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Abstract

The paper describes a method for fully automatic 3D-reconstruction
of mouse brain voxel model from a sequence of coronal 2D slices
for statistical analysis of gene expression. Two images of each brain
slice with different stains are used. The first stain highlights the his-
tology of brain, which is used for slice matching. The second stain
highlights the level of gene expression. The algorithm proceeds as
follows. First, images are preprocessed to suppress image noise and
equalize image brightness. Second we estimate the level of gene
expression in each slice using the second stain. Then we construct
3D-model of the brain using the first stain. To do this all images are
aligned via rigid-body transformations. After alignment neighbor-
ing slices are matched by estimation of non-linear deformations.
As the distance between slices is significantly larger then image
resolution we add intermediate virtual slices using morphing algo-
rithm. Gene expression level is interpolated in identical way. The
obtained 3D-model with the information about gene expression can
be used for gene expression analysis via Statistical Parametric Map-
ping (SPM) package. The proposed method for 3D-reconstruction
has been tested on images from Allen Brain Atlas, which is avail-
able in electronic form.

Keywords: 3D-Reconstruction, neuroimaging, image transfor-
mations, morphing, elastic deformations, image registration, B-
splines.

1. INTRODUCTION

The problem of gene expression analysis using only images of brain
slices is very important in modern brain research [1]. Neurobiolo-
gists are now able to measure the activity of selected gene in ev-
ery brain cell. This is usually done in vitro, i.e. on dead species.
The extracted brain is frozen and then cut into slices. Each slice is
double-stained by Nissl method to highlight histology and by spe-
cial stain which reveals the neurons with expression of correspond-
ing genes.

The further automatic analysis of gene expression is significantly
more complicated problem, compared to analysis of brain activ-
ity, measured by other neuroimaging techniques, like fMRI or PET.
For fMRI data a well-known Statistical Parametric Mapping (SPM)
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framework is widely used[4]. SPM uses 3D voxel model as in-
put data and provides tools for model reconstruction from series of
slice images. However, SPM package cannot be directly applied for
gene analysis problem. First, due to technological aspects of brain
cutting procedure brain slices differ in their actual size, shape and
orientation, and SPM fails to correctly reconstruct model from such
kind of data. Second, statistical analysis in SPM package relies on
spatial coherency of brain activity, which is the reason why it uses
uniform voxel models. fMRI data is acquired in fairly low reso-
lution (128*128 or 256*256 images are a common case) and it is
easy to acquire similar number of fMRI images to ensure that voxel
model has same resolution in all dimensions. But for gene expres-
sion analysis image resolution should be significantly higher, and
it is impossible to obtain corresponding number of slices for many
technological reasons. Thus it is necessary to reconstruct interme-
diate layers from existing slices.

In this paper we propose a novel method for voxel model recon-
struction from the set of brain slice images that allows further anal-
ysis by SPM package. Our method is fully automatic and consists of
following steps. First, images are preprocessed to suppress image
noise and equalize image brightness. Then all images are aligned
via rigid-body transformations. Consecutive slices are matched by
estimation of non-linear deformations between layers. Intermediate
layers are then interpolated using estimated non-linear transforma-
tions. Finally, data is converted to the voxel models and saved in
the NIFTI-1 file format [20] that is standard for the brain studies.

We have tested our method 3D-reconstruction on images from
Allen Brain Atlas [3] and showed that it leads to comparable re-
sults with the ones in AGEA project where 5 times more slices are
used for 3D-reconstruction.

The rest of paper is organized as follows. In section 2 we describe
the preprocessing of brain slice images with histological and gene
expression stains. Section 3 describes how gene expression level
is computed. In section 4 image alignment and intra-slice interpo-
lation method is described. Section 5 contains some experimental
results. Some conclusions are given in the last section.

2. BRAIN SEGMENTATION AND ILLUMINATION
CORRECTION

On experimental images of mouse brain slices noise level is very
high due to uneven amount of stain in different part of the slice.
This results in abrupt deformations of brain slice contour that de-



grade alignment and matching. To suppress such defects we apply
segmentation algorithm based on graph cuts with prior assumptions
on slice shape. [6, 7, 8].

Uneven illumination of brain images is also a problem. For differ-
ent brain images contrast is different and even within one separate
image there are areas with different illumination levels. For illumi-
nation correction we apply Single Scale Retinex method [9]. First,
Gauss filter with large radius is applied to the image:

g(x, y) =
1

2πσ2
e
− x2+y2

2σ2 ,−R ≤ x, y ≤ R.

We used σ = 20, R = 100. This operation gives an illumination
map of the image Imap.

Afterwards the initial image is divided by obtained filtered image

Inew(i, j) =
I(i, j)

Imap(i, j) + 1
.

This operation provides both equal local illumination within each
image and equal illumination of different atlas images.

Figure 1 and figure 2 illustrate this procedure.

Figure 1: Histological brain image after Graph Cut algorithm with-
out illumination correction.

Figure 2: Histological brain image after illumination correction.

3. EXPRESSION DETECTION AND EVALUATION

To measure the gene expression in stained brain slice its image is
acquired with very high resolution so that each stained nucleus is

visible. But such high resolution make further processing and anal-
ysis computationally impractical and it should be reduced. Straight-
forward resolution decrease will smooth image and introduce errors
in gene expression measurement. So we need a specific procedure
for rescaling of such images.

For this purpose an expression level is evaluated for each image
zone that corresponds to one pixel after the resolution reduction.
First we evaluate the expression level for each pixel of the initial
image, then apply a standard Gauss filter with radius close to the
new pixel size (this also leads to smoothing required for the subse-
quent statistical analysis), and finally evaluate the expression level
for each new pixel by simple summation and rescaling. Note that in
following versions we plan to replace the application of Gauss filter
by non-uniform smoothing method that takes account of anatomic
structures.

The results of expression level detection and evaluation can be cor-
rected manually if required by changing the default thresholds and
other parameters (globally or locally, in a certain image fragment)
and/or by setting the expression level in certain image points man-
ually. However the designed procedure of expression detection and
evaluation is fully automated and normally the manual correction is
not required.

The most critical part of this step is the evaluation the expression
level for each pixel of the initial image. In current implementa-
tion the fact of expression presence in a point is not simply binary,
but is represented by a real number from 0 (no expression) up to
1 (maximum expression level). Intermediate values represent the
relative expression level. Such approach is natural from the biolog-
ical viewpoint, it also leads to the correctness of the computations
(where correctness is understood in a standard mathematical sense)
and hence eliminates the errors connected with close-to-threshold
values.

The procedure of expression evaluation can be shortly described
as follows. The image is first transformed from RGB to one-
parametric color palette (in fact it is an analogue of the grey-scale
palette, but different coefficients can be used for the transforma-
tion). Similarly to [10] two different one-parametric color schemes
are used in order to reduce errors. For each color scheme the value
of a sigmoid function (i.e., a smooth function that equals 0 for ar-
guments less than the lower threshold and equals 1 for arguments
greater than the upper threshold) is computed at each pixel: the
color of the pixel in the one-parametric color palette is used as an
argument, and the parameters of the sigmoid function depend on
the distance from the brain border and the mean color value in the
large neighborhood. The expression activity at each pixel is set to
the product of the values of these sigmoid functions. Figures 3, 4
show the simplified result of expression detection.

4. 3D MODEL CONSTRUCTION

4.1 Image alignment

In fMRI imaging the alignment transformations between images are
assumed to be either affine or rigid-body in 3D or 2D space [11].
In our case slices are already horizontally centered and aligned w.r.t
symmetry line during imaging process. But cutting procedure intro-
duces small deformations in vertical direction, which are different
for each slice. So we limit the set of alignment transforms by verti-
cal shifts and stretches.

Image alignment proceeds as follows. First, we search for the
smallest surrounding rectangle of each slice. Then we consider rect-
angle border to be a function of slice number. Figure 5 shows exam-
ple of top and bottom borders of brain rectangles without alignment.
These functions are not smooth enough for 3D reconstruction. To
smooth these functions we apply Savitzky-Golay filter.



Figure 3: Initial image of a brain region.

Figure 4: Image of the brain region where pixels with expression
level greater than threshold (0.5) are marked.

The idea of Savitzky-Golay filtering is to find filter coefficients that
preserve higher moments. Equivalently, the idea is to approximate
the underlying function within the moving window not by a con-
stant (whose estimate is the average), but by a polynomial of higher
order (we used order 5 in our approach). For each point we least-
squares fit a polynomial to the points in the moving window (we
used window width 15), and then set the new value to be the value
of that polynomial at the same position.

Savitzky-Golay filters can be thought of as a generalized moving
average. Their coefficients are chosen this way to preserve higher
moments in the data, thus reducing distortion of essential features
of data like peak heights and line widths in a spectrum, while the
suppression of random noise is improved. Figure 6 shows example
of top and bottom borders of brain rectangles after alignment.

If we are interested in any specific section of mouse brain we can
make additional alignment in appropriate plane. Such alignment
makes specific section smoother but the whole model becomes less
smooth. So in general we don’t use specific plane alignment for
3D-model reconstruction.

Figure 5: Not aligned top (U) and bottom (D) borders of mouse
brain.

Figure 6: Aligned top (U) and bottom (D) borders of mouse brain.

4.2 Non-linear transformations

To obtain the voxel model with uniform resolution we need to fill
the gaps between available slices by synthesizing of intermediate
layers. For this task we estimate non-linear deformation between
consecutive slices.

There exist many methods for non-linear deformation estimation:
parametric model of the deformation [11, 12, 13, 14], hierarchical
models [15, 16], nonparametric local methods [17], inclosed dy-
namic programming [18], optical flows [19]. In this paper we fol-
low the papers [12, 13] and use the approach based on parametric
model of deformation based on B-spline basis functions. Choice of
B-splines as basis functions provides good quality of deformation
and high speed of calculation because of limited number of basis
functions.

A brain 3D model is a function:

F : R3 → [0, 1].

From slices we know F values only at some discrete points. In slice
plane expansion of discrete function to its continuous version is a
weighted sum of surrounding discrete point colors. Expansion in
other plane can be done in the same way (weighted sum of neigh-
boring slices). However, this simple solution makes a 3D model not
smooth enough. A better solution can be obtained using non-linear
image deformations.

The input images are given as two 2-dimensional discrete functions:

f1, f2 : I ⊂ Z2 → [0, 1].

Here I is a 2-dimensional discrete interval covering the set of all
pixels in the image. Function values stand for intensities of corre-
sponding pixels.

We denote continuous expansions of two images as fc
1 , fc

2 .



Our goal is to find a deformation of the first image to the second
one in the following way:

fc
1 (g(x, y)) ≈ f2(x, y).

Here g(x, y) : R2 → R2 is a deformation (correspondence) func-
tion between pixels.

We measure the difference between images by SSD (sum of squared
deviations) criterion:

E =
∑

(i,j)∈I

(fc
1 (g(i, j))− f2(i, j))

2.

So the problem is to minimize E with respect to deformation func-
tion g.

We consider deformation function as a linear combination of some
basis functions:

g(x, y) =
∑

k∈K

−→ckbk(x, y).

Here K is a set of basis function indexes.

Family of deformation functions 4.2 transforms optimization prob-
lem in functional space into finite-dimensional optimization prob-
lem.

We use uniformly spaced cubic B-splines as basis functions.

A B-spline βr of degree r is recursively defined as

βr = βr−1 ∗ β0, r > 0.

β0 is a characteristic function of [−0.5, 0.5], ∗ is convolution oper-
ator.

Specifically, cubic B-spline is the following function:

β3(x) =





2/3− (1− |x|/2)x2, 0 < |x| ≤ 1,

(2− |x|)3/6, 1 < |x| < 2,

0, |x| ≥ 2.

So we are looking for the deformation function in the family:

g(x, y) =
∑

(kx,ky)∈K

β3(x/hx − kx)β3(y/hy − ky).

Centers of B-spline functions are placed on the regular grid
(kxhx, kyhy). Working with uniform splines is significantly faster
with respect to nonuniform splines. In order to get complete control
over g, we put some spline knots outside the image.

Finally the problem is to optimize SSD criteria E w.r.t. set of pa-
rameters c. Here we use gradient descent algorithm with feedback
step size adjustment. In this algorithm parameter update rule is
∆c = −µ∇cE(c). After a successful step µ is multiplied by some
value µf > 1, otherwise it is divided by some other value µ∗f > 1 .

An example of deformation field obtained from B-spline basis func-
tions for a pair of neighboring slices from Allen Atlas is shown in
figure 7.

Since we have deformation of the first image to the second one and
vice versa, we can fill gaps between atlas slices with weighted sum
of deformed neighboring slices:

F (x, y, z) = αfα
1,k−1(x, y) + (1− α)f1−α

2,k (x, y).

Figure 7: Deformation field for B-spline method. This deformation
field is obtained by applying deformation of neighboring slices to
regular grid.

Here α =
z−zk−1

zk−zk−1
, zk−1 ≤ z < zk, zk is a z-coordinate of slice

number k.

fα
1,k−1(x, y) = fk−1((x, y) + α(gk

k−1(x, y)− (x, y))).

fα
2,k(x, y) = fk((x, y) + α(gk−1

k (x, y)− (x, y))).

Here gj
i (x, y) is a deformation function of slice number i to slice

number j.

As a last step, the full set of input and intermediate slices is con-
verted to voxel model and saved in the NIFTI-1 file format [20],
which is a standard for the brain studies.

5. EXPERIMENTAL RESULTS

In order to test the proposed method for 3D-model construction we
used it on coronal Allen Brain Atlas [21, 3].

The coronal Allen Brain Atlas is a set of full-color, high-resolution
coronal digital images (132 images) of mouse brain accompanied
by a systematic, hierarchically organized taxonomy of mouse brain
structures. The Allen Brain Atlas is obtained from 8-week old
C57Bl/6J male mouse brain prepared as unfixed, fresh-frozen tis-
sue.

Figure 8: Allen Brain Atlas image.
On figure 8 the left half represents histological structure of one
mouse brain slice. The right half shows color annotation of mouse
brain structures made by human experts. We have used histological
images to reconstruct a 3D voxel model. Afterwards we applied
same morphing transformations to create virtual slices of annotated
images to demonstrated that our method correctly preserves the in-
ner brain structures.



Figures 9 and 10 show synthesized histological and color annotated
axial slices of model built without illumination correction and slice
alignment. Figures 11 and 12 show synthesized histological and
color annotated axial slices of model built with both illumination
correction and slice alignment, but without non-linear deformations
between neighboring slices.

Figures 13 and 14 show synthesized histological and structural axial
slices of model built with illumination correction, slice alignment
and with non-linear deformations between neighboring slices.

These figures show significant improvement of 3D model quality
with each step. 3D model from figures 13 and 14 is much smoother
than the previous ones. It should be mentioned that not only brain
borders become smoother but also borders of internal structures.

We also compared our method of virtual slices generation with the
analogous method used in AGEA project [22]. Figure 15 shows ap-
propriate axial brain view from AGEA project. The quality of view,
obtained by our method, is very similar to one of AGEA project,
but compared compared to full set of slices without gaps, used in
AGEA, we have used only each 5th slice.

The results of the automated gene expression detection and evalua-
tion were checked by human experts and were found to be satisfac-
tory.

Figure 9: Axial histological view of 3D model without illumination
correction, alignment and nonlinear deformations.

6. CONCLUSION

We proposed an algorithm that constructs virtual slices of brain
w.r.t. arbitrary section-plane. We have shown that such algorithm
allows us to get synthetic images of relatively good quality both
with histological and anatomical structure. Such algorithm opens
great perspectives for further brain research as it provides the op-
portunity of discovering the anatomical structures in a single slice
of real mouse brain. The procedure of slices’ preparation is very
time and labor consuming, that is why it is highly desirable to re-
duce the number of slices obtained from real mouse to minimum
(in the limit to one which is of interest for biologists). The slice can
be made in non-standard (coronal, sagittal, or axial) section-plane
and it should be mapped into 3D-model of atlas brain. Our algo-
rithm allows us to synthesize the image of an atlas brain w.r.t. any
section-plane and hence is the key part of future method which will
compute the best mapping. When it is done the anatomical struc-
tures in real brain slice can be found easily by projecting anatomical
structure of atlas brain onto the virtual slice with further perform-
ing inverse mapping to adapt it to real brain slice. The algorithm

Figure 10: Axial structural view of 3D model without illumination
correction, alignment and nonlinear deformations.

Figure 11: Axial histological view of 3D model with illumination
correction and alignment.

for identifying anatomical structures in arbitrary brain slice is ex-
tremely useful for brain research as it allows to understand what
structures are responsible for specific genes expression in specific
situations.

Note that the quality of statistical analysis (including SPM analy-
sis) can be significantly increased by using the knowledge about
anatomic structures. A simple way of structural annotation of a
model brain is based on the geometric alignment of this model with
the model that integrates histologic data and anatomic (structural)
data. Such model was constructed based on Allen Brain Atlas. The
alignment can be built, e.g, using standard SPM procedures for ge-
ometric processing.
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