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Abstract

This paper proposes new and original adaptive image ringing de-
tection and ringing suppression methods. Ringing detection is per-
formed using a scale-space based computational analysis of ideal
low-pass filtering of step edges. Edge width conception is intro-
duced and is used to approximate ringing parameter. Method to
choose strong isolated edges which are the best suitable edges for
ringing analysis is proposed. A method of ringing level estimation
for 2D images with unknown ringing parameters is introduced and
used to perform real image deringing. New image quality metrics
sensible to ringing artifact are introduced and used to analyze image
resampling methods.

Keywords: Ringing estimation, total variation, scale space, adap-
tive deringing.

1. INTRODUCTION

Development of image enhancement methods is one of the most
important image processing tasks. Ringing effect (Gibbs phe-
nomenon) appears in images as oscillations near sharp edges. It
is a result of a cut-off of high-frequency information. Ringing can
appear as a result of image compression, image upsampling and
other applications. An example of this effect can be seen in old
video stored in analog format (Fig.1).

One of the main problems of image deringing is to detect the pres-
ence of ringing effect and to estimate the necessary ringing suppres-
sion level. But there is no algorithm which estimates ringing level
in the general case.

There are image ringing estimation algorithms to measure ringing
effect for a specific problem. In [1] wavelet decomposition is used
and ringing effect is measured for JPEG-2000 compression as a
difference between correlations of neighbor coefficients of different
wavelet subbands. The problem of image deringing after JPEG-
2000 compression is also considered in [2], [3].

Some metrics were developed to control image deringing as a post-
processing. Regularization parameter estimation for image dering-
ing using MAP approach is proposed in [4]. For the problem of
image deringing after resampling, regularization parameter is es-
timated using information on the initial low resolution image [5].
In [6], the ringing metrics is defined as maximum of the differences
between pixel values of the reference image and the processed im-
age in the edge neighborhood. The size of this neighborhood is
fixed a priori. In [7], the presence of ringing effect is detected by
comparing the directions of image gradients at different scales.

The work [8] does not introduce a ringing estimation method, but it
presents an algorithm to find regions where the ringing effect is the
most visible. It is based on luminance masking and texture masking
as typical for the human visual system.

In [9], a no-reference ringing detection method using Gabor filter-
ing was suggested. It shows good results but it fails if image con-
tains periodic structures like fence, geometrical textures, etc.

Figure 1: A video frame with a strong ringing effect.

In this article, we suggest new general ringing estimation algorithm
based on total variation (TV) control. The TV was first used in
image enhancement by Rudin, Osher and Fatemi [10] for image
denoising. General relations between TV and ringing effect can be
found in [11].

The rest of the paper is organized as follows. In section 2, we per-
form scale-space analysis of ringing effect and present a method of
ringing level estimation for 1D edges with known ringing parame-
ters. In section 3, we introduce a method of ringing level estimation
for 2D images with unknown ringing parameters and an algorithm
of strong isolated edges selection to choose the best suitable edges
for ringing analysis. In section 4, we propose image quality met-
rics to compare different image restoration methods. In section 5,
we suggest methods of ringing suppression for the problem of ring-
ing reduction after interpolation and for the problem of blind image
deringing. Section 6 concludes the paper.

2. 1D EDGE RINGING EFFECT ANALYSIS

We start from experimental analysis of one-dimensional edges with
manually generated ringing artifact with known ringing parameters.
The analysis consists of Total Variation (TV) calculation of edges
convolved with Gauss filter with different radiuses.

2.1 Total Variation

In one-dimensional case, Total Variation functional is defined as

TV (f) =

∫ ∞

−∞
|f ′(x)|dx.

In a discrete case −∞ < . . . < xk−1 < xk < . . . < ∞, it looks
as:

TV (f) =

∞∑

k=−∞
|f(xk)− f(xk−1)|.

We also consider weighted TV (WTV) with weight function w(x):

TV (f, w) =

∫ ∞

−∞
|f ′(x)|w(x)dx.



In the discrete case it looks as

TV (f, w) =

∞∑

k=−∞
|f(xk)− f(xk−1)|w

(xk−1 + xk

2

)
.

2.2 Ringing Model

We consider the problem of ringing level estimation for ideal step
edge (ISE)

f(x) =

{
1, x ≥ 0,

0, x < 0.

In the discrete case, TV (f) = 1 for any grid.

Ringing effect can be generated by ideal low-pass filter which trun-
cates high frequency data. We implement it using sinc interpo-
lation of ideal step edge function f(x) given at the discrete set
{xk}, xk = dk + d

2
:

fd(x) =
∑

k

f(xk)sinc
x− xk

d
, (1)

where sinc(x) = sin πx
πx

. We call here the value d as ringing half-
period. We call here the value d as quasiperiod of ringing oscilla-
tions. This value is in inverse proportion to the signal bandwidth.

Real edges are corrupted by noise, so this fact is to be consid-
ered too. In this work, we analyze the case of additive uniform
noise fd,n(x) = fd(x) + ξn(x), fn(x) = f(x) + ξn(x), where
ξn(x) is uniformly distributed random function which values are in
(−n/2, n/2) range. We consider n ≤ n0, where n0 is the maxi-
mum noise value.

2.3 Scale-space TV Analysis

We performed an experimental analysis of TV of edges with differ-
ent quasiperiods d at different scales σ. Real edges are not infinite.
To take into account only several first ringing oscillations, we use

weighted TV with Gaussian weight wαd(x) = e
− x2

2(αd)2 , where α
controls the number of considered ringing oscillations. To find the
differences between edges with ringing effect and edges without it,
we analyze the functional

TV (f, σ, wαd) = TV (f ∗Gσ, wαd),

where f ∗Gσ is a convolution of f with Gauss filter with radius σ.

To design an algorithm to find the value σ0 that best discriminates
between edges with ringing artifact and edges without ringing arti-
fact for fixed d, fixed maximum noise level n0 and given parameter
α, the following analysis has been performed:

We generated a large number (about 1000) of edges with and with-
out ringing effect and with random noise levels 0 ≤ n ≤ n0 for the
analysis. For every σ, we found the maximal value of TV functional
for step edges without ringing effect

g∗(σ, d) = max
fn

TV (fn, σ, wαd)

and the minimal value of TV functional for step edges with ringing
effect

g∗(σ, d) = min
fd,n

TV (fd,n, σ, wαd).

The higher noise level is, the higher is the value of edge TV. Thus, to
calculate g∗(σ, d), we used only step edges fn with the maximum
noise level n = n0

g∗(σ, d) = max
fn0

TV (fn0 , σ, wαd)

and for g∗(σ, d) calculation, we uses only step edge fd without
noise

g∗(σ, d) = TV (fd, σ, wαd).

A typical result for d = 10, n0 = 0.1 and α = 3 is shown in Fig.2.
It can be seen that for a given ringing quasiperiod d there is a set
of σ which splits the edges by TV value. If we choose σ in the
marked range, we can distinguish edges with ringing artifacts from
edges without it.
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Figure 2: Scale-space TV analysis for the step edge with
quasiperiod d = 10, maximum noise level n0 = 0.1 and α = 3
(number of oscillations ∼ 3). Value g∗(σ, d) is the maximal value
of the TV of the step edge without ringing effect (thick solid line),
g∗(σ, d) is the minimal value of the TV of the step edge with ring-
ing effect (dash line).

So we found the scale σ0(d) that corresponds to the maximal gap
between g∗(σ, d) and g∗(σ, d):

σ0(d) = arg max
σ

(g∗d(σ, d)− g∗(σ, d)).. (2)

The calculated values of σ0 for n0 = 0.1 and α = 3 for different
d are shown in Fig.3. For low quasiperiods d, there is no σ such
that g∗(σ, d) > g∗(σ, d), another words, we cannot distinguish the
edges with ringing effect from the edges without ringing effect for
given n0 and α by analyzing the TV. Ringing effect can be rea-
sonable detected by the proposed method only for d > dmin. The
value dmin depends on noise level n0: for higher noise values dmin

is greater. The analysis of dmin is a subject of future work.

The function σ0(d) is close to linear function and we use an ap-
proximation

σ0(d) = mα,n0d.

For α = 3 and n0 = 0.1, good approximation is mα = 0.35.
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Figure 3: The results of σ0 calculation (2) for n0 = 0.1 and α =
3 for different d. Thin line is a linear approximation of function
σ0(d).

Experiments also show that mα does not depend too much on α for
reasonable range of α (2 < α < 5). For the case α ≤ 2 the above
algorithm does not give stable results.



2.4 Edge Ringing Level Estimation

This enables us to consider the value

R∗E(f, d) = TV (f, mαd, wαd)

as edge ringing level. For the case of edges with an arbitrary
height, we perform a normalization. For σ = d, the values g∗(σ)
and g∗d(σ) are close, so it is natural to divide the value R∗E by
TV (f, d, wαd). Ringing value takes the form:

RE(f, d) =
TV (f, mαd, wαd)

TV (f, d, wαd)
.

To make a decision about the presence of ringing effect, we com-
pare the calculated ringing level RE with threshold functions

G∗(d) = g∗(mαd, d),

G∗(d) = g∗(mαd, d).

If RE ≥ G∗(d), we assume that the edge has ringing artifact. If
RE ≤ G∗(d), we assume that the edge does not have ringing ar-
tifact. The decision in the case G∗(d) < RE < G∗(d) needs
additional analysis for each specific image class.

The calculated threshold functions G∗(d) and G∗(d) for n0 = 0.1
and α = 3 for different d are shown in Fig.4.
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Figure 4: Threshold functions G∗(d) and G∗(d) for n0 = 0.1 and
α = 3 for different d.

2.5 Ringing Quasiperiod Estimation and Edge
Width Analysis

In real situations, we do not know the information about ringing
quasiperiod d. This value has to be estimated, but we do not di-
rectly estimate d. Instead of this, we calculate edge width w and
take this value as an approximation of ringing quasiperiod d = w.
Using edge width instead of ringing quasiperiod enables to perform
ringing level estimation even if ringing artifact is absent. Thus, edge
width is considered as possible ringing quasiperiod.

The term ’edge width’ does not have a certain definition. The sim-
plest approach used in [1] is to find local minimum and local max-
imum near the edge center. This approach does not provide stable
results for blurred and noisy edges. In [12], the edge is modeled by
a special function, but it does not fit our needs.

For one-dimensional edge

f(x) =





f0, x ≤ x0,

f0 + (f1−f0)(x−x0)
x1−x0

, x0 < x < x1,

f1, x ≥ x1

(3)

we define edge width as w(f) = x1 − x0.

To define edge width for an arbitrary edge f(x), we approximate
it by the edge f(x) (3). We seek for minimum f0 and maximum
values f1 of f(x) in a neighborhood of the edge center, reducing
for simplicity the edge to the case f0 = 0, f1 = 1.The size of
this neighborhood is chosen a priori and represents the maximum
considered edge width.

Next we seek for coordinates of intersections of y = f(x) with
y0 = 1/4 and with y1 = 3/4, draw a line through these points and
find x0 and x1 as it is shown in Fig.5. In the case of multiple inter-
sections we take the average of intersection points. We consider the
obtained value as the edge width estimation.
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Figure 5: Edge width estimation illustration. For the shown case,
the estimated edge width is 4.3 pixels.

3. 2D IMAGE RINGING LEVEL ESTIMATION

Ringing effect is located near sharp edges. It is natural to make
a decision about ringing effect by analyzing the areas near sharp
edges. So, we estimate image ringing level using the analysis of
ringing level of 1D normal cross-sections of image edges obtained
by an edge detection algorithm. General purpose edge detection
algorithms do not give suitable edges for ringing level analysis. We
pose the following statements for edge detection:

1. In the proposed ringing level estimation method, we consider
ringing oscillations as parts of the main edge. Thus, ringing oscil-
lations must be distinguished from the main edges.

2. If two sharp edges are positioned closely, ringing effect is inter-
fered. We consider only distant edges to minimize the interference
effect. Thus, the edges must be distant enough from each other.

3.1 Basic Edges Selection

We introduce an edge selection algorithm that follows the posed
above statements. We call it basic edges selection.

To satisfy the first condition, we use the results of scale-space ring-
ing analysis. The experiments have shown that for σ greater than
edge ringing quasiperiod d, the value TV (fd ∗Gσ) becomes close
to 1. It means that if we perform Gauss filtering with radius σ, ring-
ing effect of edges with quasiperiod d < σ will be suppressed and
edge detection algorithms will not detect false edges along main
edges. Thus, we perform Gauss filtering with σ = d before edge
detection. We use Canny edge detector [13] which uses Gauss fil-
tering.

Parameter d is unknown. To estimate d, we perform Canny edge
detection with predefined parameters and analyze edge widths. We
consider the case of uniform high-frequency truncation for the
whole image. Because d is defined by the cut-off frequency, it is
constant for every edge. We approximate d using the analysis of
edge widths wP = w(fP (x)), where fP (x) is edge normal cross-
section function which corresponds to edge point P . For ideal edge



with ringing artifact without noise (1), w(fd) = d, but real edges
are not ideal. Blurred edges results in wP > d, noisy edges in-
troduce errors in wP estimation. To estimate d with taking into
account noise and blur outliers, we use the approach from our pre-
vious work [14] based on the analysis of density function of wP

distribution.

Using the estimation for ringing quasiperiod d, we take only the
edges with wP close to d: |wP

d
− 1| > q to remove blurred edges

and noisy edges with wrongly estimated edge width. Good results
are achieved with q = 0.2.

Second condition is satisfied by calculating the distance between
the edges. To make this, we construct a skeleton MS of non-
edge area and calculate the distance ρP = ρ(P, MS) from edge
points to the skeleton. Next, we discard the edge points P with
ρP < αd, where α controls the number of considered ringing oscil-
lations. The distance is calculated using Euclidean Distance Trans-
form (EDT). The details of EDT and skeletonization are presented
in following sections.

3.2 Image Ringing Level Estimation

Basic edges selection algorithm gives a set of basic edge points
MBE of sharp distant edges. Edge cross-sections fP have edge
width close to the estimated image ringing quasiperiod d. We define
image ringing level as the average value of edge ringing values of
these edge cross-sections:

RE =
1

‖MBE‖
∑

P∈MBE

RE(fP , d),

where ‖MBE‖ is a number of basic edge points.

To improve the algorithm, we take only the first N edge points with
maximal gradient value. Eliminating the edges with low gradient
value results makes the algorithm more stable to noise and reduces
the number of calculations. We use N = 50.

The effectiveness of the proposed algorithm of ringing level esti-
mation for synthetic images is demonstrated in [14].

3.3 Euclidean Distance Transform

The distance transform (DT) is a general operator forming a basis
of many methods in computer vision and geometry. It finds for each
image pixel its smallest distance to the region of interest M :

D(p) = min
q∈M

ρ(p, q). (4)

The simplest metrics used in DT (4) are l1 metrics (Manhattan dis-
tance) ρ1(p, q) = |px − qx| + |py − qy| and l∞ (checkerboard
distance) ρ∞(p, q) = max(|px− qx|, |py − qy|). The DT for these
metrics is calculated easily. These metrics do not preserve distance
values during image rotation. A more natural metrics is l2 metrics
(Euclidean distance) ρ2(p, q) =

√
(px − qx)2 + (py − qy)2. DT

with Euclidean distance is called the Euclidean distance transform
(EDT). Many fast algorithms for the EDT with linear complexity
were developed in two past decades. A survey of these algorithms
is given in [15]. We use Meijster’s algorithm.

Numerical example of the EDT is shown in Fig.6.

3.4 Skeletonization

The idea of skeletonization is to construct a thin version of a shape
that is equidistant to its boundaries.

We perform non-iterative skeletization using EDT. As the area of
interest M , we take the edges, and then find all local maximum

Figure 6: Numerical example of the Euclidean distance transform
(EDT). Left figure: input data, black pixels (zeroes) form the region
of interest. Right figure: the squares of the Euclidean distance of
each pixel to the nearest black pixel.

points of the EDT in horizontal, vertical and two diagonal direc-
tions. These points provide a good approximation of the skeleton.
Additional skeleton post-processing like regularization or pruning
does not significantly change the results of our algorithm of edges
selection.

3.5 Edge Selection Results

The processing algorithm is step-by-step illustrated for the images
of Lena and Fish in Fig. 7-12. Ideal low-pass filter (high fre-
quency data cut-off, first 1/8 coefficients of Fourier series were
retained) was used to produce ringing artifact. The calculated ring-
ing quasiperiod d was found equal to theoretical quasiperiod value
in both cases: d = 8.

Figure 7: Input images with artificially added ringing artifact using
high frequency data cut-off, first 1/8 coefficients of Fourier series
were retained.



Figure 8: Results of Canny edge detector with σ = 1 to estimate
ringing quasiperiod d for the input images from Fig. 7. White edges
are important edges with high gradient value. Grey edges are edges
with lower gradient values. Both grey and white edges are used for
skeletonization, but only white edges will be used for basic edge
selection.

Figure 9: Results of Canny edge detector with Gauss radius taken
in accordance with ringing quasiperiod σ = d = 8.

Figure 10: Skeletonization of the result of Canny edge detector
from Fig.9. Background intensity level represents the distance to
the edges: the higher is the intensity, the more distant to the edges
is the point (EDT picture). Grey lines are the edges. White lines
belong to the skeleton.

Figure 11: Calculation of the Euclidean distance from the skeleton
(Fig. 10) to the edges (Fig. 9). Background intensity level repre-
sents the distance to the skeleton (EDT picture). White lines are the
edges.

Figure 12: Results of basic edge selection for the input images.
The black lines show the selected edges. The length of the line
corresponding to a specific edge is equal to 6 edge widths. The
number of selected edge points N = 50.

4. IMAGE RESTORATION QUALITY ANALYSIS
METRICS

Standard metrics based on whole image square error calculation
like MSE, PSNR do not correlate good enough with the perceptual
image quality. As an example, ringing effect in textured areas is not
noticeable while ringing effect near sharp isolated edges is annoy-
ing. We introduce an image metrics aimed at quality measurement
of image restoration methods like image interpolation or image de-
ringing in edge and edge neighborhood areas.

4.1 Basic Edges Points RMSE

To estimate the quality of edge restoration, we calculate RMSE
(root of mean square error) in small neighborhood of edges points
obtained by basic edges selection method:

BEP (u, v) =

√∑
MBEP

(ui,j − vi,j)2

‖MBEP ‖ ,

where u is the reference image, v is the restored image, MBEP is
the edge area of the reference image u, ‖MBEP ‖ is the number
of points in MBEP . The edge area MBEP is constructed using
morphological dilation of basic edges points set MBE with circular
structuring element with radius w:

MBEP = {P |ρ(MBE , P ) ≤ w},



where w is edge width. High value of BEP means that the im-
age restoration method badly reconstructs edges, for example, in-
troduces artifacts like blur or aliasing (jagged edges).

An example of area MBEP to calculate BEP is shown in Fig.13.

4.2 Basic Edges Neighborhood RMSE

We also calculate RMSE in areas where ringing effect is the most
likely to appear:

BEN(u, v) =

√∑
MBEN

(ui,j − vi,j)2

‖MBEN‖ ,

where MBEN satisfies the condition

MBEN = {P |ρ(MBE , P ) > w, ρ(ME , P ) < αw}.
Here the set ME consists of all edge points obtained by Canny edge
detector in basic edges selection method. It contains all edge points
from MBE and edge points that do not pass the basic edges condi-
tions and thus do not belong to basic edges.

High value of BEN means that the image restoration method
works bad in edge neighborhood, for example, introduces ringing
artifact.

An example of area MBEN to calculate BEN is shown in Fig.13.

Figure 13: Illustration for BEN and BEP metrics. Left image is
the source image. Middle image is a result of Canny edge detec-
tion. White edges are strong edges which pass the high threshold
of Canny method, grey edges are weak edges which pass the low
threshold. Right image shows the areas of calculation of BEP and
BEN metrics. White areas are BEP areas, grey areas are BEN
areas.

4.3 Image Restoration Methods Comparison

The quality of image restoration methods can be expressed in terms
of the proposed basic edgse metrics. But if one method shows bet-
ter BEP value, but worse BEN than another method, there is a
problem to choose of the best method.

Here we introduce two methods of overall quality estimation of im-
age restoration methods.

1. The first method constructs a relative image quality score for a
set of image restoration methods. This is essential for the problem
of choosing the best parameter of restoration method. Consider the
values BEPk and BENk as corresponding metrics values for k-th
image restoration method. Next we find the maximal and minimal
values of BEPk and BENk:

BEP∗ = min
k

BEPk, BEP ∗ = max
k

BEPk,

BEN∗ = min
k

BENk, BEN∗ = max
k

BENk.

We use the following rules to construct image quality score (basic
edges relative quality, BERQ):

a. BERQ = 0 for BEP = BEP∗, BEN = BEN∗;

b. BERQ = 1 for BEP = BEP ∗, BEN = BEN∗;

c. BERQ = 1 for BEP = BEP∗, BEN = BEN∗;

d. If for two methods BEP1 < BEP2 and BEN1 < BEN2, then
BERQ1 < BERQ2.

We use the following definition of BERQ:

BERQ =
BEP −BEP∗
BEP ∗ −BEP∗

+
BEN −BEN∗
BEN∗ −BEN∗

.

The lower is the value of BERQ, the better is image quality.

2. The second method is calculation of image quality value which
does not depend on considered restoration methods. This problem
is raised if we have to choose the best method from only two meth-
ods. The main problem is to choose the balance between BEP and
BEN . We use logarithmic approach

BELQ = log2 BEP + log2 BEN.

For better presentation, we suggest BEQ metrics which is equal to
BELQ minus constant value (log2 BEP∗ − log2 BEN∗):

BEQ = log2

BEP

BEP∗
+ log2

BEN

BEN∗

where BEP∗ and BEN∗ are the normalization constants. These
constants do not affect the difference between BEQ values of dif-
ferent images. We choose BEP∗ and BEN∗ as the minimal values
of BEP and BEN respectively of the results of image restoration
methods for the given image.

4.4 Applications to Image Interpolation

We demonstrate use of the proposed metrics by comparison of a
pair of interpolation methods. We took sinc interpolation and a non-
linear combination of sinc and bicubic methods. The combination
is based on weighted sum of sinc and bicubic methods, weight co-
efficients are functions of local TV of source and sinc interpolated
images [16].

The results of image interpolation of ’house’ image are shown in
Fig.14, numerical results are presented in Tab.1.

Figure 14: Interpolation of ’house’ image using sinc interpolation
and combination of sinc and bicubic methods.

It can be seen that BEP and BEN metrics correlates with the
observed quality of the considered interpolation methods: sinc in-
terpolation shows a little bit better results in edge areas while com-
bined method does not introduce ringing artifact in edge neighbor-
hood. Despite MSE is better for sinc interpolation, BEQ corre-
sponds to overall image quality.

More results and details about combined resampling method can be
found in [16].



MSE BEP BEN BEQ
Sinc interpolation 109.5 14.124 4.426 0.181

Sinc + Bicubic 112.1 14.181 3.970 0.029

Table 1: The values of metrics for the images from Fig. 14.

5. IMAGE RINGING SUPPRESSION

We consider the problem of image ringing suppression in two state-
ments: image deringing after resampling and blind image dering-
ing.

5.1 Image Deringing after resampling

Image resampling (interpolation) is a reconstruction of a discrete
image on a denser grid. In image deringing after resampling we
use the fact that the TV of ideal step edge is constant for any grid.
Real images have fractal nature, the TV of real images decreases
after downsampling. But most of the resampling algorithms do not
take this fact into consideration. So, if after upsampling the TV
increases, we assume that it is caused by ringing artifact.

The main idea of the proposed method is to project the upsampled
image into the convex set of images with bounded TV:

zR = arg min
z∈M

‖z − zI‖2,

where M = {z : TV (z) ≤ sTV (u)}, zI is the interpolated image,
u is the low-resolution image, s is the scale factor. The TV is mul-
tiplied by s in 2D case, because the number of rows and columns is
proportional to s.

More detailed description of this method is presented in [5].

We illustrate the proposed method of image deringing after resam-
pling with image resampled by regularization method [17] with
small regularization parameter in Fig.15.

Figure 15: Ringing estimation for image deringing after resam-
pling. Left image: source image upsampled by pixel replication,
RE = 1.05. Middle image: image interpolated by regularization-
based method with low regularization [17], RE = 1.40. Right
image: interpolated image postprocessed by deringing after resam-
pling, RE = 1.06.

5.2 Blind Image Deringing

If the low-resolution image is unknown, we use the proposed ring-
ing metrics to a posteriori control image ringing level. Ringing
reduction is performed using the regularization method based on
Tikhonov regularization [18]:

zR(γ) = arg min
z

(‖z − u‖2 + γTV (z)
)
,

where u is the given image with ringing artifact, γ > 0 is the regu-
larization parameter. The regularization functional is consecutively

minimized with increasing γ until the ringing level RE of the result
image zR(γ) is below the ringing threshold G∗.

The results of blind image deringing are shown in Fig.16

Figure 16: Blind image deringing. Left image: original image with
ringing effect, RE = 1.40. Right image: the result of automatic
deringing with ringing level control, RE = 1.18.

6. CONCLUSION

Adaptive image ringing detection and ringing suppression methods
basing on the scale-space ringing effect analysis were developed.
Method to choose strong isolated edges which are the best suitable
edges for ringing analysis was proposed and used to estimate ring-
ing level for 2D images. New image quality metrics sensible to
ringing artifact were introduced. The tests showed that these met-
rics are promising to be widely used in image enhancement tasks.

Future work on the proposed ringing level estimation method in-
cludes additional refinement of the ringing criterion for different
image classes. More effective estimation of ringing quasiperiod
and edge width is under investigation.

The work was supported by federal target program ”Scientific
and scientific-pedagogical personnel of innovative Russia in 2009-
2013” and RFBR grant 09-07-92000-HHC.
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