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Abstract 
Subdivision schemes provide efficient algorithms both for the 
design and processing of arbitrary control meshes. Theoretically, 
these techniques are often considered as an elegant algorithmic 
way to approximate a desired surface from a given surface. In 
practice, controlling the accuracy of control meshes with regard to 
the limit surface remains difficult. In this paper, from a bound of 
the distance between a subdivision surface and its control 
polyhedron, we a priori compute the subdivision depth according 
to a given accuracy. From this result, we can exactly predict the 
number of faces of the control polyhedron for a given accuracy 
during full subdivision. As full subdivision generates too many 
faces, we focus in this paper on adaptive subdivision. We work 
with the adaptive scheme which generates the fewest number of 
faces and explain how to predict a bound of the number of faces 
of the subdivided mesh because it is not possible to a priori give 
the final number of faces during adaptive subdivision. 
Keywords: Subdivision surface, Loop scheme, polyhedral mesh, 
distance, adaptive subdivision, accuracy, mesh size. 

1.INTRODUCTION 

In computer graphics, subdivision surfaces are used to smooth 
meshes. These surfaces are defined by an initial coarse mesh 
named control polyhedron and refinement rules of subdivision. 
These rules describe how to move existing control points (old 
points) and how to create new points in order to reach the limit 
surface. The application of refinement rules generates a sequence 
of increasingly fine control meshes.  The sequence of control 
meshes converges to a smooth surface: the limit surface. Among 
approximation schemes, the schemes of Loop [6] and Catmull-
Clark [2] are the most popular. A particularity of approximation 
schemes is that control meshes approach the limit surface at each 
step of refinement (Figure 1). The maximum distance D at the 
initial level is always larger than the distance d at the next level 
and so on because the subdivision process 'smoothes' the mesh. In 
this paper, we focus on the Loop scheme. 

 

Figure 1: Distance in approximation schemes. 
Each subdivision step provides a more accurate approximation of 
the limit surface. An upper-bound of this distance can be used as a 
stop criterion during the subdivision process [11][9]. However, 

the number of faces can be reduced by subdividing only particular 
faces. There are many criteria to determine faces to subdivide: 
faces in the viewport [3], angle between face normals [1], flatness 
of the surface [7], normal cones of vertices [8], curvature [12], 
distance [11][5]. We choose to use the distance between the 
control mesh and the limit surface as a geometric criterion for 
adaptive subdivision. This criterion, combined with local 
properties of subdivision, allows us to subdivide the surface only 
where this distance is greater than a given accuracy, saving a lot 
of triangles.  
From a bound of the distance between a subdivision surface and 
its control polyhedron, the number of subdivisions to perform can 
be known a priori according to a wished accuracy. We can thus 
estimate the exact number of faces of the final mesh. During full 
subdivision, this is easy due to the definition of Loop.subdivision. 
Indeed, a face is split in four at each step of subdivision. When 
the mesh is partially subdivided, the number of faces cannot be 
predicted, we can only determinate an upper-bound. 
The purpose of this paper is to a priori determine an upper bound 
of the number of triangles that will be generated during adaptive 
subdivision. It allows to estimate memory requirements and 
rendering rates, which is very usefull for applications in video 
games - mainly on portable playstations- or in virtual reality.  
The paper is organized as follows. Section 2 reminds the reader 
with the necessary background that we use in our work: Loop 
subdivision and a bound for the distance of a subdivision surface 
to its control polyhedron. Section 3 explain the adaptive 
subdivision used with a distance criterion. In section 4, we 
determine the number of subdivisions to perform from an 
accuracy given at the initial level of subdivision and thus a bound 
for the number of faces of the mesh for adaptive subdivision and 
then in section 5, we give some practical results. Finally, 
directions for future work are proposed in the conclusion. 

2.BACKGROUND 

2.1. Loop subdivision surfaces 
Subdivision surfaces are among the easiest ways to generate 
smooth surfaces. They preserve both the advantages of NURBS 
and those of polygonal meshes. We choose the Loop scheme for 
our results because the majority of meshes are currently triangular 
(triangular meshes provided by geometric modellers, triangulated 
meshes reconstructed from laser range images…). The Loop 
scheme generalizes quadratic triangular B-splines and the limit 
surface obtained is a quartic Box-spline. This scheme is based on 
splitting faces: each face of the control mesh at refinement level k 
is subdivided in four new triangular faces at level k + 1. This first 
step is illustrated into Figure 2. Consider a face: new vertices are 
inserted in the middle of each edge, they are named odd vertices 
and those of the initial face are named even vertices. 



 
Figure 2: Left, an initial face. Right, the 4 new faces. 

In the second step, all vertices are displaced by computing a 
weighted average of the vertex and its neighbourhood vertices. 
These averages can be substituted by applying different masks 
according to vertex properties: even, odd, valences (Figure 3). 
The sub-figure (a) represents the interior even vertex mask where 
n denotes the vertex valence and β is chosen to be [10]:  
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The sub-figure (c) illustrates the interior odd vertex mask.  

 
Figure 3: Loop masks where  represent old vertices and  the 

new position of an even vertex (a) and of an odd vertex (b) 
respectively. 

 
2.2. Loop distance to limit surface 
Loop surfaces are defined as the limit of an infinite refinement 
process. However, it is easy to compute exact points on the limit 
surface. Indeed, the images of a vertex (from the initial mesh) on 
the successive subdivision meshes depend only on this vertex and 
its neighbourhood. The following results are derived from [6]. 

Having the image  of the vertex  as a function of  and 

its neighbourhood allows us to compute the distance between  

and : 
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From the distance between the control mesh vertices and their 
image on the limit surface allows us to determine the maximum 
distance between the control mesh and the limit surface. Indeed, 
subdivision surface properties are such that the control mesh 
vertices are the most distant points from the limit surface because 
refining coefficients are all positive. If a vertex is inserted 
between two vertices of the control mesh, the distance between 
this vertex and the limit surface will inevitably be smaller (Figure 
4). This property is valid for almost any surface: convex or 
concave, open or closed. This bound is suitable for all usual mesh, 
however an exotic mesh can be generated to contradict it. This is 
shown in [9]. 

 
Figure 4: Distance from a midpoint to the limit surface. 

 Notations used for the vertices  of the control mesh  at 

subdivision level  are described in 
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Figure 5: Notations used for the vertices of the control mesh. 
Left: in bold, Loop triangle at level  with its neighbourhood. 

Right: Loop triangle at level  with corresponding limit surface 
triangular patch. 
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In [6], the following theorem is proven: 

Theorem 1. Let ( ),kS u v  be the polyhedral surface associated to 

the control mesh kP  at subdivision level k  and ( ),S u v∞  be the 
limit surface. 
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associated to this valence and N  is the maximum valence of the 
successive control meshes. 

3.ADAPTIVE SUBDIVISION 

The adaptive subdivision scheme used in this paper is described in 
this section. Then the chosen scheme is analyzed and compared to 
other schemes. 

3.1. Adaptive scheme 
When the same rules are applied on the whole input mesh, the 
number of faces quickly increases. Indeed, for Loop scheme, a 
face produces four faces after one subdivision, 4² after 2 
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subdivisions and 4n  after n subdivisions. A well-known method 
to reduce the number of faces is to subdivide only a part of the 
mesh.  

   

Figure 6: Left: two adjacent faces of the mesh. Right: one face is 
subdivided and the other is not, the crack between the faces is 

represented in grey. 

When the surface is not entirely subdivided, cracks appear 
between faces with different subdivision depth as shown in Figure 
6. 

 
Figure 7: Upper-bound of the distance between a control vertex 

and the limit surface. 

The area to subdivide can be selected by different ways. We 
choose to select it according to the accuracy of the control 
polyhedron from the limit surface. The adaptive subdivision used 
here generates a minimum number of faces. The chosen criterion 
selects faces according to the distance of its vertices to the limit 
surface. This distance cannot easily be computed, so the distance 
between a vertex and its image on the limit surface is used as an 
upper-bound (Figure 7). 

 
Figure 8. Different cases of face subdivision during adaptive 

subdivision. 
 

In this paper, we choose to work with the first adaptive 
subdivision introduced in [4]. Vertices are classified into two 
categories: static and mobile vertices. A mobile vertex is a vertex 
which is displaced because the distance between this vertex and 
the limit surface is more than a given accuracy. Other vertices are 
static. The topological rules used to avoid cracks in this scheme 
are chosen as follows. Faces are classified into 4 categories 
according to the number of mobile vertices. Mobile vertices are 
depicted by circles in Figure 8 (top). When all vertices are static, 
the face is not subdivided Figure 8.a.). Figure 8.b. illustrates the 
case where only one vertex is mobile; only two among three new 
(odd) vertices are then mobile in order to avoid cracks. When 

there are two mobile vertices, face subdivision is almost normal 
except the fact that one among the old vertices is static (Figure 
8.c.). Finally when all vertices are mobile, subdivision is carried 
out in a normal way (Figure 8.d.). 
By applying this adaptive subdivision scheme, cracks are avoided 
because the inserted vertex is in the middle of the edge from the 
face to subdivide. Indeed, the middle vertex inserted on the edge 
between a face that is subdivided and a face that is not subdivided 
is not mobile any more. This scheme does not allow a correct 
computation of a neighborhood for all vertices for further 
subdivisions. Indeed faces are generated but correspondences 
between edges are not updated. Nevertheless, a neighborhood is 
not necessary because the distance for a static vertex to the limit 
surface does not change. We just need to save it from one level to 
another. For the other cases, the neighborhood is correct; the 
distance can thus be computed. Figure 9 illustrates a case where 
the new neighborhood should include both new and old vertices. 
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Figure 9: New neighbourhood. 

 

3.2. Results and comparison 
It is not easy to compare adaptive subdivision schemes because 
criteria are very different according to the required effect. For 
instance, comparing a view dependent scheme with ours, is not 
very interesting because they do not have the same goal at all.  

One focuses in the part of the model which is in the view cone 
and the other on the accuracy of the entire model. Other criteria, 
such as those based on curvature or normal cone, are more similar 
to the above criterion of distance because they are dependent as 
shown in Figure 10. Indeed, for a vertex of the control mesh, the 
larger the angle of the normal cone the larger the distance 
between this control vertex and the limit surface. The distance is 
represented by a red line, the limit surface is represented by a blue 
shape and the normal cone is in grey color in Figure 10. 

 

e. 

a. b. c. d.

Figure 10: Relation between the size of the normal cone at a 
control vertex and the distance between this vertex and the limit 

surface. 
 

Curvature, normal cone and distance are similar even in special 
cases such as that presented in Figure 11. Indeed, the distance 
between  and the limit surface is negligible but it is the same 
for the curvature and the normal cone. On the other hand, the 
distance from  or  to the limit surface is large as the 
curvature or the normal cone. 

2P

1P 3P

For every adaptive scheme, topological rules are modified to 
avoid cracks. This modification involves that the limit surface is 



different from this obtained in subdividing the whole mesh. This 
is not important because subdivision is stopped according to the 
criterion, so the limit surface is never reached. 

 

Figure 11: Similarity between distance curvature and normal 
cone. 

 
The main advantage of our adaptive subdivision scheme is that 
the criterion is handier for the user. Moreover, for fields like 
computer aided geometric design, it is very significant to know 
the accuracy of the model. The results obtained with this distance 
criterion gives results similar to those obtained with other 
criterion such as curvature, normal cone but it is more intuitive 
and thus easier to use. Contrary to others adaptive scheme, the 
scheme introduced in this section do not generate a "good" mesh 
according to the mesh definition. Indeed, between subdivided and 
not subdivided faces, the mesh topology is particular. The odd 
vertex introduce and not displaced to avoid cracks (in grey in 
Figure 12 left) do not belong to the left face otherwise the face 
would not be more triangular. Thus, the mesh topology is 
represented in Figure 12 (right). The light grey line represents the 
edge of the left face which is in one part and the dark grey lines 
represent the edges of the right faces adjacent to the left face. 

  

Figure 12: The generated mesh is not "good". 
This kind of topology is sufficient to visualize mesh but it would 
be not sufficient in some particular cases. For example, in the case 
where the user modifies the tag of the grey vertex in Figure 12 
(mobile instead of static) because he decides to change the needed 
accuracy or selects faces to subdivide with an other criterion. 
Computing intersection between two meshes can also be a 
problem because the data structure is not updated. 

 
Figure 13: From left to right: respectively full subdivision, 

adaptive subdivision with an accuracy of 0.1, adaptive 
subdivision with an accuracy of 0.05. 

In Figure 13, one can see on the one hand the results obtained for 
a given accuracy (here 0.1) and that the number of faces of the 
subdivided model in a non adaptive way corresponds to the 
number of faces which one can obtain in adaptive subdivision but 
for a higher accuracy (here 0.05). If the number of faces is smaller 
for the adaptive subdivision with a precision of 0.05, one can 
however note that time necessary to obtain the subdivided mesh is 
longer than adaptive subdivision with an accuracy of 0.1 because 
there is an additional level of subdivision. Table 1 gives 
numerical results corresponding to Figure 13 where a time value 
of 1 refers to the time necessary for a full subdivision. 
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0P

2P

3P

4P

Plain Adaptive Adaptive 
  0.1ε =  0.1 0.05ε = ε = 

Level of subdivision 3 3 4
Number of faces 9472 3841 7930
Minimum distance (.10-4) 4,16 2614 15.35
Maximum distance (.10-4) 831.95 831.95 256.01
Mean distance (.10-4) 136.58 333.55 165.40
Time (in ratio) 1 0.1 0.33
Table 1. Comparison of the results obtained on the bunny model. 

4.SIZE OF MESHES 

To manage the storage of the control mesh, we need to know a 
priori the size of this mesh. We have already seen in a previous 
section that the number of faces is different according to the 
chosen subdivision of the mesh. Indeed, adaptive subdivision 
generates fewer faces than full subdivision. 

4.1. Full subdivision 
From [6], we have: 

Corollary 1. With 0M  and N  as in Theorem 1, the control mesh 
approximates the limit surface with the accuracy ε  if the number 
of recursive subdivision is at least k  with 
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where 0max(6, )N N=  and 0N  

is the maximum valence of the initial control mesh. 

Note: The number 6 comes from the subdivision. Indeed, during 
the subdivision process, the valence of each inserted vertex is 6. 
This is develop later in the paper. 

When the subdivision of the control mesh is full, it is easy to 
determine the exact number of faces of this mesh at a given 
accuracy. Indeed, Corollary 1 gives the subdivision level 
according to a given accuracy. From this computation, the mesh 
has to be subdivided k  times. However, in the full subdivision, 
we know that a face generates 4 sub-faces at the first subdivision 

level, 24  at the second subdivision level and 4k  at the thk  

subdivision level. The control mesh at the thk  subdivision level 

will thus have 04k

knf nf= ×  faces with 0nf  the number of faces 
of the initial control mesh.  

4.2. Adaptive subdivision 
When the subdivision of the control mesh is adaptive, it will be 
interesting to a priori know the size of the control mesh at a given 



accuracy. Only faces the vertices of which have a distance to the 
limit surface greater than the given accuracy are subdivided. 
Thus, we cannot a priori exactly determine the number of faces of 
the control mesh for this accuracy. Nevertheless, we can upper-
bound the number of faces of the control mesh without 
subdividing the initial control mesh. 

Theorem 2. A vertex 0
iP  of valence 

ivn  approximates the limit 

surface with the accuracy ε  if the number of recursive 
subdivision is at least vi

k  with 
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The last part of the inequality can be written: 

( )
0

05 8

8

5
ln ln 1

8

i

i

i n

i i

i n

kvi

i

i i

v

n

P P
k n

P P
β

β
ε

ε

∞

∞−

−
⇔ > − −

<
⎛ ⎞ −⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 

Corollary 2. A face if  approximates the limit surface with the 

accuracy ε  if the number of recursive subdivision is at least ik  

with 
[ ] ( )
1,2,3
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ji vj

k k
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= where 
jvk  are computed for each vertex 

0
jP  of if . 

 
Corollary 3. The total number of faces after adaptive subdivision 

is upper-bounded by 
1

4
ik

i
i

i
F f
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= ×∑  where if  is the number 

of faces that needs to be subdivided ik  times. 
 

  
Figure 14: Left: Subdivision levels of face vertices. Right: 

Number of new sub-faces. 
 
From the computation of the subdivision level 

jvk  of each vertex 

of a face if , the subdivision level ik  of the face can be 
determined. We choose the subdivision level of the face to be the 
maximum of the subdivision level of its vertices. For instance, if 

the subdivision levels of the face vertices are respectively 0, 1, 2, 
the subdivision level of the face will be 2. In Figure 14 (on the 
left), subdivision levels of the vertices are represented by 
coefficients near the vertices. 
 
As we wish an a priori upper bound of the mesh, the number of 
sub-faces created depends only on the initial subdivision level. 
Such as in the full subdivision, a face generates 4 sub-faces at the 

first subdivision level,  at the second subdivision level and 4  

at the  subdivision level. The generated sub-faces for the 
previous example are shown in 

24 k

thk
Figure 14 (on the right). If we do 

not pay attention to special cases, we can have the following 
problem. Let the box in Figure  be the initial control mesh. The 
subdivision level found for each initial vertex with a given 
accuracy 0.2ε =  is 2; however by successive subdivisions the 
mesh reaches the wished accuracy only after 3 subdivisions 
(Figure 15). 
 

 
Figure 15: Subdivision depth: 2 subdivisions for each vertex and 

3 subdivisions by successive refinement. 
 
From Corollary 1, the computation of vi

k  uses max(6, )
ii vn n= . 

The importance of this maximum is shown in Figure 15 (a to d). 
Let the box in Figure 15.a. be the initial control mesh. The 
subdivision level found for each initial vertex with a given 
accuracy 0.2ε =  is 2; however by successive subdivisions the 
mesh reaches the wished accuracy only after 3 subdivisions. 
 
The problem encountered is illustrated in Figure 16. In fact, some 
new vertices need one subdivision more than for the initial 
vertices. This problem comes from the valences of the new 
vertices which are always 6 whereas the initial vertices valences 
are 4 or 5. It can be avoided by taking 6 for the valence at the 
initial level when the computed valence is less than 6. For such 
vertices, the computation will thus be done with valence 6 and the 
corresponding Loop coefficient ( 1 16β = ). 
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2 subdivisions to perform

2 1 1 1 subdivision to perform

Figure 16. Focus on the problem: higher valence (6) of vertices 
after subdivision yields to additional subdivision 

 
 



5.PRACTICAL RESULTS 

In this section, results obtained on the penguin model with an 
accuracy 0.2ε =  are presented.  

5.1. Full subdivision 
For the full subdivision, the mesh has to be subdivided three times 
according to section 4.1. As the control mesh includes 500 faces 
at the initial level, the control mesh will have 32 000 faces at the 
third subdivision. Figure 17.b. illustrates the control mesh of the 
penguin model after full subdivision and Graph 1 represents the 
number of faces which have to be subdivided once, twice or more 
times according to the result presented in section 4.2. 

 
Figure 17: a. the penguin model. b. full subdivision with an 

accuracy 0.2ε = . c. adaptative subdivision with an accuracy 
0.2ε =  
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Graph 1. Number of faces for successive subdivision levels in 

applying the formula on the penguin model with 0.2ε = . 
 

5.2. Adaptive subdivision 
For adaptive subdivision, we first compute the number of 
subdivision to perform for each vertex of the penguin mesh. The 
subdivision level of each face is then the maximum subdivision 
level of its vertices. Graph 1 shows the number of faces for each 
level of subdivision to perform. Subdividing each face the 
corresponding number of times, we can upper bound the real 
number of faces of the final adaptive mesh. In this case, by 
successive subdivisions, the adaptive mesh counts 8213 faces and 

our forecast is 10544
3

i

5.3. Comparison on different meshes and 
accuracy 
In this section, the number of faces are computed and estimated 
on various meshes and accuracies such as the penguin model with 

0.1ε =  and 0.2ε = (Figure 17), the cat model with 0.1ε =  
and 0.2ε = (Figure 18), the torus model with 0.1ε = (Figure 
20), the box model with 0.05ε =  (Figure 21) and the top model 
with 0.15ε =  (Figure 22).  

 
Figure 18: Successive control mesh in adaptive subdivision for 

the cat model with the accuracy 0.2. 
a b  

Table 2 gives the subdivision depth according to the given 
accuracy on a regular surface (valence is 6 for every vertex), the 
torus. In figures 9 to 14, the dark (resp. light) faces represent the 
faces whose distance to the limit surface is greater (resp. less) 
than ε .  
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= ∑ . Figure 17.c. represents the 

control mesh of the penguin model after adaptive subdivision. We 
cannot improve this upper-bound without subdividing the mesh. 

Accuracy ε  0.5 0.1 0.01 0.05 0.001 
Subdivision depth 2 3 4 5 6 
Table 2. Subdivision depth necessary for accuracy ε  for the 

torus. 

 
Figure 19: Subdivision of the torus ( ) with an accuracy 6n = ε  

of 0.5. 
 

Figure 19 shows the number of subdivisions necessary to obtain 
an accuracy ε  of 0.5 for the torus model which has regular 
valences everywhere. Figure 20 illustrates successive levels of 
subdivision to have an accuracy ε  of 0.1. We can easily verify 
that subdivision level k  gives a correct result whereas level 

1k −  leaves non accurate vertices (dark areas). 
 

 
Figure 20: Subdivision of the torus ( ) with an accuracy 6n = ε  

of 0.1. 
 

c 



For a mesh with arbitrary valences, we have to pay attention to 
the role of valence .  denotes the maximum valence of the 
mesh including the subdivision steps. When valences are strictly 
less than 6 on the initial control mesh, the maximum valence is 6 
because all vertices inserted during the subdivision have valence 
6. For instance, initial valences of the box are 4 or 5 so n  = 5. 
For 

n n

ε  = 0.05, the subdivision depth  found for  = 5 is 3. But 
 is 4 when the maximum valence n  is considered to be 6 due to 

subdivisions. 

k n
k

Figure 21 shows successive subdivisions of the box. 
At level 3, some vertices are still further than ε  from the limit 
surface. Indeed, subdivision depth is 4. 

 
Figure 21: Box. Valence of inserted vertices must be taken into 

account. 
 

In some cases, using the mean valence 6 is not sufficient. For 
instance, the surface in Figure 22 has a minimum valence of 4 and 
a maximum valence of 18. With an accuracy of 0.15, using mean 
valence gives a subdivision depth of 2, whereas the maximum 
valence gives 3, which is the true result. 
 

 
Figure 22: Spinning top. Mean valence (6) is not enough. An 

error remains at level 2 near the pole (vertex of valence 18). 

It is then very important to choose N  to be 0max(6, )N where 
0N  is the maximum valence of the initial control mesh. 

Table 3 gives the subdivision depth as a function of a given 
accuracy in the bunny model with arbitrary valences 
( ). For an accuracy 3,10n∈ ε  with a difference of 32.10− , the 
subdivision depth increases by 1 (from 4 to 5) which represents an 
increased cost (memory and computation) even with adaptive 
subdivision.  
 
Accuracy ε  0.5 0.1 0.05 0.012 0.01 
Subdivision depth 1 2 3 4 5 
Table 3. Subdivision depth necessary as a function of accuracy 

ε  in the bunny model. 
 

Figure 23 shows the number of subdivisions necessary to obtain 
an accuracy ε  of 0.15 in the bunny model. 
 

 
Figure 23: The bunny ( ) with an accuracy of 0.1. 3,10n∈
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Graph 2. Number of faces found for top, cat, box and torus 
model according to the way of computation: successive adaptive 
subdivision, a priori estimated adaptive subdivision and a priori 

full subdivision. 
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Graph 3. Number of faces found for penguin and cat model 
according to the way of computation: successive adaptive 

subdivision, a priori estimated adaptive subdivision and a priori 
full subdivision. 

 
It is easy to determine the number of faces of a mesh subdivided 
at a given accuracy without performing subdivisions. On the other 
hand, we do not know how to determine this number for adaptive 
subdivision without subdividing. So we proposed a formula in 
section 4.2 to upper-bound this number from the initial level. This 
formula gives too high a number of faces by construction but it 
represents the best upper-bound we can perform without 
subdividing. However the number of faces obtained is smaller 
than that of full subdivision.  



The results are presented in Table 4 and Graph 2 and Graph 3. 
Graph 2 and 3 show for each mesh the number of faces found 
according to the way of computation: successive adaptive 
subdivision, a priori estimated adaptive subdivision and a priori 
full subdivision. Meshes used in Graph 2 are the following: the 
top model with a 0.15 accuracy, the cat model with a 0.2 
accuracy, the box model with a 0.05 accuracy and the torus model 
with a 0.1 accuracy whereas Graph 3 is applied on the penguin 
model with a 0.1 then 0.2 accuracy and the cat model with 
accuracy 0.1. These results are completed with Table 6 where the 
first column gathers the additional percentage of faces in the 
upper-bounded subdivision compared to the real adaptive 
subdivision and the second column gives the percentage of faces 
saved in the upper-bounded subdivision compared to the full 
subdivision. 

 

Additional percentage of 
faces in the upper-

bounded subdivision 
compared to the real 
adaptive subdivision 

Percentage of faces 
saved in the upper-

bounded subdivision 
compared to the full 

subdivision 
penguin 0.1 69 81 
penguin 0.2 28 67 

cat 0.1 15 75 
top 0.15 130 62 
cat 0.2 31 52 

box 0.05 41 0 
torus 0.1 60 38 
Table 4. Comparison of the number of faces in percentage. 

 

6.CONCLUSION  

From a distance bound between a subdivision surface and its 
control polyhedron we can adaptively subdivide meshes. This 
allows us to a priori determine the number of times that the 
control mesh has to be subdivided in order to approximate the 
limit surface with a given accuracy. From this number of 
subdivisions, mesh size can be determined for full subdivision and 
upper-bounded for adaptive subdivision. The determination of the 
mesh size, without subdividing, allows us to estimate properties 
of computers which are used to compute the scene. Indeed, in 
animation movies, there can be many meshes in a scene and they 
can be more or less significant. From this formula and from the 
data structure used, we can compute the necessary memory. Thus, 
if it exceeds the RAM memory of the computer (personal 
computer, portable playstation…), memory can be added. If the 
memory size cannot be increased (portable playstations for 
instance) scenes can be edited in order to realize the necessary 
compromise between quality (increasing the accuracy and thus 
the levels of subdivision) and memory occupation. Also, one 
usually considers that if the memory amount exceeds 4 GB, work 
can be parallelized. Moreover, for real time applications, such as 
virtual reality, the frame rate is a crucial criterion, which depends 
on the number of triangles to be displayed. A priori knowledge of 
this number can avoid further decimations. In this paper, the 
forecast of the number of faces is done only for Loop subdivision. 
As other subdivision schemes are currently used, we need to do 
the same as on this scheme. The distance used cannot always be 
the same. Indeed, for dual approximating schemes, we cannot 
upper bound the distance in the same way. Moreover for 

interpolating schemes, vertices of control meshes are on the limit 
surface, so this distance will always be null. 
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