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Abstract

Reverse subdivision constructs a coarse mesh of a model from a
finer mesh of this same model. In [1] Lanquetin and Neveu pro-
pose a reverse mask for the Catmull-Clark scheme which consists
in locally reversing Catmull-Clark original formula for even control
points, but this mask can not be applied in reversing other variants
such as Quad-averaging scheme of Warren and Weimer [2]. In this
paper, we derive a reverse mask for Catmull-Clark. This mask is pa-
rameterized and can also be used for reversing other quad schemes
as Quad-averaging scheme.

Keywords: Reverse Subdivision, multiresolution, Catmull-Clark
scheme, Reverse loop Subdivision, Reverse Catmull-Clark Subdivi-
sion.

1. INTRODUCTION

Since their first appearance in 1978, subdivision algorithms for gen-
erating surfaces of arbitrary topology have gained widespread pop-
ularity in computer graphics and are being evaluated in engineering
applications. This development was complemented by ongoing ef-
forts to develop appropriate mathematical tools for a thorough anal-
ysis, and today, many of the fascinating properties of subdivision
are well understood. Since the earliest subdivision surfaces in 1978,
many subdivision schemes were proposed. Some are approximat-
ing as Catmull-Clark [3], Loop [4] and Doo-Sabin [5], and others
are interpolating as Kobbelt [6], Butterfly [7]. Moreover subdivi-
sion surfaces are more and more used in CAGD, and in this field
most meshes are quadrilateral, in coherence with parametric sur-
faces (Bezier, B-splines, NURBS). Subdivision methods produce
a sequence of increasingly fine meshes. On the contrary, it can
be interesting to go quickly from a mesh to a coarser one. Using
a local formula for decreasing the resolution of a mesh is a cru-
cial element for the implementation of multiresolution surfaces. It
reverses the subdivision process. While formulas for subdividing
meshes are local, the existence of local formulas for the respective
reverse subdivision is less evident. Using a local formula to reverse
the subdivision process implies that the local connectivity of a mesh
is clearly identified. For instance triangular structures, quadrilateral
schemes can be detected following taubin’s work [8].

There are several global methods such as multiresolution meth-
ods [9], as Loop reverse subdivision [10]. Local methods for re-
verse subdivision are of interest because they use small neighbor-
hoods around a vertex (with reduced topological information) and
induce small systems to solve. Samavati and Bartels determined
the local reverse subdivision masks for the Butterfly and Loop
scheme restricted to regular vertices (valence 6) in [11]. Sama-
vati et al. focused on the Doo-Sabin scheme for arbitrary meshes
in [12]. Samavati, et al. [13] propose a local method for the
Loop scheme which consists in locally reversing the formula for
a given set of vertices. Lanquetin and Neveu [1] propose a reverse
mask of Catmull-Clark scheme which consists in locally reversing
the Catmull-Clark original formula for even control points. The
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Catmull-Clark formula for even control points can be chosen in dif-
ferent ways. In this paper, we use the simplest one, to develop
a local method to reverse Catmull-Clark and Quad-averaging sub-
divisions. Section 2 overviews the Catmull-Clark scheme, Quad-
averaging scheme and the reverse mask for Catmull-Clark found in
[1]. Then we present our method for reversing Catmull-Clark and
Quad-averaging schemes in Section 3. Results are shown in Section
4, illustrating different cases that can occur.

2. BACKGROUND

Subdivision is a repetitive refinement process that gradually con-
verts a given coarse mesh to finer meshes to generate a smooth sur-
face at the limit. An arbitrary mesh M can be denoted by the pair
(F, V ), where F shows the faces of M , and V denotes the vertices
of M. Each element v ∈ V has the spatial coordinates, (x, y, z), and
each element f ∈ F is assigned a list that includes all indices of
its adjacent vertices in V . Catmull-Clark, Doo-Sabin, Butterfly and
Loop subdivisions are some important cases . The input for subdi-
vision methods is M0 = (F 0, V 0) a control mesh. In each step
of a subdivision method, the mesh Mk = (F k, V k) is converted
to a new and finer mesh Mk+1 = (F k+1, V k+1). This conver-
sion is done through some local affine operations on V k, together
with a mapping process from the faces of F k to those of F k+1.
The affine operations are usually described by masks, or matrices,
that are smoothing filters. Consequently, by successively applying
a subdivision method, a hierarchy M0, M1, M2, ..., Mk, . . . is
obtained that usually converges to a smooth surface.

2.1 The Catmull-Clark Subdivision Scheme

In computer graphics, the Catmull-Clark algorithm is used in sub-
division surface modeling to create smooth surfaces. It was de-
vised by Edwin Catmull and Jim Clark in 1978 as a generaliza-
tion of bicubic uniform B-spline surfaces to arbitrary topology.
Catmull-Clark surfaces are defined recursively, using the following
refinement scheme: Start with a mesh of an arbitrary polyhedron
Mk = (F k, V k). All the vertices in the mesh shall be called orig-
inal points. In each step of subdivision, the mesh Mk = (F k, V k)
is converted to a new and finer mesh Mk+1 = (F k+1, V k+1). The
set of new vertices V k+1 includes three types of vertices (Figure
1):

• A face control point (fk+1
i ) for an n-gon is computed as the av-

erage of the corners of the polygon:

fk+1
i =

1

N

N∑
i=1

vk
i (1)

where N is the number of corners.

• An edge control point (ek+1
i ) is the average of the endpoints of

the edge and newly computed face control points of adjacent faces:

ek+1
i =

1

4
(vk + vk

i + fk+1
i + fk+1

i+1 ). (2)

•An even control point (vk+1) is a weighted average of its incident



Figure 1: Catmull-Clark subdivision.

vertices of the same level and of the face points of the incident faces:

vk+1 =
n− 2

n
vk +

1

n2

n∑
i=1

ek
i +

1

n2

n∑
i=1

fk+1
i (3)

The new mesh will consist only of quadrilaterals, which won’t in
general be planar. The new mesh will generally look smoother than
the old mesh. Repeated subdivision results in smoother meshes. It
can be shown that the limit surface obtained by this refinement pro-
cess is C2 at ordinary vertices and C1 everywhere else. If the rules
of Catmull-Clark scheme are defined for meshes with quadrilateral
faces, then in each step of subdivision, each face in F k is replaced
by four new quads that become the faces of F k+1 (Figure 2). In
this case the masks are shown in Figure3.

Figure 2: Situation around a vertex vk before and after subdivision.

Let ek
1 , ek

2 , ...ek
n , fk

1 , .....fk
nbe the set of neighbors of vk in Mk. In

addition, let vk+1 be the even vertex of vk, and ek+1
1 , ek+1

2 , ...ek+1
n ,

fk+1
1 , .....fk+1

n be the corresponding edge vertices and face vertices
(n is the valence). The edge vertices ek+1

i , face vertices fk+1
i and

even vertices vk+1 defined by equations (1), (2) and (3)become:

The edge vertex :

ek+1
i =

3

8
vk +

3

8
ek

i +
1

16
fk

i +
1

16
ek

i+1 +
1

16
ek

i−1 +
1

16
fk

i−1 (4)

Figure 3: General case for Catmull-Clark masks: β = 3
2n2 , γ =

1
4n2 , α = 1− n(β + γ).

Figure 4: Catmull-Clark masks for a regular vertex

The face vertex :

fk+1
i =

1

4
vk +

1

4
ek

i +
1

4
fk

i +
1

4
ek

i+1 (5)

The position of even vertex:

vk+1 = αvk + β

n∑
i=1

ek
i + γ

n∑
i=1

fk
i (6)

With: α = 1− n(β + γ), β = 3
2n2 , γ = 1

4n2

2.2 Quad-Averaging scheme

The Quad-averaging scheme was described by Warren and Weimer
in [2]. It can produce a smooth surface but not necessarily at ex-
traordinary vertices. To apply these subdivision rules to an arbi-
trary quad mesh, we need only to generalize the vertex rule from
the valence four case (Figure 4) to vertices of arbitrary valence. In
the regular case, the mask can be decomposed into the sum of four
sub-masks:( 1
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In the case of extraordinary vertex the mask of an even vertex for
this scheme is shown in Figure(5), and the position of this vertex is
given by:

vk+1 =
9

16
vk +

3

8n

n∑
i=1

ek
i +

1

16n

n∑
i=1

fk
i (7)

Figure 5: Quad-averaging mask

2.3 Boundary

When we encounter boundary vertices, we need to use boundary
masks that are usually different from the interior mask. It is impor-
tant that subdivision at any point on the boundary be independent of
any point in the interior of the mesh. This permits two surfaces to
be joined along a boundary curve. Therefore, cubic B-spline sub-
division masks (Figure 6) for curves can be used as the boundary
masks of Catmull-Clark subdivision.

• Cubic B-splines are a popular class of curves that are smooth and
can be built with a simple subdivision scheme. Given a polygonal
curve V k , we denote the ith vertex of V k by vk

i . The edges of the
polygonal curve are implicit in this representation since consecutive
vertices (vk

i and vk
i+1) form an edge. The subdivision rules for cubic

B-spline then have the form

vk+1
2i =

1

8
vk

i−1 +
3

4
vk

i +
1

8
vk

i+1 (8)

vk+1
2i+1 =

1

2
vk

i +
1

2
vk

i+1 (9)

vk+1
2i−1 =

1

2
vk

i−1 +
1

2
vk

i (10)

Note that there are two rules, the number of vertices in the polygo-
nal curve doubles during each round of subdivision.

In particular, the vertex vk
i is repositioned to vk+1

2i by the mask of
even vertex { 1

8
, 3

4
, 1

8
} while vk+1

2i+1 and vk+1
2i−1 are inserted at the

midpoint of the edge vk
i to vk

i+1, and vk
i−1 to vk

i by the mask of odd
vertices { 1

2
, 1

2
} .

• The masks of even vertex and odd vertices of cubic B-splines form
the subdivision mask for cubic B-splines { 1

8
, 1

2
, 3

4
, 1

2
, 1

8
}, the tensor

product of this mask is the subdivision mask for Catmull-Clark in
the regular case.

Let S = { 1
8
, 1

2
, 3

4
, 1

2
, 1

8
} be the subdivision mask for cubic B-

splines, this mask is given in term of generating functions by:

S(z) =
1

8
z−2 +

1

2
z−1 +

3

4
+

1

2
z +

1

8
z2

Figure 6: Cubic B-spline subdivision.

Then the bicubic B-spline surface can be expressed as the tensor
product:

S(z1)⊗ S(z2) = T (z1, z2) = Z1TZt
2

where:

⊗ is the tensor product,

Z1 =
(

z−2
1 z−1

1 1 z1 z2
1

)
,

Z2 =
(

z−2
2 z−1

2 1 z2 z2
2

)
and

T = 1
64




1 4 6 4 1
4 16 24 16 4
6 24 36 24 6
4 16 24 16 4
1 4 6 4 1




is the subdivision masks for Catmull-Clark in the regular case from
which we get three different subdivision rules, one for the even ver-
tex of the surface, one for the edge vertices and one for the face
vertices (Figure 4).

It is easy to prove that the tensor product of the mask for even vertex
of cubic B-splines is the Catmull-Clark mask of even vertex in the
regular case:

{1

8
,
3

8
,
1

8
} ⊗ {1

8
,
3

8
,
1

8
} =

( 1
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3
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1
64

3
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3
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1
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3
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1
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)

We will use this property of subdivision to prove that the tensor
product of the reverse mask for cubic B-splines is the reverse mask
for a regular vertex of Catmull-Clark.

2.4 Reverse Mask for Catmull-Clark

In reverse subdivision, we know vertices of the level k + 1 and we
want to find the position of an even vertex vk. In [1], Lanquetin
and Neveu propose a reverse mask for the Catmull-Clark scheme
for all arbitrary meshes (triangular, quadrilateral), which consists
in locally reversing the originals formulas of edge vertices, face
vertices and even vertex of Catmull-Clark( equation (1), (2) and
(3)). The position of even vertex vk is given by:

vk =
n

n− 3
vk+1 +

4

n(3− n)

n∑
i=1

ek+1
i +

1

n(n− 3)

n∑
1=1

fk+1
i

(11)
More details can be found in[1]

But with this method we can not reverse other variants of quad
schemes as Quad-averaging scheme of Warren and Weimer [2].



3. REVERSE SCHEMES FOR QUADRILATERAL
MESHES

In this section we use an other method to determine the reverse
mask of Catmull-Clark found in [1]. With this method our mask is
parameterized and can also be used for reversing Quad-averaging
scheme, and we will prove that we can use some properties of sub-
division for the reverse subdivision, such as tensor product and the
generalization of the vertex of Quad-averaging rule from the regular
case to find the mask of arbitrary case:

• To apply the reverse Quad-averaging scheme to an arbitrary quad
mesh, we need only to generalize the vertex rule from the valence
four to vertices of arbitrary valence.

• The tensor product of the reverse mask of cubic B-splines is the
reverse mask for a regular vertex of Catmull-Clark.

3.1 General Reverse Quadrilateral scheme

For the reverse process, it is necessary to construct a mask to map
V k+1 to V k. For an extraordinary vertex, assume the general situa-
tion shown in Figure 7. We know vk+1, ek+1

i ,fk+1
i and we want to

find vk by a new mask such that the following conditions are met:

Figure 7: Situation for an extraordinary vertex

1• The operation of the new mask must be affine.

2•Weights of ek+1
i in the mask must be equal. The same condition

holds for weights of fk+1
i . This is similar to the Catmull-Clark

mask of equation (6)

3• The new mask must be a reverse of the subdivision mask i.e. the
action of subdivision mask of Equation 4 , 5 and 6 on vk and its
neighbors must exactly reconstruct vk+1. Condition (2) provides
the diagram of Figure 8 for the reverse mask. In this diagram α

′
is

the weight of vk+1, β
′

is the weight of ek+1
i and γ

′
is the weight of

fk+1
i in the reverse mask. We now determine the weights α

′
, β
′
and

γ
′

so that conditions (1) and (3) are also satisfied.

From condition (3) we have:

vk = α
′
vk+1 + β

′ ∑n

i=1
ek+1

i + γ
′ ∑n

i=1
fk+1

i

From equations (4), (5) and (6), we obtain:

vk = (αα
′
+ 3

8
β
′
n + 1

4
γ
′
n)vk + (α

′
β + 1

2
β
′
+ 1

2
γ
′
)
∑n

i=1
ek

i

+(α
′
γ +

1

8
β
′
+

1

4
γ
′
)

n∑
i=1

fk
i (12)

Figure 8: Situation for an extraordinary vertex.

From equation (12), we get the following system:
{

αα′ + 3
8
β′n + 1

4
γ′n = 1

α′β + 1
2
β′ + 1

2
γ′ = 0

α′γ + 1
8
β′ + 1

4
γ′ = 0

(13)

We solve equation (13) with respect to α, β, γ. As α = 1−n(β+δ)
we get a system with respect to β and γ:





α
′
= 1

1−2nβ

β
′
= 4(2γ−β)

1−2nβ

γ
′
= − 2(4γ−β)

1−2nβ

(14)

with: 1− 2nβ 6= 0.

Figure 9: Reverse mask for regular vertex.

3.2 Reverse Catmull-Clark scheme

Equation (14) is a parametric formula for the reverse mask and can
be applied for regular and extraordinary vertices.

In the case of regular vertex for all (α, β, γ) = ( 9
16

, 3
32

, 1
64

) we
find:

(α′, β′, γ′) = (4,−1, 1
4
) (Figure 9).

For all n 6= 3 and for all (β = 3
2n2 , γ = 1

4n2 we find:

(α′, β′, γ′) = ( n
n−3

, 4
n(3−n)

, −1
n(3−n)

). Then the position of an
even vertex is given by:

vk = n
n−3

vk+1 + 4
n(3−n)

∑n

i=1
ek+1

i + 1
n(n−3)

∑n

1=1
fk+1

i

We can see that with our method we get the same mask found in [1]
equation (11) . In case of meshes with vertices of valence 3 more
details can be found in [1].



3.3 Reverse mask for Quad averaging Scheme

Formula (14) is parameterized, and thus can be applied directly to
Quad-averaging scheme. This implies that for all n we find:

(α′, β′, γ′) = (4, −4
n

, 1
n
)

We can see that in the regular case, the reverse mask can be decom-
posed into the sum of four sub-masks:( 1

4
−1 1

4−1 4 −1
1
4

−1 1
4

)
= 1

4
[

(
1 −2 0
−2 4 0
0 0 0

)
+

(
0 −2 1
0 4 −2
0 0 0

)
+

(
0 0 0
0 4 −2
0 −2 1

)
+

(
0 0 0
−2 4 0
1 −2 0

)
]

Figure 10: Reverse mask for Quad-averaging scheme .

To apply the reverse Quad-averaging mask to an arbitrary quad
mesh, we only generalize the vertex rule from the valence four (Fig-
ure 9) to vertices of arbitrary valence illustrated in Figure 10.

3.4 Invariance Affine

In the case of regular vertex (n = 4, α = 9
16

, β = 3
32

, γ = 1
64

),
equation (14) gives α

′
= 4, β

′
= −1, γ

′
= 1

4
(Figure 9). In

this case the sum of the weights is one. This property is generally
correct for the Catmull-Clark and Quad-averaging schemes, since

α
′
+ nβ

′
+ nγ

′
= 1

this property holds for n 6= 3 in the case of Catmull-Clark, and for
all n in the case of Quad-averaging.

3.5 Reverse Mask Of The Boundary Vertices

We have used cubic B-spline mask for boundary vertices. There-
fore, we need to find a reverse mask for the cubic B-spline subdi-
vision. In Bartels and Samavati, several masks for cubic B-spline
subdivision are provided.

From equation (8), (9) and (10):





vk+1
2i = 1

8
vk

i−1 + 3
4
vk

i + 1
8
vk

i+1

vk
i−1 = 2vk+1

2i−1 − vk
i

vk
i+1 = 2vk+1

2i+1 − vk
i

Then:

vk
i = −1

2
vk+1
2i−1 + 2vk+1

2i − 1

2
vk+1
2i+1

This corresponds to the mask used in [13]

We can prove that as with subdivision the tensor product of the
reverse mask of a cubic B-spline {−1

2
, 2, −1

2
} is the reverse mask

for a regular vertex of Catmull-Clark (Figure 9).

Let M = {− 1
2
, 2,− 1

2
} be the reverse mask for cubic B-splines, we

can write this mask in term of a generating fonction in the form:

M(z) = −1

2
z−1 + 2− 1

2
z

The tensor product:

M(z1)⊗M(z2) = M
′
(z1, z2) = Z1M

′
Zt

2

With:
Z1 = (z−1

1 , 1, z1)

Z2 = (z−1
2 , 1, z2)

M
′
=

( 1
4

−1 1
4−1 4 −1

1
4

−1 1
4

)

We can see that M
′

is the reverse mask for Catmull-Clark in the
regular case (see Figure 9).

4. RESULTS

To illustrate the method described in this paper, several examples
are shown. The first example consists in rebuilding an initial mesh
with vertices of valence 4 (torus) subdivided three times (Figure
11). The second example consists in rebuilding an initial mesh with
extraordinary vertices subdivided by the Quad-averaging scheme
(Figure 12). And the third example is a mesh with boundary sub-
divided by Quad-averaging scheme (Figure 13). In the three ex-
amples the successive meshes can be constructed with the general
method described in the previous sections.

In the case of the meshes with vertices of valence 3 subdivided by
Catmull-Clark scheme shown in [1]

Figure 11: Reverse Catmull-Clark subdivision applied to on the
torus mesh subdivided three times.



Figure 12: Reverse Quad-averaging scheme applied on a mesh with
valences equal to 3, 4, 6 subdivided three times

Figure 13: Reverse Quad-averaging Scheme applied on a mesh
with boundary subdivided twice

5. CONCLUSION

We have used an other method to determine the reverse mask for
Catmull-Clark found in[1]. With this method we have constructed
a parameterized reverse mask for Catmull-Clark subdivision. The
parameterization allows to reverse other quad schemes, such as the
Quad-averaging scheme. we also have seen that we can use some
properties of subdivision for the reverse subdivision, such as the
tensor product and the quad averaging. This work proposes a gen-
eral reverse scheme for quadrilateral structures that can be detected

in irregular meshes using taubin’s algorithms.

Future works will focus on mixed structures (i.e containing both
triangular and quadrilateral faces). Tri-quad subdivision schemes
have already been proposed. The problem is not solved for reverse
tri-quad subdivision schemes.
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