
Edge Tracking of Textured Objects with a Recursive Particle Filter

Thomas Mörwald∗

Vienna University of Technology
Michael Zillich†

Vienna University of Technology
Markus Vincze‡

Vienna University of Technology

Abstract

This paper proposes a new approach of model-based 3D object
tracking in real-time. The developed algorithm uses edges as fea-
tures to track, which are easy and robust to detect. It exploits the
functionality of modern highly parallel graphics boards byperform-
ing hidden face removal, image processing, texturing and particle
filtering. Using a standard 3D -model the tracker requires neither
memory and time -consuming training nor other pre-calculations.
In contrast to other approaches this tracker also works on objects
where geometry edges are barely visible because of low contrast.

Keywords: Object tracking, edge detection, 3D tracking, real-
time, image processing, feature matching

Best to read in color.

1 Introduction

Tracking the pose of a three dimensional object from a singlecam-
era is a well known task in computer vision. What seems to be
simple for humans turns out to be significantly more complicated
for computers. While humans are able to perform highly parallel
image processing, even moderncentral processing units (CPUs)
have problems calculating the pose of an object with sufficient ac-
curacy, robustness and speed. This leads to the idea of usingmodern
graphics cards, which also work in parallel, to solve this problem.
This approach exploits the parallel power ofgraphics processing
units (GPUs)by comparing edge features of camera images and a
3D -model.

Graphics boards are designed to render virtual scenes as realisti-
cally as possible. The main idea is to compare those virtual scenes
with an image captured from reality. Texturing is a common method
of simulating realistic surfaces. In this paper, the edges of those tex-
tures are used for comparison. Fast progress in computer science
will soon allow the inclusion of more and more optical effects like
shadows, reflections, shading, occlusions or even smoke, fire, water
or fog.

1.1 Related work

One of the first successful approaches of tracking objects bytheir
edges was RAPiD [Harris 1992]. It uses points on edges and
searches for correspondence to its surroundings along the edge gra-
dient. However this method lacks robustness and several improve-
ments were applied to overcome this problem as in [Drummond and
Cipolla 1999; Philipp Michel 2008; Luca Vacchetti and Fua 2004;
Klein and Drummond 2003].

Another approach is to globally match model primitives withthose
from the camera image [Lowe 1992; Gennery 1992; D. Koller and
Nagel 1993; Kosaka and Nakazawa 1995; A. Ruf and Nagel 1997].
This method has been used for robot and car tracking applications,
but was later replaced by improved versions based on RAPiD.

∗e-mail: moerwald@acin.tuwien.ac.at
†e-mail: zillich@acin.tuwien.ac.at
‡e-mail: vincze@acin.tuwien.ac.at

[Lucie Masson and Jurie 2004] also uses edges and textures for
tracking. They extract point features from the texture and use them
together with the edges to calculate the pose. This turns outto
perform very fast and robust against occlusion. Our approach not
only uses patches but the whole texture, which usually lets the pose
converge very quickly to the accurate pose. Since the algorithm
runs on the GPU, it is as fast as the method in [Lucie Masson and
Jurie 2004].

The work presented in [M. Vincze and Zillich 2001] uses edge fea-
tures to track but does not take into account texture information.
This makes it less robust against occlusion. Since the search area in
that approach is very small, it is also less robust against fast move-
ment and getting caught in local minima.

The work presented in this paper is based on [Klein and Murray
2006] where they take advantage of graphics processing by project-
ing a wireframe model into the camera image. Then a particle filter
with a Gaussian noise model is used to evaluate the confidencelevel
with respect to the pose.

Figure 1: Edges from geometry vs. edges from texture

Our approach not only uses geometry edges but also edge features
from textures which extends the class of trackable models bythose
that have curved surfaces as illustrated on the right of Figure 1.
This is because in a standard 3D -model curvature is approximated
by triangles and quadrangles which would produce virtual edges
which do not correspond to the actual edges as shown on the left
of Figure 1. The particle filter is extended by using it in a recursive
design that evaluates a single pose estimate given by the most likely
particles.

1.2 Overview

The idea of this approach is to

• extract the edges from the incoming camera image,

• extract the edges from the textured 3D -model,

• generate hundreds of slightly different views of the model rel-
ative to a pose estimate,

• calculate the most likely pose of the model by matching the
edges of the camera image and the 3D -model.

The algorithm developed is separated into two parts. Theprepro-
cessingin Section 2, where all possible pre-calculations are made

and therecursive particle filteringin Section 3, which generates
several hundred poses and for each of them evaluates the confi-
dence level. Therefore the second part is very time -crucial. A
linear Kalman filterdescribed in Section 4 is applied for smooth-
ing the resulting trajectory. Section 5 gives some hints on how to
implement the proposed methods. Theresultsin Section 6 and the
conclusionin Section 7 summarize the advantages and strengths of
the presented tracker.

2 Preprocessing

In the preprocessing stage of the algorithm the edge imageIe
C of the

incoming camera imageIC is extracted and stored for comparison
later. The color surfaceS of the object to track isprojectedinto the
incoming imageIC and the edges are calculated again. This edge
image of the objectIe

S is then used tore-project to the geometry
in world space which results in the corresponding edge map ofthe
original surfaceSe.

forward
projection

edge edge
detection detection

re-projection

S,X

Ie
S

IS

Se

IC

Ie
C

Figure 2: Flow chart of preprocessing

2.1 Edge detection

The edgesIe are found by convolving the original imageI with a
Gaussian smoothingG and the two Sobel kernelsHs,x andHs,y

as described in [Burger and Burge 2008].

Ie =

„

Ie
x

Ie
y

«

=

„

Hx ∗G ∗ I
Hy ∗G ∗ I

«

(1)

Furthermore, the result is improved by applying thinning and
spreading algorithms. Note that for the gradient calculation in Sec-
tion 3.2 thex andy values are stored separately.

Figure 3 shows the different results of edge detection wherethe x-
and y-components of the gradient are stored in the red and green
color channel. The detection tolerance can be influenced by apply-
ing spreading, which broadens the edges by a specific number of
pixels according to the tolerance level. This means that instead of
searching for edge pixels close to each other, the line widthof the
edge is raised as shown in Figure 3, which broadens the matching
area.

2.2 Forward projection

The 3D -model is projected into the camera imageIC as defined
by Equation (2). Using the camera imageIC takes into account
that edges are not visible when there are similar light and color
conditions in the background. Then the edges of the image are
extracted using Equation (1).

The transformation of the model from world space to image space
is performed by the following matrix operations:

uS = TpXvS (2)

IS(u, v) =

S(vS) if (u, v) ∈ U

IC(u, v) else

whereIS is the camera image with the projected model.U defines
the geometry of the object in image space with

uS = [uS , vS] ∈ U

Tp denotes the projection- andX the model view or world trans-
formation matrix which defines the pose of an object to track with
a rotational and translational termR andt.

X =

»

R t
0 1

–

The geometry of the object in world spaceV is represented by its
vectors

vS = [xS, yS, zS] ∈ V

projection

re-projection

ed
ge

de
te

ct
io

n

u

uv

v

Figure 4: Forward projection and re-projection

2.3 Re-projection

The idea of re-projection is to replace the color surface of the 3D -
model with the corresponding edge map. Note that it is not possible
to do the image processing on the color surfaceS of the object
directly, as the edge features get distorted and thinned outwhen
they are projected to image space and therefore wrongly failthe
edge matching test. Comparing the edges of the model with the
camera image requires the same methods applied to the same point
of view and also the same scaling of the edge width.

Using a particle filter requires drawing the model several hundred
times at different posesXi with i = 1...N . Replacing the surface

Figure 3: Edge detection results from left to right: original, no spreading, one time spreading, three times spreading

and running the edge detection algorithm for each particle would
cause the tracker to be far away from real-time capability. For this
reason, the surface of all particles is replaced by only one edge map
Ie

S , calculated by using the prior tracking resultX+. This, in prin-
ciple causes the same problems as mentioned above, but assuming
that the motion of the particlesXi remains small within one track-
ing pass, the distortions and thinning out can be disregarded.

3 Recursive particle filtering

For each tracking pass the recursive particle filtering executes the
methods shown in Figure 5. First the particlesi = [1 . . . N], repre-
senting the pose of the object, are generated using Gaussiannoise.
Then the confidence level of each particlei is evaluated by match-
ing it against the edge image of the cameraIe

C . If there is still
processing timetf remaining, then a further recursion step of parti-
cle generation and evaluation of the confidence levels is performed
with different parameters as described in Section 3.4. Otherwise
the maximum likely particle is passed to the next step. The linear
Kalman filter, including a physical motion model, is attached to the
outcome of the recursive particle filter to fine tune the result and
remove remaining jitter. As this additional filter is not part of the
recursion it is explained in Section 4.

The reason for this setup is to benefit from the robustness andspeed
of a particle filter. For higher accuracy, the standard deviation of
the noise is reduced in each recursion. The linear Kalman filter is
attached just for fine tuning as mentioned above.

3.1 Particle generation

The prior poseX−
i of each particle is calculated by perturbing the

posteriorX+ with Gaussian noisen(σ2) with a standard deviation
scaled by the prior confidence level of the posewm, a scaling factor
for motion effectfm and a scaling factorfc set by each recursion
step:

X
−
i = X

+ + n(σ2(wm, fm, fc)) (3)

i = [1 . . . N]

The standard deviation is evaluated by

σ = σI fmfc.(1 − wm) (4)

where the confidence level of the prior posewm is multiplied to the
initial standard deviationσI so that the particle distribution narrows
with higher confidence. The motion effectfm takes into account
that motion in world space along the camera viewing axis causes
less change in image space then the same motion orthogonallyto
the viewing axis.fc becomes smaller with each recursion step in
the particle filter.σI is implemented as a parameter to be set by the
user, but should be evaluated automatically in the future regarding
the tracking conditions.

Ie
S

Ie
Si

Ie
C

X+

X+

X̄+

X
+

,f
c
,w

m

particle
generation

confidence
evaluation

if(tf < t30Hz)

Kalman
filter

best match

Figure 5: Block scheme of motion with recursive particle filter and
Kalman filter

3.2 Confidence level

Each particle is tested against the camera image and a confidence
level is calculated. Therefore the correlation between thegradients
of the edgesgSi

(u, v) andgC(u, v) is evaluated by comparing the
direction of the edges at each image point(u, v).

gSi
(u, v) =

„

Ie
Si,x(u, v)

Ie
Si,y(u, v)

«

gC(u, v) =

„

Ie
C,x(u, v)

Ie
C,y(u, v)

«

The angles between those vectors are calculated, producingthe
edge correlation imageΦi:

φ = arccos (gSi
.gC)

Φi(u, v) =

8

<

:

1 − 2φ

π
if φ < π/2

1 − 2|φ−π|
π

if φ > π/2
0 if (u, v) /∈ v′

S

(5)

Note that it is assumed that the result of thearccos() function lies
within 0 andπ. The imageΦi now contains the degree of corre-
lation between the pose suggested by the particlei and the camera

image. The angular deviation of the edge anglesΦi is scaled to the
range of 0 to 1.

The confidence levelwi is evaluated as follows:

wi =

„

mi

ni

+
mi

nmax

«

1

W
(6)

with

mi =

Z

u

Z

v

Φi(u, v)dvdu

ni =

Z

u

Z

v

|Ie
Si

(u, v)|dvdu

W =
N

X

i=1

wi

nmax ∝ max(ni)

The first term within the brackets is the percentage of matching
edge pixelsmi with respect to the total visible edge pixelsni. Cal-
culating the confidence level only with this term would causethe
tracker to lock when only one side of the 3D object is visible.When
at this special pose the object is rotated slightely, another side of the
object becomes visible. The particle matching this rotation would
be equal or most often less then the prior front facing particle. The
reason for this is that the number of matching pixelsmi grow less
than the total visible pixelsni when rotating the object out of the
front side view. This effect amplifies when taking into account that
edge detection for strongly tilted faces is very faulty.

The second term allocates more weight to the total number of
matching pixelsmi which is intrinsically higher for the rotated par-
ticle. nmax which are the maximum visible edge pixels in the actual
area scales the pixels to the proper range. As this summationwould
lead to confidence levels higher than 1, it is divided by the sum of
confidence levelsW .

This differs from the function used in [Klein and Murray 2006]

Likelihood
`

X
−
i

´

∝ exp

„

k
di

vi

«

which we experienced to lock very fast at the local minima men-
tioned above. Heredi denotes the number of matching edge pixel,
vi the total edge pixels of the wireframe model, where the hidden
edges are removed andk is a constant for distributing the likeli-
hood.

3.3 Determining the pose

As explained in the sections 2.2 and 2.3 for projection and re-
projection of the model, a single poseX+ has to be defined. This
is where the approach suggested in this paper differs from usual,
straight forward particle filters, where the whole propability den-
sity function

wi = P (X−
i)

i = [1 . . . N]

of the previous timestep, is carried over into the next estimation
step.

The poseX+ is evaluated using the mean of the top most likely
particlesM . X−

k in Equation (7) denotes the particles sorted by the
confidence levelwk in descending order.

X
+ =

1

wm

M
X

k=1

X
−
k .wk (7)

with

wm =
1

M

M
X

k=1

wk

Experiments have shown that increasing the number of most likely
particlesM to consider in the mean confidence, while lowering the
standard deviation in Equation (4) byfc and the edge width (see
Figure 3) for each further recursion obtains good results.

3.4 Recursion

The methods described in Section 3.1 and 3.2 are performed for
each of the hundreds of particles. The idea of recursion is totake
advantage of the information gain when calculating. This means
that theN particles are divided into subrangesR1, R2, R3, . . . and
so forth. For every rangeRk, the pose estimateX+ and confidence
level wm of the previous particle filteringRk−1 is used. The stan-
dard deviation for the particle generation is reduced by thescaling
factor fc, which narrows thesearch areaof the filter. Therefore
Equation (3) becomes

X
−
i (Rk) = X

+ (Rk−1) + n
`

σ
2
´

i = [1 . . . Nk]

with
σ = σI fmfc(Rk−1).(1 − wm(Rk−1))

x

y

real pose

pose estimate

Figure 6: Recursive particle filter

Figure 6 shows the principal idea of recursive particle filtering in
2D. In the lower left graph the particles are perturbed usinga high
standard deviation of the Gaussian noise of the particles, covering
a large area around the prior pose estimate. The mean of the top
most likely particles is used to evaluate the rough pose of the real
object. The upper left graph shows particles with lower standard
deviation, where this time the most likely particles measure the real
pose much more accurately.

The example in Figure 6 is drawn with 1500 particles with highand
500 with low standard deviation. This method allows the tracker to
respond both quickly and accurately without increasing thetracking
time, because it does not require any more particles than before.

4 Linear Kalman filtering

The discrete Kalman filter implemented for this approach uses a
motion model for all six degrees of freedom of the object. The

reason why the motion model is not applied in the particle filter is
because this would reduce the speed and accuracy of the tracker,
as modelling the velocity of the object would rise the degreeof
freedom from 6 to 12. This would mean that the particles have to
cover 6 more dimensions. Therefore the Kalman filter is attached
only to smooth the resulting trajectory and remove remaining jitter.

Time Update - ”Predict”

x
−
k = Axk−1 + Buk

P
−
k = APk−1A

T + Q

Measurement Update - ”Correct”

Kk = P
−
k H

T
“

HP
−
k H

T + R(wm)
”−1

(8)

xk = x
−
k + Kk

`

zk −Hx
−
k

´

Pk = (I −KkH)P−
k

where

xk =
h

xk, yk, zk, αk, βk, γk, ẋk, ẏk, żk, α̇k, β̇k, γ̇k

i

denotes the state of the Kalman filter containing the pose andve-
locity of the six degrees of freedom.

A =

»

I diag(∆t)
0 I

–

is thestate matrix,
B = [diag(0)]

the input matrix,
H = [I, diag(0)]

theoutput matrix, Pk theestimate error covariance, Q theprocess
noise covariance, R themeasurement noise covariance, I the unity
matrix andKk theKalman gain. Please refer to [Welch and Bishop
2004] for more details on Kalman filtering.

The process covariance matrixQ defines the noise of the physical
model, where no information is available. However, in contrast to
R, this matrix is set to a fixed value.

The measurement covariance matrixR depends on the confidence
level of the pose as follows:

R(wm) =

»

diag((wt−3)
3) 0

0 diag((wt−3)
3)

–

As shown in Equation (8), this means thatR rises proportionally
to the delayed confidence level of the measurement from the parti-
cle filter. Therefore, the Kalman gain drops, giving less weight to
the measurementzk and more weight to the motion model, which
smooths the result. This means that jitter is removed when the con-
fidence is high, for example when the object to track does not move.

On the other hand, the lag behind the real object, caused by the mo-
tion model during acceleration, is decreased when the confidence
falls, which usually happens when the object to track moves fast.
In this case, the Kalman gain increases the weight of the measure-
ment, increasing the speed but also allowing jitter which isbarely
visible when the object is moving anyway.

Experimants have shown that a cubic function yields to a smooth
tracking behaviour. The delay of the confidence levelwt−3 re-
moves overshooting of the motion model when the object suddenly
stops moving.

5 Implementation notes

The implementation of the algorithm requires discretization which
is denoted by bold letters for images in this section.

5.1 Notes for preprocessing

The preprocessing is done once per tracking pass and is not astime
critical as the recursive particle filtering in the following section.
However, the overall performance of the tracker needs to be as fast
as possible, so this part is also implemented using the graphics pro-
cessing unit. Therefore, the image received by the camera issent
to the graphics board where it is stored as texture. The convolu-
tion with the Gaussian and Sobel kernels are applied by shaders as
well as thinning and spreading. The edge image is again stored as
RGBtexture where theR- andG-channels are used for thex- and
y-components of the image gradient.

As the channels only allow values between 0 and 1, the normalized
gradients ranging from -1 to 1 need to be adjusted.

The surface of the object to track is made up of vertices whichform
triangles and quadrangles, also called primitives. The projections
described in Equation (2) and (9) are performed for these vertices
only, because the surface points within a primitive can be deter-
mined by linear interpolation, which is optimized by the graphics
adapter.

Tp andX denote the projection and model view matrix, which can
be queried from OpenGL. The six degrees of freedom are storedin
the vector

xi = [xi, yi, zi, αi, βi, γi]

Instead of transforming the edge mapIe
S back to world space by

solving Equation (2) with respect toS, the coordinates for the edge
map in image space are evaluated. This has to be done only once,
since those coordinates do not change for the other particles.

u
+

S = TpX
+
vS (9)

Ie
Si

(u, v) = Ie
S(u+

S)

The particlesi are represented by the pose matricesX−
i . The vec-

torsuSi
that are used to find the corresponding point in the camera

imageIe
C are calculated with

uSi
= TpX

−
i vS

Ie
Ci

(u, v) = Ie
C(uSi

)

At this point for each particlei the modelIe
Si

and camera image
Ie

Ci
are ready for comparison which is described in Section 3.2.

5.2 Notes for recursive particle filtering

The calculations described in this section are very critical with re-
spect to optimized programming, since every single line of code
is called several hundreds of times. In particular evaluating the
confidence level using theNVIDIA Occlusion Queryis definitely
a bottle-neck in the algorithm. This OpenGL extension is respon-
sible for counting the pixels of the whole edge map. The matching
pixelsmi and total edge pixelsni are evaluated by summing up the
correlation imageΦi and the edge mapIe

Si
:

mi =
X

u,v

Φi(u, v)

ni =
X

u,v

I
e
Si

(u, v)

As this extension only supports counting pixels disregarding the
value, they only can be marked to be rendered or not. Therefore,
the displacement image is thresholded by the angleǫ:

φ = arccos (gSi
(u, v).gC(u, v))

Φi =

0 if φ < ǫ
1 if φ ≥ ǫ

(10)

whereǫ denotes the angular threshold. For the match evaluation
shader0 means that the pixel is discarded when rendering and does
not increase the counter, whereas1 means the pixel is drawn and
therefore increasesmi.

Figure 7b) shows the pixelsmi successfully passing the match eval-
uation. 7c) are the pixels which fail the match test of Equation (10)
and 7d) is the total number of pixelsni of the edge image of the
object. Note the missing pixels on the very upper edge, as a result
of the background having the same color (yellow) as the object. The
mismatch of the edges on the front side of the box is caused by the
inaccuracy of the placement of the texture on the geometry ofthe
model which is produced manually by a 3D modeling tool.

a) Object to track with cluttered background

b) Matched edgesmi

c) Mismatched edges

d) Total edges of modelni

Figure 7: Edge matching

6 Results

As the tracker requires fast parallel calculations, the focus of the
system is on the graphics board where it is implemented. It has
been tested on an NVIDIA GeForce GTX 285 with a fill rate of
50 billion pixels per second, and an Intel Core2 Quad CPU Q6600
with 2.4 GHz. To fulfill a minimum frame rate of 30 FPS (frames
per second), the time for one tracking pass is 33 ms. Within this
limits it is possible to draw 1500 particles for a box (6 facestextured
with a 900x730 pixel image) like in Figure 7a). With the cylinder

model shown in Figure 1 with 16 faces and a 900x400 pixel texture
image, the tracker achieves 580 particles within the same time and
100 particles with the cylinder with 64 faces.

Figure 8 shows some results of a video sequence. The first row
demonstrates the robustness of the tracker. The whole top surface
and the edges of the geometry are covered by the hand and there
are reflections of the checkerboard pattern on the front faceand a
cluttered background, but the pose of the box still can be estimated.
Of course at some degree of occlusion, the accuracy of the pose
drops until it cannot be determined at all.

The second row shows the fast and reliable convergence. Although
the deviation of the estimated from the actual pose is very high,
the tracker finds the correct alignment within a second. The third
row illustrates the concept of recursive particle filtering. Especially
in the second image from the left, where the speed of the moving
object is high, the benefit is clearly visible (compare with Figure 6).

7 Conclusion

We presented a method for fast and robust object tracking. Itcon-
verges fast to the correct pose and is able to handle relativelarge
deviations, for example when initializing. Partial occlusion, re-
flections, light changes, shadows and cluttered backgroundare no
problem for the tracker, as long as enough features are visible to
determine the pose. Exploiting the power of a graphics processing
unit with a particle filter in a recursive design allows high tracking
speed with sufficient accuracy.

However, there are several improvements possible. Firstlythe mis-
match of the 3D -model to the real object, as described in Sec-
tion 5.2, can be learned and corrected with constraints thatprevent
the model from strong distortion. Secondly corner detection, color
matching and so forth can be implemented which would most likely
further improve the accuracy and robustness of the tracker.

The correlation mapΦi in Equation (5) is simplified to Equa-
tion (10), because theNVIDIA Occlusion Queryonly counts visible
pixels disregarding the information about the angular displacement
stored within. A future work would be to implement precise evalu-
ation of the confidence level as described in Equations (5) and (6).

The bottle-neck, with respect to the frame time of this approach,
is definitely the particle filter with its evaluation of the confidence
level using the OpenGL extension. The tracking errore directly
correlates with the standard deviationσ and number of particlesN
as follows:

e ∝
σ

N

with
N ∝ t = t33ms

This means that the tracking errore can be significantly reduced by
lowering the standard deviationσ for each degree of freedom inde-
pendently. When for example the z position of an object to track is
known, because it lies on a table the accuracy can be increased by
lowering the standard deviation for this degree of freedom.

There are several points of the algorithm where further investiga-
tion needs to be done, like finding the optimal boundary conditions
and functions for the recursive particle filter and designing a bet-
ter function for particle generation. Or more specifically,designing
better functions for calculating the standard deviation ofthe Gaus-
sian noise in Equation (4).

A further problem that needs to be solved is, that the trackercannot
supply information if tracking fails when it locks into a local min-

Figure 8: First row: robustness against occlusion, reflections and background clutter; Second row: fast and robust convergence;Third row:
particle distribution with three recursions

imum. There, the confidence evaluation returns sometimes values
as high as at the correct tracking pose.

Acknowledgements

The research leading to these results has received funding
from the European Community’s Seventh Framework Programme
[FP7/2007-2013] under grant agreement No. 215181, CogX.

References

A. RUF, M. TONKO, R. H., AND NAGEL, H.-H. 1997. Visual
tracking by adaptive kinematic prediction.Proceedings of Inter-
national Conference on Intelligent Robots and Systems.

BURGER, W., AND BURGE, M. J. 2008.Digital Image Processing,
An Algorithmic Introduction Using Java. Springer.

D. KOLLER, K. D., AND NAGEL, H.-H. 1993. Model-based
object tracking in monocular image sequences of road traffic
scenes.International Journal of Computer Vision.

DRUMMOND, T., AND CIPOLLA , R. 1999. Real-time tracking of
complex structures with on-line camera calibration. 574–583.

GENNERY, D. 1992. Visual tracking of known three-dimensional
object. International Journal of Computer Vision.

HARRIS, C. 1992. Tracking with rigid objects.MIT Press.

KESSENICH, J. 2008. The OpenGL Shading Language, Version
1.30.

KLEIN , G., AND DRUMMOND, T. 2003. Robust visual tracking
for non-instrumented augmented reality.

KLEIN , G., AND MURRAY, D. 2006. Full-3d edge tracking with a
particle filter.British Machine Vision Conference Proc 17th.

KLEIN , G., AND MURRAY, D. 2007. Parallel tracking and map-
ping for small ar workspaces.Proc International Symposium on
Mixed and Augmented Reality (ISMAR).

KOSAKA, A., AND NAKAZAWA , G. 1995. Vision-based motion
tracking of rigid objects using prediction of uncertainties. Inter-
national Conference on Robotics and Automation.

L. VACCHETTI, V. L., AND FUA , P. 2004. Stable real-time 3d
tracking using online and offline information.IEEE Transactions
on Pattern Analysis and Machine Intelligence.

LOWE, D. G. 1992. Robust model-based motion tracking through
the integration of search and estimation.International Journal
of Computer Vision.

LUCA VACCHETTI, V. L., AND FUA , P. 2004. Combining edge
and texture information for real-time accurate 3d camera track-
ing.

LUCIE MASSON, M. D., AND JURIE, F. 2004. Robust real time
tracking of 3d objects.

M. V INCZE, M. AYROMLOU, W. P., AND ZILLICH , M. 2001.
Edge-projected integration of image and model cues for ro-
bust model-based object tracking.The International Journal of
Robotics Research.

MUSTAFA ÖZUYSAL , M ICHAEL CALONDER, V. L., AND FUA ,
P. 2009. Fast keypoint recognition using random ferns.IEEE
Transactions on Pattern Analysis and Machine Intelligence.

P.A. SMITH , I. R., AND DAVISON, A. 2006. Real-time monoc-
ular slam with straight lines.Proc 17th British Machine Vision
Conference(sept).

PHILIPP M ICHEL, J. C.E. A . 2008. Gpu-accelerated real-time 3d
tracking for humanoid autonomy.

R. KOCH, K. KOESER, B. S., AND EVERS-SENNE, J.-F. 2005.
Markerless image-based 3d tracking for real-time augmented re-
ality applications.WIAMIS(april).

ROST, R. J. 2006.OpenGL Shading Language, vol. Second Edi-
tion. Addison-Wesley.

SEGAL, M., AND AKELEY, K. 2008. The OpenGL Graphics Sys-
tem: A Specification, Version 3.0.

SUN-KYOO HWANG, M. B., AND K IM , W.-Y. 2008. Local
discriptor by zernike moments for real-time keypoint matching.
IEEE Congress on Image and Signal Processing.

V INCENT LEPETIT, JULIEN PILET, P. F. 2004. Point matching as a
classifiaction problem for fast and robutst object pose estimation.
Conference on Computer Vision and Pattern Recognition(june).

WELCH, G.,AND BISHOP, G. 2004. An introduction to the kalman
filter.

