point Pij is associated with processor number, and second
index j is associated with the number of a memory cell in which a
point is stored according to orderliness on y coordinate. On each
step of dividing corresponding processors synchronously compare
the first indexes from the list of points and dispatch points in
corresponding nodes of algorithm, keeping thus the order of an
arrangement of points which is defined by their order in memory
cells. Considering precise orderliness of points Pij in array U by
both indexes and interrelation between processors and the
memory elements, time of performance of merge process in each
node of a tree will not exceed constant O(1). Thus, general time
of dividing will not exceed O(logN) for the worst data input. As it
was necessary to prove.

 Stage 3. Recursive merge of results for subsets (recursive
ascent). At this stage, the merge procedures of related problems
are running in each node of the algorithm graph. These
procedures are building a general solution of problems. Process
comes to the end with result of merge in root node. In the
presented paper, due to the limits on the pages number, and that
the step of division is common to all the problems we will
consider example of merger procedures construction for ”Voronoi
diagram” and ”all nearest neighbors”. The main feature of the
proposed procedures - is to use a common data structure
”weighted concatenable queue”. This data structure allows to
perform all actions within the logarithmic time.

2.2 Constructing merge procedures

The merge stage of algorithm for constructing Voronoi
diagram differs from the merge stage in the convex hull only on a
finishing step. In the first case dividing chain is built, which
connects the Voronoi diagrams of sons, and in the second case - it
is finding of bridges (common tangent segments) to the convex
hulls of sons. Thus the results of convex hulls constructing and
bridges got for a problem ”convex hull”, is used for next steps of
building Voronoi diagram. In addition, construction of dividing
chain for the Voronoi diagram in parallel allows to solve the
problem of finding all nearest neighbors.

2.2.1. Constructing merge procedure for ”Voronoi

diagram” problem. At every step of recursive ascent starting
from the second, Voronoi diagrams vor(SL) and vor(SR) for
subsets of points from the left and right sons, accordingly, are fed
to the input of parent node v of the tree. It is necessary to build
Voronoi diagram for the node v. Since the basic step of the
constructing merger procedures for the Voronoi diagram and all
nearest neighbor, in this algorithm, is building a monotone
dividing chain, we offer one of the possible algorithms for its
construction.

Constructing the dividing chain. The dividing chain
constructing process is executed using O(N) processors for the
subsets of points, which are contained in a zone near dividing
vertical line l (Figure 3). These subsets are located to the left and
to the right from l, and belong to the mutually convex chains of
convex hulls of sons and points determined by the edges of
diagrams vor(SL), vor(SR), which cross the edges of these chains.

The time required for the construction of the dividing chain is
determined by the following lemma.

Lemma 2. Constructing the dividing chain σ(S1, S2), which
“sews” together the Voronoi diagrams vor(SL), vor(SR) at every
step of the merge stage can be completed in O(logN) time using
O(N) processors.

Figure 3. The merge step of two dividing chains (upper σA =

{ a1, a2, a3, a4, a5, a6, a7, a8 } and lower σ B={ b1, b2, b3, b4, b5
}chains) for the pairs of monotonous chains (CL1, CR1), (CL2, CR2),

accordingly.

Proof. Between the upper and lower supporting edges of two

convex hulls of Voronoi diagrams for sons vor(SL), vor(SR) of
some node v of algorithm graph we have two mutually convex
chains. They are determine the region of constructing the dividing
chain, D. Each of these chains determines the ordered set of the
Voronoi diagram edges, which are directed in into the region D,
and they cross the edges of mutually convex chains CHL, CHR.
Each edge of chains CHL, CHR can cross with one or a few edges
of the Voronoi diagram and consequently, determines the set of
points parted by these edges. We will note the set of vertexes as
BL(S1) (BR(S2)). It is consists of vertexes the convex chain
CHL(CHR) and the points, which are determined by edges Voronoi
diagram that are crossing the chain. We will name this set as left-
maximum (right-maximum) ordered set of points (or a list). If we
connect the points in the lists BL(S1) and R(S2) consistently, we
get lists of edges EL(S1) and ER(S2), which form chains SL and SR,
respectively.

Lemma 3. Chains SL and SR are monotone in relation to direct
l.

 Proof. We will prove from opposite. It is known, that dividing
chain σ(S1, S2) is necessarily monotone in relation to direct l. Lets
at least one of chains SL and SR will be not monotone in relation to
l. Then there are edge this chain which will have the angle of
rotation in relation to an OX axis with beginning at the end of this
edge greater than π. It follows that the corresponding edge

Voronoi diagram will not get into the domain D, and the dividing
chain will not be monotone, which contradicts the condition.

It is important to mark that merge procedure in every node of
algorithm tree can be executed on several processors
independently and parallel. In order to execute such actions it is
necessary: to determine a data structure which would support a
convex hull and Voronoi diagram in every node, would allow to
find supporting points, uncouple and couple parts of convex hulls,
to conduct supporting segments and to build a dividing chain. As
a data structure which would execute the operations mentioned
above for logarithmic time, we have chosen the concatenable
queue, the same data structure as in problem “Convex hull”, with
defined procedure MERGE (UL, UR), which allows to find
supporting points and supporting segments, to build convex hull
in O(logN) time and with procedure which would allow to build a
dividing chain. For organizing the process constructing the
dividing chain, on the basis of lists BL(S1) and BR(S2) we will
create the proper data structures (Figure 4), loading them with
needed data.

Figure 4. Data structures: the concatenable queues for left CL and
right the CR chains of merge region D of the Voronoi diagrams:

Vor(S1), Vor(S2) of figure 3, accordingly.

The concatenable queues of both monotone chains are binary

trees with a root, in which nodes we have the coordinates of
vertexes, and the arcs of which are the proper edges ek (k = 1,…,
N) from the lists of chains EL(S1) and ER(S2). In addition, nodes are
loaded by pointers on the proper edges Voronoi diagram (we will
note them through dij ; i, j ∈ N). Such data structures allow to
build a dividing chain σ (S1, S2) using O(N) processors in O(logN)
time. Graph algorithm for constructing a dividing chain can be
represented as binary tree. In the leaves tree, each with O(N)
processors builds dividing chain for the corresponding pairs of
edges (ek, el) (ek ∈ EL(S1); el ∈ ER(S2)). The results are given to the
next level of the tree where the step of merge is carried out. As a
result, a dividing chain is built as connection the dividing chains
of sons. The merge process of dividing chains sons requires in
O(1) time in every node tree. As we see all transactions for the

constructing of dividing chains require no more than O(logN)
time using O(N) processors.

After determining the supporting points and uncoupling
convex hulls of node v sons by them, the left and right parts of
trees that support the convex hulls UL and UR between the
supporting points are deleted respectively. The balanced trees,
which will support the upper and the lower convex hull of node v
are formed by merge parts of trees which remained. All
operations are performed in O(logN) time. The obtained trees
support a convex hull and allow to execute the constructing
procedures of dividing chain in O(logN) time.

2.2.2. Constructing of merge procedure for ”all nearest

neighbors” problem. At each stage of recursive ascent, starting
from the second, at the input of parent node v of the algorithm
graph there are Voronoi diagrams (VD) from the left and right
sons vor(SL), vor(SR), and the nearest neighbor for each point from
subsets SL and SR. Voronoi diagram is built for the node v, and the
new neighbors at the border of subsets of SL and SR are being
determined simultaneously, relatively to median l. At the merging
stage the algorithm, during the constructing the dividing chain of
Voronoi diagram, we find simultaneously nearest neighbors
among the points from sets SL and SR, which form the current pair
of a chain edge σ(SL, SR) , Figure 5.

Figure 5. Search nearest-neighbors to pairs of points (P3, qBOR),

(P3,P8), (P6,P8), (P6,P7), (P5,P7). For P8 ∈ SR is found a new
nearest neighbor P6 ∈ SL.

 Thus, the edge of the dividing chain determines the next pair

of points, which is being checked for the presence of the new
nearest neighbors. Let NN(S) be set of pairs the nearest neighbors
for set S and NN(SL), NN(SR) - for sets SL and SR, respectively. The
algorithm graph in this case is a binary tree, with the only
difference that every node of a tree loaded except for the orderly
array of points, median l; Voronoi diagrams vor(SL) and vor(SR)
children, sets of the pairs points sons of nearest neighbors NN(SL)
and NN(SR), respectively.

Lemma 4. The stage recursive merging of search results the
nearest neighbor to each point of the set S of N points on the
plane, using O(N) processors, can be executed in O(log2N) time.

So as for constructing dividing chain in step merger it is
enough O(logN) time, then total complexity of step merger will be
the same. This is because at each step constructing edge of

dividing chain we must find the nearest neighbors for pair of
points which he separates. For it we should compare only two
distances.

3. IMPLEMENTATION OF THE ALGORITHM

For implementation of the algorithm is applied MPI and

PAROS (Parallel Asynchronous Recursively Operated Systems)
technologies (for PRAM model). Those technologies allow to
simply and effectively implementing parallel-and-recursive
algorithms for the solution of complex problems both on
multiprocessing machines, and in a computer network.

4. CONCLUSION

In the given article is proposed approach which allows to
develop effective and convenient means of automation the
geometric modelling of complex phenomena and processes. The
main feature of the implementation approach is that the parallel
algorithm simultaneously executes both different steps of one
procedure on many processors, and different procedures in one
node. It allows develop the generalized algorithm of solution for
number geometric problems by single technology.

5. REFERENCES

[1] A. Aggarwal, B. Chazelle, L. Guibas, C. O’Dunlaing, and
C.C. Yap. Parallel computational geometry. Algorithmica 3.
1988. 293-327.Springer-Verlag New York Inc.
[2] N.M. Amato, M.T. Goodrich, and E.A. Ramos. Parallel
algorithms for higher-dimensional convex hulls. In Proc. 35th
Annu. IEEE Sympos. Found. Comput. Sci., pages 683-694,1994.
[3] M.J. Atallah and D.Z. Chen. Parallel computational geometry.
In A.Y. Zomaya, editor, Parallel Computations: Paradigms and
Applications, pages 162-197, International Thomson Computer
Press, Boston, 1996.
[4] J.E. Goodman and J. O’Rourke, eds., Handbook of Discrete
and Computational Geometry, Second Edition, Chapman and
Hall/CRC Press, 2004.
[5] M. Ajtai, J. Komlos, and E. Szemeredi (1982). An O(nlog(n))
Sorting Network. Proc. 15th ACM Symposium on Theory of
Computing, pp.1-9. Also in Combinatorica, 3(1)(1983), pp. 1-19.
[6] T. Leighton (1984). Tight bounds on the complexity of
parallel sorting. Proc. 16th ACM Symposium on Theory of
Computing, pp.71-80.
[7] R. Cole (1986). Parallel merge sort. Proc. 27th IEEE FOCS
Symposium, pp. 511-516.

About the author

Vasyl Tereshchenko is a professor at National Taras
Shevchenko University of Kyiv, Faculty of Cybernetics.
His contact email is v_ter@ukr.net.

