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Abstract 
In this paper we propose a new polygonization method based on 
the classic Marching Triangle algorithm. It is an improved and 
efficient version of the basic algorithm which produces a 
complete mesh without any cracks. Our method is useful in the 
surface reconstruction process of digitized objects. It works over 
the discrete distance transform of the object to produce the 
resulting triangle mesh. The new algorithm is also adapted to a 
recently introduced vector field distance transform model which 
is more accurate than the classic scalar field discrete distance 
transform of meshes. Our polygonization method is simplified 
and it produces better results compared to Marching Triangle 
basic algorithm while working on the vector field distance 
transform model. We use relevant error metric tools to compare 
results and show our new method is more accurate than Marching 
Cube which is the most widely used triangulation algorithm in the 
surface reconstruction process of digitized objects. 
Keywords: Marching Triangle, Discrete distance transform, 
Polygonization algorithm, Surface reconstruction, Digitized 
objects, Triangle mesh surface. 

1. INTRODUCTION 

In the past decade a lot of improvements have been made in the 
field of 3D scanners to acquire and to digitize real world objects. 
The advancement in computer technologies have made possible 
the design of 3D scanners to respond to the increasing needs in 
many fields such as digitizing precious cultural heritage [1]. The 
most common output data structure produced by 3D scanners is 
range images. From these raw data, many operations are needed 
in order to produce the final mesh which represents the real object 
geometry. All these operations can be achieved in the scalar field 
distance transform (SFDT) domain which is often used because it 
produces good results for each step of the reconstruction 
procedure. 
To perform surface reconstruction in the SFDT domain, one needs 
to convert the explicit range images, or other initial triangle 
meshes dataset, by computing their SFDT discrete implicit field 
which is defined over a regular 3D grid created inside a mesh 
bounding box. The cubic grid cells are called voxels and for each 
voxel, the closest point on the mesh surface is found and the 
shortest distance to the mesh is saved in the voxel. For a given 
surface S⊂ℜ3 this volume representation consist of a scalar value 
function ƒ:ℜ3→ℜ such as the zero-set ƒ(x,y,z)=0 defines the 
surface and in that case [x,y,z]∈S. To obtain a unique volumetric 
description for a given surface, this distance field is also signed 
according to surface normal vectors. 
The surface reconstruction process begins with a mesh 
registration procedure [2] which is performed to express all range 

images in the same coordinates system. The first operation in the 
SFDT domain is mesh fusion [3] to integrate all initial range 
images into a unique representation, followed by mesh repair [4] 
to fill holes in the model, and then mesh smoothing [5] to remove 
acquisition noise introduced by the scanner and finally mesh 
simplification [6] to produce a more compact model without loss 
of details. Since the SFDT is an implicit representation, at the end 
of the reconstruction process a polygonization algorithm such as 
Marching Cube [7] or Marching Triangle [8] is needed to produce 
the final explicit mesh which describes the digitized object 
surface geometry. 
In this paper we introduce a new polygonization method to 
triangulate the resulting mesh of the surface reconstruction 
process in the SFDT domain. We propose a set of improvements 
based on the Marching Triangle algorithm to obtain an efficient 
method which overcomes some crack problems in the basic 
version to produce a higher quality resulting mesh. We also adapt 
our method to the vector field distance transform (VFDT) implicit 
representation which allows a simplification and a more accurate 
result using the Marching Triangle algorithm. The remaining parts 
of the paper are organized as follows: Section 2 overviews related 
work. Section 3 presents our new improved triangulation 
algorithm. Section 4 describes the Marching Triangle adaptation 
to the VFDT representation. And in Section 5, before concluding, 
we show and compare our triangulation method results with 
previously introduced algorithms. 

2. RELATED WORK 

The most widely used algorithm to triangulate a SFDT is 
Marching Cube [7]. It is a volume-based approach which is very 
suitable to triangulate discrete implicit fields such as SFDT in the 
surface reconstruction process of digitized objects. The original 
Marching Cube method has some ambiguities and many other 
algorithms, based on the original one, have been proposed to 
improve the resulting mesh quality. For example the original 
algorithm has 14 cube triangulation configurations which lead to 
face ambiguities resolved in [9], and [10] in which the 14 basic 
configurations are expended in 32 different cases. A remaining 
cube ambiguity was then solved in [11] to guaranty the resulting 
mesh topology. 
Methods derived from the basic Marching Cube algorithm have 
been proposed to also resolve the ambiguities. Cubical Marching 
Squares [12] which opens the cubes into six squares and 
Marching Tetrahedron [13] which divides the cubes into 
tetrahedrons are two examples of cube configurations which 
resolve original ambiguities. Other algorithms have been 
introduced to improve the resulting mesh quality. The Extended 
Marching Cube [14] provides a sensitivity feature to better 
recover sharp edges and Dual Contouring [15] focus on 
preserving the resulting mesh topology. More recently, the VFDT 



model [16] which is a vector extension of the SFDT has been 
proposed to improve the implicit field accuracy and the Marching 
Cube algorithm has been adapted to this new representation in 
order to produce a higher quality resulting mesh. 
Another well known algorithm to triangulate a SFDT is Marching 
Triangle [8]. It is a surface-based approach built on Delaunay 
triangulation definition. Starting from a seed triangle, a region-
growing process enables the creation of triangles following the 
SFDT isosurface. This surface tracking process has been designed 
to triangulate discrete SFDT of digitized objects and it has also 
been applied to continuous implicit surfaces describing virtual 
objects with a set of equations such as parametric ones. The basic 
Marching Triangle algorithm leaves some part of the model un-
triangulated creating cracks in the resulting mesh as shown in 
Figure 1. 
 
 
 
 
 
 
 
 
 
 
 

Figure 1:  Basic Marching Triangle algorithm 
result on the Half-Sphere model 

 
In Figure 1a) a Half-Sphere model lying on a plane is used and its 
SFDT is computed. Figure 1b) shows the basic Marching Triangle 
algorithm result which contains cracks in the triangulated 
resulting mesh. Theses cracks occur because of different reasons 
which will be detailed in next section. 
Beside the classic Marching Triangle, other methods based on a 
region-growing and surface tracking process have been proposed 
such as Gopi algorithm [17] which works over a set of 
unorganized points and Hartmann algorithm [18] which works on 
continuous implicit surfaces. In this paper we focus on improving 
the steps of the original Marching Triangle to directly triangulate 
discrete SFDT of digitized objects. The methods designed to work 
over point clouds are also suitable for discrete SFDT as described 
in the Ball-Pivoting method [19] in which a first pass generate 
points from the SFDT before applying the triangulation on the set 
of generated points. This Ball-Pivoting method is similar to 
Marching Triangle, it also uses the Delaunay sphere test but the 
constraint is applied on the sphere radius instead of the sphere 
center as for the original Marching Triangle algorithm. In this 
paper we also modify the Delaunay sphere for the triangulating 
test which contributes to reduce the resulting mesh cracks. 
Previous methods [20, 21, 22] applied to continuous implicit 
surfaces have been introduced to overcome the basic Marching 
Triangle algorithm cracks problem. These method triangulations 
are adaptive to local implicit curvature to obtain variable size 
triangles. In this paper we also modify the basic algorithm with a 
variable projection distance to obtain a better adaptive result over 

discrete SFDT. Some of these methods [20, 21] operate in two 
passes. They first triangulate a resulting mesh according to the 
basic algorithm which contains cracks and then they introduce a 
crack filling algorithm to complete the resulting mesh. The other 
method [22] introduces a different region-growing algorithm 
compared to the original Marching Triangle. It is based on a 
hexagonal triangulation expansion pattern which is able to resolve 
cracks and to produce a complete resulting mesh in a single pass. 
In this paper we use the original Marching Triangle algorithm 
procedure and we propose improvements to several steps of the 
method. Our new triangulation works over a discrete SFDT in a 
single pass, as for the original algorithm, and produce a complete 
mesh without cracks. We do not need a second specific post-
processing crack filling pass but instead we introduce an iterative 
process on our single pass to obtain a complete mesh. 
Other algorithms have been proposed to improve the basic 
Marching Triangle triangulation over discrete implicit surfaces 
and to achieve specific goals. A topology preserving method [23] 
introduces a normal consistency constraint which guaranties the 
resulting mesh topology. An edge constrained method [24] detects 
discontinuities in the implicit surface and constrains triangle 
edges to match and better preserve these sharp features in the 
resulting mesh. In this paper we have a more global approach to 
produce a higher quality mesh by improving the entire original 
Marching Triangle algorithm. We also adapt our new 
triangulation method to the VFDT model [16] which is more 
accurate than the SFDT. Therefore we obtain a more globally 
accurate resulting mesh including a better sharp features 
preserving compared to the original Marching Triangle algorithm. 

3. MARCHING TRIANGLE IMPROVED 
ALGORITHM 

In this section we describe our new Marching Triangle improved 
algorithm. We refer to the original algorithm [8] procedure 
numbering to identify the steps to improve. In Subsection 3.1 we 
improve steps 1 and 2 of the original algorithm in finding a new 
vertex. In Subsection 3.2 we improve step 4 in testing a new 
triangle. In Subsection 3.3 we improve step 6 in considering new 
triangles. Finally in Subsection 3.4 we introduce an edge 
processing sequence to improve the overall algorithm. 

3.1 Variable Projection Distance and Vertex 
Interpolation 

The first and second steps of Marching Triangle algorithm are 
illustrated in Figure 2. The first step is the estimation of a new 
vertex position P’ with a projection perpendicular to the mid-point 
P of the boundary edge C in the plane of the model boundary 
triangle ABC by a constant distance PP’. The second step is the 
evaluation of the nearest point to P’ which is on the implicit 
surface. That new potential vertex is V2 in Figure 2 example. 
The constant distance projection contributes to produce cracks in 
the mesh. In high curvature regions the projection can be further 
away from the isosurface and the new vertex estimation may 
cause either a test failure resulting in a crack beginning or a bad 
approximation of the surface local geometry. To correct this 
problem we propose a variable projection distance which is equal 
to √3/2 times the length of the boundary edge. This projection 
distance corresponds to the height of the equilateral triangle 
composed of the boundary edge. This improvement contributes to 
obtain more equilateral triangles which are less deformed and 
which sizes adapt gradually to local geometry curvature. 

   
               a) Original model                         b) Marching Triangle result 



From the projection point P’ on Figure 2 example, we suppose the 
nearest voxel which is considered on the isosurface is V2. While 
working with a discrete SFDT a threshold distance comparison is 
needed to find this nearest voxel. To consider that a voxel is on 
the isosurface it must contain a distance smaller than half the grid 
resolution. This approximation introduces a significant error in 
the vertex position according to the underlying implicit surface 
and this error can also contributes to a crack in the mesh if the 
new triangle test fails. To correct this problem we propose a linear 
vertex position interpolation between the nearest voxel found and 
its closest neighbor with opposite distance sign. The interpolation 
finds the new vertex position which corresponds to a distance 
equal to zero between the two distances of opposite sign. This 
interpolation uses the implicit surface definition to obtain a more 
accurate approximation of the isosurface. 
 
 
 
 
 
 
 
 
 
 
 

Figure 2:  Marching Triangle projection and 
nearest vertex on the isosurface 

 

3.2 Modified Delaunay Sphere Test 
Step 4 of the original algorithm suggests testing the new potential 
triangle according to the Delaunay sphere which is circumscribed 
to the new triangle as shown in Figure 3a) in which the current 
boundary edge Eb forms a new triangle with the new estimated 
vertex A. In Figure 3a) example the test would fail because there 
are parts of the six numbered triangles inside the sphere. 
According to the original algorithm, further tests would be made 
with edge Eb and vertices B, C and D to consider these three new 
triangles. These tests would also fail because the Delaunay sphere 
would still contain parts of neighbor triangles. This test limits the 
original algorithm performances and contributes to produce 
cracks in the mesh. The Delaunay test sphere was designed to 
triangulate a set of unorganized points which is not exactly the 
same situation in the case of a region-growing algorithm over a 
SFDT. 
We propose the modified sphere shown in Figure 3b) for new 
triangles testing. The modified sphere passes through the mid-
point M of the current boundary edge and the new estimated 
vertex C. Its diameter is equal to the distance between these two 
points and its center is the mid-point between M and C. The 
modified sphere is smaller than the original one and it allows 
obtaining more successful tests which improve the algorithm and 
reduce the cracks in the resulting mesh. Since some parts of the 
new triangle are outside the sphere, we also need to test if there is 
no intersection between the new triangle and other triangles of the 
mesh. We test all triangles which have parts inside the original 

Delaunay sphere with the new triangle according to Moller 
intersection test [25] which is fast and efficient. 
 
 
 
 
 
 
 
 
 

Figure 3:  Interfering triangles with the original 
Delaunay sphere and modified test sphere 

 

3.3 New Triangles to Consider 
Step 6 of the original algorithm suggests considering two new 
potential triangles illustrated in Figure 3a) if the first new triangle 
test fails at step 4. These new triangles are composed of the 
current boundary edge Eb and vertices B or D which are the 
previous and the next vertices along the boundary from the 
current boundary edge Eb. If the sphere test fails for these two 
new triangles, other new triangles should be tested to improve the 
algorithm. The original algorithm was upgraded in [26] with a 
seventh step which suggests to test another new triangle 
composed of the current boundary edge Eb and vertex C in 
reference of Figure 3a). Vertex C is the nearest boundary vertex 
of overlapping triangles number 5 and 6 in the sphere test. This 
new potential triangle contributes to reduce the cracks in the mesh 
compared to the original algorithm but if the test fails with this 
triangle other triangles should be tested to better improve the 
algorithm.  
We propose to test not only the nearest but all boundary vertices 
of overlapping triangles if they exist. In some particular cases as 
the one shown in Figure 4 the sphere test would fail with the 
nearest boundary vertex leaving a part of the mesh un-triangulated 
and a new triangle could be added to the mesh if another 
boundary vertex of the overlapping triangle was considered. In 
Figure 4 Eb is the current boundary edge and V1 is the triangle 
nearest vertex from Eb. The new potential triangle composed of Eb 
and V1 would fail the test but another triangle composed of Eb and 
V2 would be a better candidate even if the distance between Eb 
and V2 is greater than the distance between Eb and V1. 
 
 
 
 
 
 
 

Figure 4:  New triangles to consider in the 
triangulation process 
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3.4 Edge Processing Sequence and Iterative 
Process 

The original Marching Triangle algorithm does not specify any 
boundary edges processing sequence. It is only defined as a single 
pass into the edge list to process all boundary edges with the 
procedure steps including the estimation of a new potential 
triangle and its sphere test to determine if it will be added or not 
to the mesh. According to the implemented data structure to 
triangulate the SFDT and the method to add new edges in the 
edge list, the edge processing sequence can be different from one 
implementation to another. The resulting mesh from the Marching 
Triangle depends on the edge processing sequence and it can be 
different if the sequence is changed as shown in Figure 5. 
 
 
 
 
 
 

Figure 5:  Modified mesh according to the edge 
processing sequence 

 
In Figure 5 example we assume the current mesh is composed of 
the six bottom triangles, therefore edges A and B are boundary 
edges. In Figure 5a) edge A is considered first and triangle 1 is 
added then edge B is processed and triangle 2 is added next. In 
Figure 5b) edge B is considered first and triangle 1 is added first 
then edge A is tested and triangle 2 is also added. In Figure 5 
simple example both results are different just because of an edge 
permutation. The results would have been more different if for 
example after adding triangle 1 in Figure 5a) the new boundary 
edges of that triangle were processed before edge B and if that 
same processing sequence was applied in Figure 5b) to the new 
boundary edges of triangle 1. 
We tested different edge sequences and combinations on the 
original algorithm and we selected the one which optimizes the 
result in terms of minimizing the cracks in the mesh. We propose 
the following procedure to improve the resulting mesh quality. 
Starting from a boundary edge, an arbitrary direction is selected 
and the next edge to consider is the neighbor boundary edge 
always in that same direction around the contour of the current 
mesh. Newly added boundary edges are not considered 
immediately, they will only be considered on the next turn 
around. This procedure is illustrated in Figure 6 with Ec 
corresponding to the current boundary edge to be processed and 
EN the next boundary edge to consider according to the chosen 
arrow direction D. 
In Figure 6a) New triangle and Figure 6b) Previous triangle cases 
the next boundary edge to consider is straight forward. In Figure 
6c) Next triangle case if the test is successful and the new triangle 
is added then the next boundary edge to consider jumps over edge 
A which is lo longer a boundary edge. The new added boundary 
edge B will be considered on the next turn around only. In Figure 
6d) Overlapping triangle case a bridge is created in the mesh if 
the new triangle is added. In that case the next edge to consider is 
either EN1 or EN2 depending on the chosen direction D1 or D2 
respectively. In that special case the inside contour in the region P 
is triangulated in priority immediately after the new triangle is 

added to the mesh and before pursuing with the outside contour. 
Starting from the new inside boundary edge A an arbitrary 
direction is selected and the previously described procedure is 
applied to the inside contour until no more triangle can be added. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6:  Next edge to consider according to the 
edge processing sequence 

 
The original Marching Triangle is defined as a single pass into the 
edge list. Our proposed procedure is iterative and the boundary 
edges are tested more than once, until a complete loop is made 
around the mesh contour without adding any triangle. A boundary 
edge can be tested without adding any triangle to it at the first 
pass and at the second pass the test could be successful depending 
on the local mesh neighbourhood configuration which can be 
different from one pass to another. Our iterative procedure 
continues as long as new triangles are added. Compared to the 
original algorithm our procedure contributes to add more triangles 
and to reduce the cracks in the final resulting mesh. 

4. VECTOR FIELD AND ERROR METRIC 
ADAPTATION 

We also adapt our improved Marching Triangle algorithm as 
defined in Section 3 to the VFDT [16]. The discrete vector field 
distance transform is an extension of the SFDT. Instead of saving 
in each voxel only the scalar shortest distance to the surface as in 
the SFDT, in the VFDT a vector is saved in each voxel. This 
vector gives the shortest distance to the surface and in addition it 
also gives the orientation of the closest point on the surface. This 
new representation is more accurate than the classic SFDT and it 
is used in the surface reconstruction process of digitized objects. 
Marching Cube algorithm was previously adapted to the VFDT 
and this adaptation produces better triangulation results than other 
Marching Cube versions over the SFDT. Our Marching Triangle 
adaptation to the VFDT is simple and it has two advantages. First 
it saves computation time and second it also produces more 
accurate results compared to the scalar version over the SFDT. 
Figure 7 illustrates our Marching Triangle adaptation to the 
VFDT. 
Figure 7 shows steps 1 and 2 of the Marching Triangle algorithm 
with a) the SFDT and b) the VFDT. Step 1 is the same for both 
representations; a projection is made from the boundary edge 
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mid-point to estimate a new vertex position. Step 2 is different 
and a search is needed with the SFDT to find the nearest voxel 
which is considered on the isosurface. In Figure 7a) example the 
search stopped on voxel D which is the nearest voxel from the 
projection point to contain a distance smaller than half the grid 
resolution. In the original Marching Triangle algorithm, voxel D 
coordinates are used as the new vertex which forms the new 
potential triangle to be tested. This is a coarse approximation of 
the isosurface. In Section 3.1 of this paper we propose a linear 
interpolation to obtain a better estimation of the isosurface. This is 
an improvement from the original algorithm but the result still is 
an approximation. In Figure 7b) there is no need for a search and 
interpolation with the VFDT. From the projection point which is 
in voxel A, the vector saved in that voxel is used and a simple 
redirection gives immediately the coordinates of the new vertex. 
According to the VFDT definition, this new vertex is the nearest 
point from the projection point which is exactly on the isosurface. 
With the VFDT, step 2 of the Marching Triangle is simplified and 
upgraded to a better result. The algorithm other steps are exactly 
the same as for the SFDT. 
 
 
 
 
 
 
 
 
 

Figure 7:  Comparison of the new vertex estimation 
with the SFDT and the VFDT 

 
In order to evaluate and compare our improved algorithm on the 
SFDT, we use the vertex to surface error metric defined in [5] to 
quantify the relative quality of the triangulation algorithms tested. 
This error metric is based on the minimal Hausdorff distance 
between two meshes. We start from a reference mesh and 
compute its SFDT. Then we triangulate the SFDT with different 
algorithms. The resulting meshes are compared to the reference 
mesh using this vertex to surface error metric which gives a scalar 
value of the average distance or error between two meshes. The 
smallest distance from each vertex of the triangulated result to the 
surface of the reference mesh is evaluated and a weighted average 
of these distances gives the associated error of the triangulation 
result compared to the reference mesh. Then the triangulation 
result errors of different algorithms from the same reference mesh 
can be compared together to evaluate the relative quality of each 
result. 
The vertex to surface error metric is not suitable to evaluate and 
compare our adapted algorithm to the VFDT because the resulting 
triangulation vertices are exactly on the reference mesh surface. 
Using the vertex to surface error metric with our adaptation would 
produce an error equal to zero even if our result and the reference 
mesh are different. In order to evaluate and compare our VFDT 
adaptation, we define a triangle to surface error metric which is 
based on the previous vertex to surface error metric. The 
difference is instead of computing the distance from the resulting 
mesh vertices to the reference mesh surface, we compute the 

distance from each triangle centroid of the resulting mesh to the 
reference mesh surface. Our triangle to surface error metric is 
defined by: 
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M is the initial reference mesh and M' is the triangulated result to 
evaluate. A(M') is the total area of M'. A(t'i) is the area of each 
triangle t'i of the resulting mesh. ct'i are the resulting mesh 
triangles centroid. dist(ct'i , M) is the minimal distance between 
the centroid ct'i and the initial reference mesh M. This triangle to 
surface error metric is used to compare all results when our 
Marching Triangle VFDT adaptation is evaluated. 

5. RESULTS 

In this section we evaluate our improved algorithm on both SFDT 
and VFDT representations and we compare our results with 
Marching Cube triangulation using the vertex to surface and the 
triangle to surface error metrics with the procedure described in 
the previous section. Regarding the Marching Cube results, we 
implemented the Cubical Marching Squares [12] and the 
Extended Marching Cube [14] algorithms which are two recent 
and efficient versions and we kept the one showing the best result 
for each model tested. 
First we used the Venus model reference mesh shown in Figure 
8a) to compute its SFDT with an appropriate grid resolution 
according to the model level of details. Then we triangulated the 
SFDT with Marching Cube and our improved Marching Triangle 
algorithms and these results are shown in Figure 8. We compared 
these two results to the reference mesh using the vertex to surface 
error metric and Table 1 shows these error values along with the 
number of triangles and the triangulation computing times for 
both results. The timing measures were made using a Pentium 4 
CPU computer with a 3.03GHz clock. 
In Figure 8 both results are of good quality but we see that the 
triangles of Marching Cube result are more dependent on the 
voxels size. Figure 8b) result also shows small degenerated 
triangles forming elevation lines depending on the grid resolution 
which is the classic signature of Marching Cube algorithm. 
Marching Triangle result in Figure 8c) shows a more 
homogeneous triangulation and sharp edges such as the one at the 
bottom are better preserved compared to Marching Cube result. 
Table 1 also shows that Marching Triangle result is of better 
quality according to the error metric. Our result also contains 
fewer triangles, thus optimizing the model quality, storage and 
memory space with almost one third less triangles than Marching 
Cube result. The drawback of our algorithm is the computation 
time which is almost the double compared to Marching Cube. The 
triangulation time is still reasonable for this model but it could 
make a difference for example in real time applications on large 
models. 
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Figure 8: Triangulation results on the Venus model 
 

Table 1: Triangulation parameters for the Venus model 
 
 
 
 
 
 
We used a Genus3 virtual model to compare our algorithm 
adaptation to the VFDT and results are shown in Figure 9. For 
this evaluation a coarse grid resolution was used to highlight the 

advantage of the vector field adaptation. Starting with the initial 
model in Figure 9a) we computed both SFDT and VFDT of the 
model at same resolution. Then we triangulated both implicit 
representations with our Marching Triangle improved algorithm. 
Results in Figure 9b) and 9c) were compared to the initial model 
using our triangle to surface error metric definition and Table 2 
shows the results for this model. 
In Figure 9 we see that our VFDT adaptation is of better quality 
compared to the algorithm applied to the SFDT. Using the exact 
isosurface point at step 2 in the VFDT adaptation produces a more 
accurate result than the approximation of the isosurface with the 
SFDT. Table 2 error metric values show that our adaptation takes 
advantage of the VFDT improved representation to obtain a better 
result. The timings in Table 2 show that the simplification of step 
2 in the algorithm adaptation to the VFDT is faster than with the 
SFDT but the difference is not significant compared to the overall 
algorithm timing. The resulting meshes numbers of triangles are 
very similar with both representations; our VFDT adaptation 
produced a few more triangles compared to the SFDT version. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9: Triangulation results on the Genus3 model 
 

Parameters Marching Cube Marching Triangle Difference

Nb Triangle 7 465 5 152 31.0% 

Error 7.58x10-3 6.88x10-3 9.23% 
Time (ms) 26.7 48.5 81.6% 

 
a) Reference mesh 

      
                 b) Marching Cube                             c) Marching Triangle 
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Table 2: Triangulation parameters for the Genus3 model 
 
 
 
 
 
 
The Horse model shown in Figure 10 was used to compare 
previously introduced Marching Cube adaptation to the VFDT 
and our Marching Triangle adaptation to the VFDT. The voxel 
grid size shown in Figure 10b) was used to compute the VFDT of 
the initial mesh in Figure 10a). Figure 10c) and 10e) show both 
triangulation results over the VFDT.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10: Triangulation results on the Horse model 
 

The triangle to surface error metric was used to compare Figure 
10 triangulations to the initial mesh and results are listed in Table 
3 along with the other relevant parameters for this model. The 
local triangle to surface error metric computed at each triangle 
centroid has been converted into an error colormap in which red 
corresponds to the greatest and blue to the lowest error. These two 
colormaps are shown in Figure 10d) and 10f) for both 
triangulations. 
Figure 10c) shows that Marching Cube adaptation to the VFDT is 
of better quality than the algorithm applied to the SFDT. The 
result contains no more small degenerated triangle. But the 
triangle sizes are still very dependent on the grid resolution and 
Marching Cube result still contains significantly more triangles 
compared to our Marching Triangle adaptation. Marching Cube 
adaptation to the VFDT provides a better approximation than the 
SFDT version but vertices positions are not exactly on the 
isosurface, they still are approximations. Therefore our Marching 
Triangle adaptation which takes fully advantage of the VFDT 
representation with exact vertices positions on the isosurface 
produces a more accurate result according to the error metric in 
Table 3. Visually in Figure 10 we also see that Marching Triangle 
colormap contains less red color errors compared to Marching 
Cube colormap. Even if our algorithm processing time is a bit 
faster over the VFDT compared to the SFDT, it is still much 
slower than Marching Cube adaptation to the VFDT. 
 

Table 3: Triangulation parameters for the Horse model 
 
 
 
 
 
 

6. CONCLUSION AND FUTURE WORK 

In this paper we designed a new Marching Triangle algorithm to 
improve the triangulation result of such method over the SFDT of 
digitized objects in their surface reconstruction process. Our 
contribution focused on improving several steps of the original 
algorithm to overcome the crack forming problem. We proposed a 
variable projection distance and a vertex position interpolation to 
provide a better isosurface approximation. We introduced a 
modified sphere for testing potential triangles geometry 
consistency before adding them to the resulting mesh. We also 
proposed testing new potential triangles which can lead to more 
complete results in particular cases. We structured an edge 
processing sequence which is more efficient during the 
triangulation process. Our new algorithm was simplified and 
adapted to the VFDT to provide more accurate results based on 
this improved representation. We compared our algorithm results 
to Marching Cube triangulation and demonstrated its relevancy 
based on error metric measurements. In that comparison 
procedure we also designed a new error metric which is more 
suitable for our algorithm adaptation to the VFDT. 
Future work will include optimizing the processing time of every 
step of our new algorithm since it is a drawback compared to 
Marching Cube performances. We will mainly focus on the 
triangle geometry consistency testing step since it is the most time 

Parameters Marching Cube Marching Triangle Difference

Nb Triangle 57 251 46 716 18.4% 
Error 3.40x10-3 3.19x10-3 6.18% 

Time (ms) 245.4 429.7 75.1% 

Parameters SFDT Imp. Rep. VFDT Imp. Rep. Difference

Nb Triangle 3 481 3 615 3.71% 

Error 6.14x10-2 5.63x10-2 8.31% 
Time (ms) 33.6 32.7 2,68% 

    
          a) Initial reference mesh                             b) Voxel grid 

    
          c) Marching Cube result                      d) Marching Cube error 

    
       e) Marching Triangle result                  f) Marching Triangle error 



consuming one of the overall algorithm. We will also work on 
adapting our new algorithm to other representations such as 
continuous implicit surfaces, point clouds and 3D volumetric 
datasets for medical and related applications. Adapting our 
algorithm to these representations will provide a useful tool to a 
wider range of applications in computer graphics. Surface-based 
triangulation algorithms such as Marching Triangle are more 
complex to design to obtain efficient results but in general their 
resulting meshes are of higher quality compared to volume-based 
methods which are usually simpler to implement. 
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