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Abstract 
Iris recognition has many desirable properties for reliable 
individual authentication but usability is its largest bottleneck to 
wide deployment. Thus smart interface and machine intelligent 
are the objective of next-generation iris recognition. This paper 
presents the technology roadmap for smart iris recognition (SIR). 
Firstly, the concept of SIR is introduced, including its definition, 
characteristics and performance target. Then the evolution 
process of iris acquisition and recognition algorithm is proposed 
respectively. With various strategies of human-machine 
interaction, iris acquisition systems are grouped into seven 
categories, i.e. Close-range IR, Active IR, IR at a distance, 
Active IR at a distance, Passive IR on move, Active IR on move, 
IR for Surveillance. Iris recognition algorithms advance to be 
more accurate, robust, efficient and secure. The achievements of 
state-of-the-art iris recognition methods especially the 
contributions of our research group are reviewed in the 
roadmap.  
Keywords: Biometrics, Iris recognition, Technology roadmap. 
 

1. Introduction 
Reliable individual authentication has important applications 

for both homeland and personal security. For example, accurate 
identification of criminals and terrorists leads to peaceful world. 
Secure verification of subjects to access bank accounts can 
avoid identity theft. With fast development of sensors, 
computers and algorithms, biometric traits such as fingerprint, 
face, iris, hand geometry, etc. are used for automatic personal 
identification [1]. Although fingerprint dominates the biometrics 
market now, it was predicted that iris recognition will become 
the most important biometric modality in the next 10 to 15 years 
[2]. Iris is the annular part of human eye between pupil and 
sclera (Fig. 1). There are mainly three desirable properties 
making iris recognition a particularly promising solution to 
security in the near future. 

 Uniqueness: The uniqueness of iris pattern comes from the 
richness of texture details in iris images, such as freckles, 
coronas, stripes, furrows, etc. The randomly distributed and 
irregularly shaped microstructures of iris patterns make the 
human iris one of the most informative biometric traits. It is 
commonly believed that it is impossible to find two persons 
with identical iris patterns, even they are twins. The testing 
report of National Physical Laboratory of UK demonstrated 
that iris recognition is the most accurate biometrics [4]. 
 Stability: Iris texture is formed during gestation and stable 
across ages. So that the Afghan girl of National Geographic 
can be found even 17 years later based on her iris features [5]. 
 Non-invasiveness: Since the iris is an internal organ as well 
as externally visible, iris based personal identification 
systems can be non-invasive to their users, which is of great 
importance for practical applications. 

   

    
Figure 1: Some iris images from the CASIA database [3]. 

 
Flom and Safir first proposed the concept of automated iris 

recognition in 1987 [6]. Since then, research of iris acquisition 
and pattern recognition has achieved great progress. Recently, 
iris recognition has become an active topic in academia, 
industry and government. Iris recognition is playing a more and 
more important role in many mission-critical applications, such 
as assess control, national ID card, border crossing, welfare 
distribution, missing children identification, etc.  

Our group has started research of iris recognition since 1998. 
We have experienced the fast development of iris recognition 
technology during the last ten years. However, “What is the 
future direction of iris recognition?” and “How to get there?” 
These questions are very important to researchers in iris 
recognition field but have never been addressed in literature, 
which motivates this paper to illustrate the technology roadmap 
of iris recognition.  

Usability is the largest bottleneck of current iris recognition. 
So iris recognition is shift from “machine-centered” to 
“human-centered”, becoming easier to use with support of 
advanced hardware and software. Next-generation iris 
recognition must be smart and friendly to users. So we define 
the iris recognition systems in the future as SIR (smart iris 
recognition). 

2. Overview of smart iris recognition 
There are mainly three factors involved in the process of 

iris recognition: camera, algorithm and subject (Fig. 2).  
 

 
Figure 2: The diagram of iris recognition. 

 
The variables of these three factors in iris recognition are 

summarized as follows: 
 Camera: Active (Pan/Tilt/Zoom) or Passive camera; One 
camera or Multi-camera; Close-range or Long-range lens 
 Algorithm: Variations in liveness detection/iris detection 
and tracking/ image quality assessment/image 
enhancement/iris localization/normalization/iris feature 
representation/iris feature extraction/iris feature 



matching/iris database retrieval 
 Subject: Single or Multiple subjects; Static or Move; 
Close to camera or At a distance 

To make iris recognition accepted by subjects, the design 
principle of SIR must be human-centered rather than 
machine-centered. Then subjects never need to “stop, close, 
bend and stare” and they can enjoy the freedom of position and 
motion during iris recognition process. So the most compelling 
feature of SIR is that users are not required to intendedly 
cooperate with iris system. Iris images can be acquired and 
recognized unobtrusively and in real-time as a group of users 
are walking and at a distance to iris cameras. To support the 
friendly HCI (Human-Computer Interaction), iris acquisition 
system must be configured with multiple active cameras with 
long-range lens and iris recognition algorithms must be fast, 
robust, efficient and secure and adaptive to image quality. Here 
the main characteristics of SIR are listed as follows: 

 Human-centered iris recognition 
 Self-adaptive machine intelligence 
 User-friendly HCI 
 Cooperative multi-camera system 
 Active detection, tracking and identification 
 Iris recognition on the move 
 Accurate identification result 
 Robust recognition performance 
 Efficient recognition process 
 Fast matching engine  
 Multi-user iris recognition at the same time 
 High throughput 
 Abnormal event report 
 Self-protection 

The performance targets of SIR are listed as follows: 
 Number of users recognizable at the same time: 5 

persons 

 Head pose of users (Left/Right): 90 ~ 90−  

 Head pose of users (Up/Down): 30 ~ 10−  
 Standoff distance: 1~5 m 
 Speed of movement: 2 m/s 
 Recognizable zone (Height × Width × Depth): 

1m×3m×2m 
 Recognition time: <1 s 
 False accept rate: <1/10,000,000 
 Genuine accept rate: >99.9% 
 Success rate of liveness detection: >99.99% 
 Speed of iris matching: >100,000,000 

records/second 
 High throughput: 60 subjects/min 
 Eyeglasses: Allowable 

Iris recognition, as an interdiscipline, involves optics, 
electronics, mechanics, image processing, and pattern 
recognition. Advances of iris recognition are driven by both 
commercial applications and research problems. Both iris 
acquisition systems and iris recognition algorithms rapidly 
evolve in the last decade, with a common objective to make iris 
recognition easier. The following two sections describe the 
technology roadmap of iris acquisition and recognition 
algorithm respectively, including past, present and future. To 
better understand the evolution of iris recognition, it is 
necessary to review some representative works especially 
state-of-the-art.  

3. Technology roadmap of iris acquisition 
Iris image acquisition is an extremely important but hard 

problem. Iris images of low quality often result in false 
acceptance and false rejection and thus seriously affect the 
performance of a recognition system. However, iris acquisition 
is a very challenging problem due to the following reasons:  

 The iris is fairly small (its diameter is about 1cm) but its 
resolution must be larger than 150 pixels in image. So 
DOF (depth of field) of iris acquisition system is limited. 

 Many people especially Asians only exhibit abundant 
texture features under near infrared (NIR) lighting. So 
configuration of NIR lighting system is a big problem in 
iris acquisition. 

 The iris should be optically on-axis and it is hard to detect 
and track iris due to its small size and head movement. 

 When people wear eyeglasses it is challenging to capture 
qualified iris images due to specular reflections and dirty 
on eyeglasses.  

With the enlargement of the biometrics market in the late 
1990s, some corporations such as Sarnoff, Panasonic, LG, OKI 
etc. started to design iris image acquisition apparatus and 
develop iris recognition (IR) products based on efficient 
algorithms proposed in research community. With variation of 
the camera and user factors in iris recognition (Fig.2), we 
identify seven categories of iris acquisition systems in the 
history of iris recognition (Table 1). It is clear that iris 
acquisition is evolving from passive to active, close-range to 
long-range, static to dynamic, single camera to multi-camera 
(Fig. 3). So the position and motion constraints on users during 
iris recognition can be significantly reduced. Users will be 
pleased to use smart iris recognition in the future. But it should 
be noted that advanced technologies in iris acquisition need a 
time period to be mature for practical applications. The 
mainstream iris acquisition systems in current commercial 
market still belong to the simplest category, i.e. Close-range IR.  

 

 
Figure 3: Technology roadmap of iris recognition. 

 
3.1 Close-range IR 

Close-range IR is based on fixed-focus lens and has limited 
DOF (around 10cm). Users need to stop and stare at the iris 
camera to get clear iris images in Close-range IR (Fig. 4). 
CASIA has done research for Close-range IR for ten years and 
developed a number of novel iris cameras (Fig. 5). Our 
experiences demonstrate that smart HCI is helpful to improve 
the ease-of-use of iris recognition. For example, the positioning 
system is designed to facilitate the user to precisely adjust the 
distance and focus angle between the user and the iris sensor for 
non-invasive imaging. It may include the distance measurement 
sensors and external indicator lights, mirrors and screen for 
feedback. The physical capture system consists of a central 
control unit, a family of optical lens, frame grabbers and CCD 
or CMOS cameras, and so on. The central control unit 
coordinates other units by analyzing the successively collected 
information and sending out reasonable instructions. Besides 
hardware design, software modules such as eye detection, image 
quality assessment, eyeglasses detection and liveness detection 



can help the central control unit make decisions in iris 
acquisition.  

 

 
Figure 4: Example of close-range iris recognition. 
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Figure 5: Close-range IR cameras developed by CASIA. 
 

Iris image acquisition is a non-trivial issue and one of the 
main difficulties is how to set the near infrared illuminators so 
that an iris pattern is uniformly illuminated and the highlight 
spots due to NIR illuminators’ specular reflections are well 
controlled in the pupil region. Almost all commercial iris 
cameras’ illumination system generates only one major spot in 
the iris image which is often far from the pupil center. This 
configuration leads to non-uniform illumination in the iris 
region. Experiences show that clear iris texture details cannot be 
captured without strong and uniform infrared illumination. We 
have designed a circular NIR LED array, with suitable luminous 
flux for iris imaging, which has successfully solved the 
illumination problem in iris imaging. Our iris camera can 
capture very clear iris images whose quality is often much better 
than others (see Fig.1). The arrangement of the NIR LED array 
(and hence our novel design of NIR illumination) can be clearly 
seen in the specular highlights in the raw iris images as shown 
in Fig.1. 

We have constructed CASIA Iris Image Database [3] using 
self-developed iris cameras and released it to the public domain 
since 2002. The users of CASIA database have been increased 
to 2,400 research groups of 70 countries or regions. The CASIA 
Iris Image Database is gradually enlarged to include more 
images taken by various sensors from more races. Now 
CASIA-IrisV3 includes three subsets, containing a total of 
22,051 iris images from more than 700 subjects. It is probably 
the largest iris image database in size in the public domain. 
3.2 Active IR 

Close-range IR statically waits for subject entering capture 
volume, i.e. camera-centered rather than human-centered. In 
contrast, active iris acquisition system is self-adaptive to the 
position and motion of subjects. This involves two problems: 
one is “how to find iris?” and the other is “how to align the 
camera with iris?” Compared with small iris, face is easier to be 
detected in cluttered background. So it is a common practice 
that a wide-angle camera for face capture is added into iris 
acquisition system [9][11][12]. Once face is detected in 

wide-angle view, then the position of dual-eye is estimated 
based on pre-calibrated coordinate system between face and iris 
cameras. Finally, the iris camera is controlled by a pan-tilt-unit 
(PTU) moving towards the iris region. If iris is on the 
depth-of-field, the auto-focus iris camera can capture clear iris 
images.  

Figure 6 shows the prototype of active IR camera developed 
by CASIA [12]. Our system is based on low-resolution face and 
iris cameras, with low-price and high frame rate (30 fps). Face 
and iris cameras, along with the NIR arrays are co-located in 
PTU. Our active iris acquisition system is simple and compact 
but performs well. It can capture high-quality iris image in the 
range of 0.6m×0.4m×0.4m in average 3 to 5 seconds. 

 

  
Figure 6: Active IR camera developed by CASIA. 

 
3.3 IR at a distance 

Fancourt et al. verified the possibility of capturing qualified 
iris images at a distance (5m, 10m) [10]. They developed a 
complex optical system based on telescope and infrared camera. 
The shortage of this system is that users need to fix their head to 
a position. So such an iris acquisition system has no potential 
for commercial applications, but it is a necessary stage in iris 
recognition roadmap. The experiences accumulated in this 
project are helpful for Sarnoff to develop Iris Recognition on the 
Move [13]. 
3.4 Active IR at a distance 

A straightforward improvement of the user interface of IR at 
a distance is to use the active imaging techniques presented in 
Section 3.2. We have recently developed an active iris 
acquisition system for long-range iris recognition (Fig.7), which 
has three novelties compared with the IR at a distance [9]. 

 

 
Figure 7: Active IR at a distance developed by CASIA. 

 
Firstly we use a high-resolution camera (2352×1728 pixels) 

with fast speed (15 fps) and an 300 mm focus lens to build an 
iris acquisition system at 3 meters of standoff distance, which 
can capture clear iris images (Fig. 8) in a volume of about 
16cm×12cm×10cm in real time. The diameter of iris is around 
180 pixels in captured iris images, which is much better than the 
128 pixels in IR at a distance [10] and the 100 pixels in IR on 



the move [13]. 
 

 
Figure 8: Example iris images captured by Active IR at a 
distance. 

 
Secondly, a pan-unit is used to automatically adapt to 

different heights of people based on the face location in 
wide-angle view.  

Thirdly, a LCD screen and sound indicator are used to guide 
users into the capture volume. People can see their face and eyes 
images in the front screen and adjust themselves to the right 
position. 

Our active IR at a distance has been tested by more than 200 
users. Experiments show that the whole procedure of image 
acquisition, processing and iris recognition only takes about 3 
seconds with extremely high accuracy. Even people wearing 
eyeglasses can be correctly recognized by our system.  
3.5 Passive IR on move 
   Matey et al. in Sarnoff Corporation proposed the concept of 
“Iris on the Move” (IOM) [13] and developed a prototype for 
potential use in commercial applications. The basic idea of IOM 
is to capture iris images when subjects walk through an access 
control point at normal walking speed (<1m/s) without pause 
[13]. Multiple high-resolution iris cameras are mounted on the 
portal, covering a capture volume 20cm×40cm×10cm. It is 
estimated at lease one in-focus image can be captured as the 
subject walks through the system [13]. High-power LED arrays 
are flashed to provide strong NIR illumination for iris imaging 
by video synchronization.  
   However, the recognition rate of the IOM is not very good 
due to poor quality (blur, low-resolution) iris images and 
specular reflections in iris texture. But the idea of “Iris 
Recognition on the Move” is promising and represents the 
future direction of iris recognition. 
3.6 Active IR on move 

IOM [13] indeed adopts passive iris acquisition scheme, 
using iris cameras of fixed lens, without support of Pan-Tilt 
units. So IOM can only wait for the presentation of iris when 
subject passing through the narrow depth of field (10 cm). A 
possible way to extend the capture volume of IOM is to be more 
active in iris acquisition. Because subjects are determined to 
walk towards access control point, it is easy to track the 
movement of human eyes in defined trajectory. With a 
high-speed auto-focus iris camera or a camera array with 
variable focal lengths, we can have more than one chance to 
capture the clear iris images. So active acquisition of moving 
subjects at a distance is promising to become a reality in next a 
few years.  

3.7 IR for Surveillance 
The above iris acquisition systems are mainly proposed for 

positive personal identification. When legitimate users request 
assess to computer, building, homeland, etc. they fully cooperate 
with iris recognition systems to make them identified. In 
contrast, when police like to check the identity of each subject at 
crowded subway against a database of the most wanted 
criminals and terrorists, covert iris image capture and negative 
personal identification is required. In such a security 
surveillance application, you can not require everybody to line 
up and go through a portal one by one. Thus efficient iris 
acquisition of a group of subjects without any constraints on 
pose, position and movement in cluttered background is a grand 
challenge.  

IR for surveillance of wide areas requires a network of iris 
cameras, being active, intelligent and collaborative in iris 
acquisition. In covert iris recognition, the image quality can not 
be guaranteed. Facial features, height information and other 
soft-biometrics may be combined with iris textures to finally 
determine the identity of an individual. Covert iris recognition is 
a part of a video surveillance system, rather than an independent 
module. Although IR for surveillance is a number of years away, 
it has very important applications in homeland security and is of 
great interest to government agencies [14]. For example, the 
Defense Advanced Research Projects Agency (DARPA) of US 
has started the HumanID (Human Identification at a Distance) 
program since 2000, with the objective to develop automated 
biometric identification technologies such as face, iris, gait etc. 
to detect, recognize and identify humans at great distances.   

4. Technology roadmap of iris recognition 
algorithms 

Iris recognition algorithm transforms input iris image into 
identity after a number of steps: image quality assessment, 
liveness detection, iris localization, normalization, feature 
extraction, feature matching and database retrieval.  

Daugman proposed the first successful algorithm for iris 
recognition [15]. In this algorithm, integrodifferential operator is 
used to localize the circular boundaries of iris region. Then iris 
texture is normalized to polar coordinate system using linear 
mapping. In feature extraction, even and odd Gabor filters are 
proposed to demodulate phase information in each iris region. 
And phase value is coarsely quantized to 2-bit binary codes so 
that a given iris image is represented with 256 Bytes iris code. 
At the feature matching step, the dissimilarity between two iris 
codes was measured by Hamming distance. Daugman’s 
algorithm has been widely used in commercial iris recognition 
products.  

Great progress has been achieved on iris recognition method 
since last decade.  Testing results of both International 

Biometrics Group (FRR=2~5% @ FAR= 610− ) [16] and Iris 

Challenge Evaluation in 2006 (FRR=1~3% @ FAR= 310− ) [17] 
demonstrate that the state-of-the-art iris recognition algorithms 
perform well on most of qualified iris images. So the future 
efforts should pay more attention to processing and recognition 
of poor quality iris images. Iris recognition algorithm should be 
more accurate, robust, efficient and secure. This trend is 
demonstrated as follows with some examples.  
4.1 Iris localization 
  Most of iris localization methods in literature are based on the 
assumption that the boundary of iris is circular, but a small part 
of iris images have irregular shape of pupil and limbic 
boundaries. So we propose multi-arc model to fit the noncircular 
boundary of iris pattern and achieve improved recognition 
performance (see Fig. 9). Daugman’s new method models inner 
and outer boundaries of iris with active contour [18]. Other 
challenging problems in iris localization include off-axis iris 
images, occlusion of eyelids and eyelashes, specular reflections 



due to eyeglasses, etc. With proposal of new and image adaptive 
algorithms, the last 1% challenging iris images are promising to 
be precisely localized. At last, sophisticated iris region 
segmentation method can perform comparable to Human Visual 
System.  

   

   
Figure 9: Iris localization based on multi-arc fitting method. 
The left column shows iris images localized using circle model 
and the pupil of iris images in the right column are fitted with 
four arcs. The two example iris images are from ICE [17]. 
 
4.2 Iris normalization 

Pupil dilation and contraction caused by illumination 
changes result in the nonlinear deformation of iris texture (Fig. 
10). For example, pupil diameter may range from a minimum of 
about 1.5mm to a maximum of over 7mm. Such a distortion of 
iris texture enlarges intra-class variations and increases the False 
Reject Rate (FRR). So iris normalization is important to iris 
recognition as it intends to reduce the effect of iris deformation. 
As the majority of iris recognition systems employ linear 
normalization method based on rubber sheet model, spatial 
misalignment of iris features has become the main cause of false 
rejection errors. We propose an efficient method to correct 
nonlinear deformation of iris texture [19]. Gaussian function is 
used to approximate the additive deviation of nonlinear iris 
stretch [19]. Our method achieved significant improvement over 
linear normalization model, making iris recognition more robust 
in realistic environments [19]. Since the mechanism of pupil 
dilation and contraction is still unknown, more precise 
non-linear iris normalization model is promising to be proposed 
in the future.  

 

     
 
Figure 10: Example of iris deformation caused by pupil dilation. 
These two iris images are from the same eye but differ in pupil 
diameter.  
 
4.3 Iris liveness detection 

The success of spoofing iris recognition systems with fake 
iris pattern raises the security problem of iris recognition [20]. 
Fraudulent iris images may be printed on paper and contact lens, 
displayed in video, shown by glass eyes (Fig.11). The 
countermeasures proposed by Daugman include motion of pupil, 
high-frequency energy, etc. [21]. However, pupil hippus is also 
observable when people wear contact lens and the 

high-frequency features are not stable when iris images are 
noisy or blurred. Our solution to iris liveness detection is 
statistical texture classification [22]. Three anti-spoofing 
measures are proposed to detect color contact lens in iris 
recognition, i.e. iris edge sharpness, statistical distribution of 
iris-textons, selected textural features based on co-occurrence 
matrix [22]. The correct classification rate on a dataset including 
640 fake iris images is more than 95%. Although our iris 
liveness detection algorithm achieved state-of-the-art 
performance, there is still much room to be improved. 

 

   
         (a)              (b)              (c) 
Figure 11: Fake iris images. (a) Iris printed on paper. (b) Iris 
printed on contact lens. (c) Iris pattern of glass eye. 
 
4.4 Iris feature representation 

A key and still open issue in iris recognition is how to 
effectively represent such textural information using a compact 
set of features (iris features). There is no commonly 
acknowledged standard of iris features. We propose to use 
ordinal measures for iris feature representation with the 
objective to characterize qualitative relationships between iris 
regions rather than precise measurements of iris image 
structures (Fig.12). Such a representation may lose some 
image-specific information but it achieves a good trade-off 
between robustness and distinctiveness. We show that ordinal 
measures are intrinsic features of iris patterns and largely 
invariant to illumination changes. Moreover, compactness and 
low computational complexity of ordinal measures enable 
highly efficient iris recognition.  

 

Figure 12: Comparison of intra-class and inter-class ordinal 
measures in normalized iris images. The upper two iris images 
are from the same eye, and their ordinal measures are largely 
invariant even under different illuminations. However, the 
probability of matching ordinal measures of inter-class iris 
images is only around 50%. 
 

With flexible intra-lobe and inter-lobe parameters such as 
location, scale, orientation and distance in image filtering 
(Fig.13), ordinal measures (OM) form a general framework for 
iris feature representation and extraction. Specific iris coding 
schemes can be obtained under the guidance of this framework 
by changing parameter configurations of ordinal filter. 
Furthermore, with the OM representation model in place, we 
demonstrate that iris image features of a number of 
best-performing iris recognition methods may be interpreted as 
special cases of this model.  



 
Figure 13: Variable ordinal measures. 

 
Since ordinal measures are determined to be very suitable to 

describe iris features, the roadmap of iris feature representation 
is an evolution procedure of selecting the most effective subset 
of ordinal measures from the huge feature space. Our recent 
work [23] proposes a novel machine learning algorithm, 
Similarity-Oriented Boosting, to select multiple regional ordinal 
measures, achieving better iris recognition performance than 
state-of-the-art algorithms. 
4.5 Iris database retrieval 

In state-of-the-art iris recognition systems, the input iris 
image has to be compared with a large number of templates in 
database. When the scale of iris database increases, they are 
much less efficient and accurate. Possible solutions to speedup 
large-scale iris database retrieval are coarse classification of iris 
image database and image indexing technique. So the most 
similar templates to query iris image are chosen from central 
database for iris matching firstly.  
   We proposed a method for coarse iris classification based on 
occurrence of visual primitives in iris images [24]. Iris images 
in database are classified into five categories with a correct 
classification rate of 95%. By combining this method with 
traditional iris recognition algorithm, our system shows better 
performance in terms of both speed and accuracy. 

5. Conclusions 
Iris recognition has a bright future but great efforts are 

required on smart user interface and intelligent recognition 
algorithms. Next-generation iris recognition respects Human as 
the center of design principles. To improve the usability of iris 
recognition, iris acquisition should reduce the constraints on the 
position and motion of users and iris recognition algorithms 
should be more accurate and robust in iris localization, 
normalization and feature representation, secure in iris liveness 
detection and faster in iris database retrieval. This paper 
presents the technology roadmap of smart iris recognition, 
clarifying the unknown future, illustrating the evolution process, 
identifying the key problems, and providing possible solutions. 
Researchers, enterprisers, and investors in iris recognition can 
benefit from this paper to make right decisions, so that 
widespread usage of iris recognition to safeguard our society 
can be earlier realized. 
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Abstract 
Vision-simulated imaging (VSI) is the computer generation of 
synthetic images to simulate a subject's vision, by incorporating 
the characteristics of a particular individual’s entire optical 
system.  Using measured aberration data from a Shack-Hartmann 
wavefront aberrometry device, VSI modifies input images to 
simulate the appearance of the scene for the individual patient. 
Each input image can be a photograph, synthetic image created by 
computer, frame from a video, or standard Snellen acuity eye 
chart -- as long as there is accompanying depth information. An 
eye chart is very revealing, since it shows what the patient would 
see during an eye examination, and provides an accurate picture 
of his or her vision.  Using wavefront aberration measurements, 
we determine a discrete blur function by sampling at a set of 
focusing distances, specified as a set of depth planes that 
discretize the three-dimensional space. For each depth plane, we 
construct an object-space blur filter.  VSI methodology comprises 
several steps:  (1) creation of a set of depth images, (2) 
computation of blur filters, (3) stratification of the image, (4) 
blurring of each depth image, and (5) composition of the blurred 
depth images to form a single vision-simulated image. 
 
VSI provides images and videos of simulated vision to enable a 
patient's eye doctor to see the specific visual anomalies of the 
patient. In addition to blur, VSI could reveal to the doctor the 
multiple images or distortions present in the patient's vision that 
would not otherwise be apparent from standard visual acuity 
measurements. VSI could educate medical students as well as 
patients about the particular visual effects of certain vision 
disorders (such as keratoconus and monocular diplopia) by 
enabling them to view images and videos that are generated using 
the optics of various eye conditions. By measuring PRK/LASIK 
patients pre- and post-op, VSI could provide doctors with 
extensive, objective, information about a patient's vision before 
and after surgery.  Potential candidates contemplating surgery 
could see simulations of their predicted vision and of various 
possible visual anomalies that could arise from the surgery, such 
as glare at night. The current protocol, where patients sign a 
consent form that can be difficult for a layperson to understand 
fully, could be supplemented by the viewing of a computer-
generated video of simulated vision showing the possible visual 
problems that could be engendered by the surgery. 
 
Keywords: vision realistic rendering, vision simulation, blur, 
optics, LASIK, PRK, corneal refractive surgery, cornea, visual 
acuity, visual performance, depth of field, optometry, 
ophthalmology, wavefront aberrometer, pupil, fovea. 

 
(left) Image simulating the vision of an aberration-free model eye. 
(right) Image simulating the vision of a patient with the vision 
disorder of keratoconus. 

1. OPTOMETRY AND OPHTHALMOLOGY 
In practice poor visual performance is often attributed to simple 
blur; however, our technique[1][2] enables the generation of 
vision-simulated images andanimations that demonstrate specific 
defects in how a person sees.Such images of simulated vision 
could be shown to an individual's eye care clinician toconvey the 
specific visual anomalies of the patient.Doctors and patients could 
be educated aboutparticular vision disorders by viewingimages 
that are generated using the opticsof various ophthalmic 
conditions such askeratoconusand monocular diplopia. 
 
One of the most compelling applications is in the contextof vision 
correction using laser corneal refractive eye surgeries such asPRK  
(photorefractive keratectomy) and LASIK (laser in-situ 
keratomileusis).Currently, in the United States alone, a million 
people peryear choose to undergothis elective surgery.By 
measuring subjects pre-operatively and post-operatively,our 
technique could be used toconvey to doctors what the vision of a 
patient is like before and aftersurgery.In addition, accurate and 
revealing medical visualizations of predicted visual acuity andof 
simulated vision could be providedby using modeled or adjusted 
wavefront measurements.Potential candidates for such surgery 
could view these images to enable them tomake more educated 
decisions regarding the procedure.Still another application would 
be to show such candidatessome of the possible visualanomalies 
that could arise from the surgery, such as glare at night.With the 
increasing popularityof these surgeries, perhaps the current 
procedure which haspatients sign aconsent form that can be 
difficult for a layperson to understand fully could besupplemented 
by the viewing of a computer-generated animation ofsimulated 
visionshowing the possible visual problems that could be 
engendered by the surgery. 

2. ALGORITHM 
The approach comprises three major components, as follows: 
 
2.1 Constructing Object Space Point Spread 
Function 
 



A Point Spread Function (PSF) plots the distribution of light 
energy on theimage plane based on light that has emanated from a 
point source and haspassed through an optical system.Thus it can 
be used as an image space convolution kernel. 
 
We introduce the object space point spread function (OSPSF), 
whichis similar to the usual image space point spread function, 
asdescribed above,except thatit is defined in object space and thus 
it varies with depth.  The OSPSFis a continuous function of depth; 
however, wediscretize it, thereby defining a sequence of 
depthpoint spread functions (DPSF) at some chosen depths. 
 
Since human blur discrimination is nonlinear in distancebut 
approximately linear in diopters (a unit measured in inverse 
meters),the depths are chosen with a constant dioptric spacing 
ΔDandthey range from the nearest depth of interest to the farthest.  
Atheoretical value of ΔD can be obtained from therelation 
Θ=pΔD, where Θ is the minimum subtendedangle of resolution 
and p is thepupil size in meters.  For a human with 20/20 visual 
acuity, Θis1 minute of arc; that is, Θ=2.91x10-4. 
 
The DPSFs are histograms of rays cast normal to the wavefront.  
To compute these functions, we firstplace a grid with constant 
angular spacing at eachof the chosen depths and initialize counters 
in each grid cell to zero.Then we iteratively choose a point on the 
wavefront,calculate the normal direction, and cast a ray in this 
direction.  Asthe ray passes through each grid, the cell it intersects 
has its counterincremented.  This entireprocess is quite fast and 
millions of rays may be cast in a few minutes.Finally, we 
normalize the histogram so that its sum is unity. 
 
In general, wavefront aberrations are measured with the subject's 
eyefocused at infinity.However, it is important to be able to shift 
focus for vision-simulated imaging.Recent research results in 
optometry showedthat aberrations change significantly with 
accommodation.When aberrometric data is available for the eye 
focused at the depththat will be used in the final image,our 
algorithm exploits that wavefront measurement. 
 
In the situation where such data is not available, we assumethat 
the aberrations are independent ofaccommodation.  We can then 
re-index the DPSFs, which is equivalent toshifting the OSPSF in 
the depth dimension.Note that this may require the computation of 
DPSFs at negative distances. 
 
We further assume the OSPSF is independent of the image plane 
location.In optics,this is called the ``isoplanatic'' assumption and 
is the basis for beingable to perform convolutions across the 
visual field.  For human vision,this assumption is valid for at least 
several degrees aroundthe fixation direction. 
 
2.2 Fitting a Wavefront Surface to Aberrometry 
Data 
 
The output of the Shack-Hartmann device comprisesa ray 
orientation (normal vector)at each lenslet.  Current devices yield 
only 50 to 200 suchvectors.  To generate the millions of samples 
necessary to calculate theOSPSF (see Section \ref{s:OSPSF} 
above), we first generate a smoothmathematical surface 
representation of the wavefront from this sparse data.Our 

wavefrontsurface is a fifth degree polynomial bivariate surface 
defined asa height field whose domain is the pupil plane.This 
surface is determined by a least squares fit to the Shack-Hartmann 
data. 
 
We use a particular polynomial formwhich was developed in 1934 
by the Dutch mathematician and physicistFrits Zernike who was 
awarded the Nobel Prize in Physics 1953 for discoveringthe phase 
contrastphenomenon.Zernike polynomials are derived from the 
orthogonalization of theTaylor series.  The resulting polynomial 
basis corresponds toorthogonal wavefront aberrations. The 
coefficients weightingeach polynomial have easily derived 
relations with meaningfulparameters in optics. 
 
2.3 Rendering Steps 
 
Given the input image and its associated depth map,and the 
OSPSF, the vision-simulated imaging algorithm comprises three 
steps: (1) create a set of depth images,(2) blur each depth image, 
and (3) composite the blurred depth imagesto form a single 
vision-simulated image. 
 
Create depth images: 
Using the depth information, the image isseparated into a set of 
disjoint images, one at each of the depths chosen in thepreceding 
section.  Ideally, the image at depth dwould be rendered with 
thenear clipping plane set to d+ΔD/2 and the far clipping plane set 
tod-ΔD/2.  Unfortunately, this is not possible becausewe are using 
previously rendered images and depth maps.Complicated texture 
synthesis algorithms would be overkill here,since the results will 
be blurred anyway.The following technique is simple, fast, and 
works well in practice:For each depth, d, those pixels from the 
original image that are withinΔD/2 diopters of d are copied to the 
depth image. 
 
Blur each depth image: 
Once we have the depth images, we doa pairwise convolution:  
Each depth image is convolvedwith its corresponding DPSF, 
thereby producing aset of blurred depth images. 
 
Composite: 
Finally, we composite these blurred depth images into a single, 
vision-simulated image.This step is performed from far to near, 
using alpha-blendingfollowing alpha channel compositing rules. 
 
2.4 Elimination of Occlusion and Discretization 
Artifacts 
 
Although processing in image space allows an increase in speed, 
the imagesmay have artifacts introduced.  This can occur in two 
ways, which we referto as occlusion anddiscretization.  The 
occlusion problemarises because there is scene geometry that is 
missing.  This resultsfrom the finite aperture of the lens, which 
allowsmore of the scene to be visiblethan would be seen through 
an infinitesimal pinhole.Thus, without additional input, the colors 
from parts of the scene that arebehind objects would have to be 
approximately reconstructed using the bordercolors of visible 
objects. 
 



The discretization problem occurs fromseparating the image by 
depth. At adjacent pixels in different sub-images, thecalculation of 
depth of field is complicated. This arises because 
theseadjacentpixels may or may not correspond to the same 
object.An artifact can beintroduced into the image when a single 
object straddles twosub-images and the sub-images are 
blurred.The artifact arises when the far pixel is averaged with 
neighboring colorsbehind the near pixel that do not match the far 
pixel's color.  Theneighboring colors are often black, which is the 
default backgroundcolor.  Consequently, a black blurred band 
occurs at the intersectionof the object with the separation of the 
sub-images that it spans. 
 

3. VALIDATION 
 
An important area of future work is validation, and will involve 
the establishment of psychophysical experiments. 
Nonetheless, some preliminary experiments are possible 
immediately, and our initial results have been positive.  First, 
patients who haveunilateral vision problems can view our 
simulations of the visionin their pathological eye using their 
contralateral eye, thereby evaluating the fidelity of the simulation. 
Second, consider patients who have vision conditions such as 
myopia, hyperopia, and astigmatism,that are completely corrected 
by spectacles or contact lenses.More precisely, in optometry 
terms, they might have 20/20 BSCVA (best spectacle corrected 
visual acuity).  Such patients could validate thequality of the 
depiction of their vision in vision-simulated images simply by 
viewing them while wearing their corrective eyewear.Third, the 
visual anomalies present in keratoconus are different fromthose in 
more common conditions such as myopia, and this distinctionis 
indeed borne out in our example images.  Specifically, 
keratoconuscan cause the appearance of diplopia (double-vision) 
whereas myopia. 
 

4. CONCLUSION AND FUTURE WORK 
 
We introduced the concept of vision-simulated imaging -- 
thecomputer generation of synthetic images that incorporate 
thecharacteristics of a particular individual's entire optical 
system.This paper took the first steps toward this goal, 
bydeveloping a method for simulating the scanned foveal image 
from wavefrontdata of actual human subjects, and demonstrated 
those methods on sample images.First, a subject's optical system 
is measured bya Shack-Hartmann wavefront aberrometry device.  
This device outputs ameasured wavefront which is sampled 
tocalculate an object space point spread function (OSPSF).The 
OSPSF isthen used to blur input images.This blurring is 
accomplished by creating a set of depth images,convolving them 
with the OSPSF, and finally compositingto form a vision-
simulated image.Applications of vision-simulated imaging in 
computer graphics as well as in optometry and 
ophthalmologywere discussed. 
 
The problem of vision-simulated imaging is by no means 
solved.Like early work on photo-realistic rendering, our method 
contains severalsimplifying assumptions and other limitations.  
There is muchinteresting research ahead. 
 

The first limitationsare those stemming from the method of 
measurement.  The Shack-Hartmanndevice, although capable of 
measuring a wide variety of aberrations, does nottake into account 
light scattering due to such conditions as cataracts.The wavefront 
measurements can have some error, and fitting the 
Zernikepolynomial surface to the wavefront data can introduce 
more.  However,since the wavefronts from even pathological eyes 
tend to be continuous,smooth interpolation of the Shack-
Hartmann data should not produce anysignificant errors.  
Consequently, any errors that are introducedshould be small and, 
furthermore, such small errors would imperceptiblein final images 
that have been discretized into pixels. 
 
Strictly speaking, the pupil size used for vision-simulated 
imagingshould be the same as the pupil size when the 
measurements are taken.However, the error introduced in using 
only part of the wavefront(smaller pupil) or extrapolating the 
wavefront (larger pupil) shouldbe quite small.  We have made use 
of three assumptions commonly usedin the study of human 
physiological optics:  isoplanarity,independence of 
accommodation, and  off-axis aberrations beingdominated by on-
axis aberrations.  Although we have argued that theseassumptions 
are reasonable and provide a good first-order approximation,a 
more complete model would remove at least the first two. 
 
As discussed in Section 2.1, we have assumed"independence of 
accommodation" since aberrometric measurements with theeye 
focused at the depth is not usually available.However, this is not a 
limitation of our algorithm.Our algorithm can exploit wavefront 
data wherethe eye is focused at the depth that will be used in the 
final image,when such a measurement is made. 
 
We currently do not take chromatic aberration into account, 
butagain that is not a limitation of our algorithm.  Since the 
datawe acquire is from a laser, it is monochromatic.  However, 
someresearch optometric colleagues have acquired polychromatic 
dataand will be sharing it with us.  It is again interesting thatrecent 
research in optometry by Marcos [3] showed that except for the 
low orderaberrations, most aberrations are fairly constant over a 
range ofwavelengths. 
 
We only compute the aberrations for one point in the fovea,and 
not for other points in the visual field.  However, itis important to 
note that forcomputer graphics, the on-axis aberrations are 
criticallyimportant because viewers move their eyes around when 
viewing ascene.  If we had actually included the off-axis 
aberrations ofthe eye, then the off-axis parts of the scene would 
have beenimproperly blurred for a person who is scanning the 
scene. Theoff-axis aberrations are of minor concern even without 
eyemovements since the retinal sampling of cones is sparse 
inperipheral vision. The image that we are simulating is formedby 
viewing the entire scene using the on-axis aberrations becausewe 
assume that the viewer is scanning the scene. 
 
However, since peripheral vision does makes important 
contributions to visualappearance, viewers are affected by optical 
distortions of peripheral vision.Thus, it is of interest to extend this 
method to properly address theoff-axis effects. 
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Recent progress in video-based eyetracking can be considered as a silent technological revolution in 
brain and behavioural sciences, approaching that of brain imaging methods. The importance of this 
methodology is quite obvious from the point of view of the ecological validity and practical implications 
of eyetracking. However, it is of a paramount significance for basic neurocognitive research as well. As a 
matter of fact, human eye movements are a common output of a number of philogenetically evolved and 
often (though not always) hierarchically organized brain systems. In this presentation, I will demonstrate 
how contemporary eyetracking research helps to disentangle their influences on task solution completing 
in a non-trivial way data obtained with neuroimaging methods. 

Four groups of perceptual, cognitive and communicative tasks will be considered, with corresponding 
paradigms of eyetracking and neurocognitive studies. The first paradigm consists of the analysis of 
distractor influences on the duration of visual fixations during a free visual exploration of pictures. The 
second paradigm allows investigation of the role of attention in the process of perceiving static and 
dynamic visual scenes. The third investigates dissociations of the subjective focus of visual work and the 
physical location of visual fixations depending on the task at hand. Finally, the fourth paradigm is related 
to an analysis of the role of social gaze in processes of interpersonal communication. Up to five different 
brain systems seem to be at play in regulating parameters of eye movements in these experimental 
situations.  

For instance, our habituation studies of distractor effect – a transient “freezing” of visual fixation in 
the actual position in response to a sudden optical event – reveals two completely different waves of 
saccadic inhibition at 90 and at 170 ms. Their origins could be tentatively identified with the superiour 
colliculus and the amygdala, respectively [1]. In a similar vein, two underlying systems seems to be at 
work in changing patterns of eye movement in the course of the exploration of static and particularly 
dynamic scenes such as VR simulation of hazardous traffic events. Indirect evidence helps us to identify 
the systems as the classical dorsal and ventral stream mechanisms of perceptual processing [2]. However 
we still lack direct confirmation of this caused by the low temporal resolution of most brain imaging 
methods. Comparable fMRI data exist in the case of social gaze studies (see [3]). Fig.1 illustrates the 
main effect contrasting a frontomedial and a (slight) right prefrontal activation during eye-to- eye contact 
with the predominantly parietal activation in an almost identical situation without such social gaze 
information. These prefrontal regions have been demonstrated to be involved in self-referential encoding 
[4, 5] while the posterior sites belong to the already mentioned dorsal stream structures. This is important 
in terms of  

 

   Fig.1 Typical BOLD-responses to the appearance of a virtual anthropomorphic agent looking either directly at 
the human observer (left) or at some imaginary location nearby of him/her (right)  



 
the interpretation of the results. In addition, the data demonstrate that a single parameter of gaze direction 
in a social context can radically change the neurocognitive level of the information processing of the 
perceiver. 
    Current knowledge of the relationship between micro-behaviour of the human eye and the underlying 
brain processes allows new approaches to the visualisation of idiosyncratic individual perception. The 
first of these approaches, termed ‘attentional landscapes method’ [6], proposes a filtering of the visual 
scene in terms of the distribution of visual fixations. With the current differentiation of two modes of 
visual attention and their connection to ventral and dorsal streams it will be possible to reconstruct the 
subjective view of the situation as it is “seen” by more conscious ventral mechanisms of focal attention. 
Fig.2 illustrates another interesting aspect of this class of cognitively-motivated applications for 
eyetracking [7]. Here, attentional landscapes of expert and novice oncologists are compared while they 
are planning a neck dissection. Firstly, it is obvious that the distribution of focal attention in experts is 
much sharper – a feature we also observed in several other groups of experts, e.g. in cartography. 
Secondly and more importantly, through the measurement and rendering of such visualisations, thus far 
hidden personal views will become available for sharing with others, allowing enhanced and even entirely 
novel ways of communication, control and professional collaboration.  

           
       Fig. 2. Visualization of differences in conscious perception: novices minus experts (left), experts minus 

novices (right) 
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Decomposition of High Angular Resolution Diffusion Images into a Sum of
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Abstract

We propose a tensorial expansion of high resolution diffusion imag-
ing (HARDI) data on the unit sphere into a sum of self-similar poly-
nomials, i.e. polynomials that retain their form up to a scaling under
the act of lowering resolution via the diffusion semigroup generated
by the Laplace-Beltrami operator on the sphere. In this way we ar-
rive at a hierarchy of HARDI degrees of freedom into contravariant
tensors of successive ranks, each characterized by a corresponding
level of detail. We provide a closed-form expression for the scaling
behaviour of each homogeneous term in the expansion, and show
that classical diffusion tensor imaging (DTI) arises as an asymptotic
state of almost vanishing resolution.

CR Categories: I.4.10 [Computing Methodologies]: Image
Representation—Multidimensional

Keywords: high angular resolution diffusion imaging (HARDI),
diffusion tensor imaging (DTI), self-similar polynomials on the
sphere

1 Introduction

High angular resolution diffusion imaging (HARDI) has become a
popular magnetic resonance imaging (MRI) technique for imaging
apparent water diffusion processes in fibrous tissues in vivo, such
as brain white matter and muscle. Diffusion MRI is based on the
assumption that Brownian motion of H2O molecules is facilitated
along the direction of fibers (axons or muscles). In classic diffu-
sion tensor imaging (DTI), introduced by Basser et al. [Basser et al.
1994a; Basser et al. 1994b], cf. also Le Bihan et al. [Le Bihan et al.
2001], the diffusivity profile is modeled by a rank-2 contravariant
diffusion tensor. Although the DTI representation is inherently lim-
ited by this restrictive assumption on the diffusivity profile, it does
have the advantage that it enables one to view a spatial section of
local diffusivity profiles as a (dual) Riemannian metric field. In
turn, this view has led to the geometric rationale, in which fibers
are modeled as (subsets of) geodesics induced by parallel trans-
port under the corresponding metric connection [Astola et al. 2007;
Fillard et al. 2007; Lenglet et al. 2004; Pennec et al. 2006; Pra-
dos et al. 2006]. Congruences of geodesics can be studied like-
wise in the geometric framework of Hamilton-Jacobi theory [Rund
1973], which has led to efficient algorithms for connectivity analy-
sis (eikonal equation, fast marching schemes, and the like).
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For simplicity we use the term HARDI to collectively denote
schemes that employ functions on the sphere, including Tuch’s ori-
entation distribution function (ODF) [Tuch 2004], the higher or-
der diffusion tensor model and the diffusion orientation transform
(DOT) by Özarslan et al. [Özarslan and Mareci 2003; Özarslan et al.
2006], Q-Ball imaging [Descoteaux et al. 2007], and the diffusion
tensor distribution model by Jian et al. [Jian et al. 2007].

Because the general HARDI model accounts for arbitrarily com-
plex diffusivity profiles, it raises a concomitant demand for regular-
ization [Descoteaux et al. 2006; Descoteaux et al. 2007; Hess et al.
2006; Pennec et al. 2006; Tikhonov and Arseninn 1977], since there
is no a priori smoothness of acquisition data. Indeed, in the context
of regularization schemes, DTI can be seen as an asymptotic regu-
larization of the actual diffusivity profile.

A natural way to combine the conceptual advantage of DTI (notably
its connection to a Riemannian framework) with the superior data
modeling capability of HARDI, is to consider a polynomial expan-
sion of the diffusivity function on the sphere that can be likewise
represented in terms of a contravariant rank-2 tensor field, which
can then be used so as to obtain a generalized, orientation depen-
dent Finsler metric [Melonakos et al. 2008]. A polynomial expan-
sion of HARDI data on the sphere has been proposed previously
by Özarslan and Mareci [Özarslan and Mareci 2003]. However,
these authors consider a homogeneous expansion, containing terms
of some fixed order only. They point out that any (again homoge-
neous) model of lower order can be obtained in analytically closed
form from the result, i.e. without the need for a data refit. This is
true, and indeed a sensible approach, since (even/odd) monomials
of fixed order, N say, confined to the unit sphere, can be linearly
combined so as to produce any lower order (even/odd) monomial
by virtue of the radial constraint r = 1 of the unit sphere embedded
in Euclidean n-space (in our case, n = 3).

However, in this paper we propose an inhomogeneous expansion,
including all (even) orders up to some fixed N , and exploit the re-
dundancy of such a representation. (Odd terms are of no interest,
as the HARDI profile is assumed to be symmetric.) The idea is to
construct a polynomial on the sphere in such a way that the higher
order terms capture residual information of the HARDI profile only,
i.e. the additional structure that cannot be revealed by a lower or-
der polynomial. As such the polynomial expansion can in theory
be continued to a series expansion of infinite order. We construct
this polynomial representation order by order, in such a way that
adding a higher order term does not affect already established lower
order terms. As a consequence the information in the HARDI data
is distributed hierarchically over diffusion tensor coefficients of all
ranks.

The polynomial representation admits regularization. This provides
control over complexity and angular resolution. Above all, it re-
veals the data hierarchy alluded to above, in the sense that the col-
lective terms of fixed order are self-similar under canonical resolu-
tion degradation induced by the Laplace-Beltrami operator on the
sphere (cf. Koenderink for a physical motivation of this paradigm in
the Euclidean setting [Koenderink 1984]), with a characteristic de-
cay that depends on order. In this sense they constitute the tensorial
counterparts of the canonical eigensystem of spherical harmonics
with corresponding discrete spectrum.



Finally, we point out the explicit relationship between HARDI and
DTI via asymptotic regularization. This is of interest, as it permits
one to extend and apply established geometric techniques for con-
nectivity analysis and tractography that have been successfully used
in the context of classical rank-2 DTI.

2 Theory

We consider the unit sphere embedded in Euclidean 3-space, given
in terms of the vector components gi, i = 1, . . . , n (with n = 3 in
our application of interest):

ηij g
i gj = 1 . (1)

Einstein summation convention applies to pairs of identical upper
and lower indices. The components of the Euclidean metric and
corresponding dual metric of the embedding space are given by
ηij , respectively ηij , with the help of which indices can be lowered
or raised. We have, for instance1, gi = ηij g

j , the dual covector
components corresponding to gi. The corresponding analogue of
Eq. (1) is therefore

ηij gi gj = 1 . (2)

In Cartesian coordinates we have ηij = ηij = 1 iff i = j for i, j =
1, . . . , n, otherwise 0, so that Eq. (2) reduces to g2

1 + g2
2 + g2

3 = 1,
and similarly for the vectorial representation, Eq. (1).

The Riemannian metric of the embedded unit sphere is given in
terms of the components

gµν =
∂gi

∂ξµ
ηij

∂gj

∂ξν
, (3)

in which ξµ (µ = 1, . . . , n − 1) parameterize the sphere. Recall
that the canonical parametrization of the sphere in terms of the usual
polar angles, (θ, φ) ∈ [0, π]× [0, 2π), is as follows:

Ω :

 g1 = sin θ cosφ ,
g2 = sin θ sinφ ,
g3 = cos θ .

(4)

The corresponding measure is abbreviated by dg = sin θ dθ dφ.

We consider a higher order DTI representation of the form

D(g) =

∞∑
k=0

Di1...ik gi1 . . . gik . (5)

(Under the stipulated symmetry, D(g) = D(−g), only even orders
will be of interest.) The collection of polynomials on the sphere,

B =
⋃

k∈N∪{0}

Bk , (6)

spanned by the monomial subsets

Bk = {gi1 . . . gik | k ∈ N ∪ {0} fixed} , (7)

is complete, but redundant. Apart from the fact that odd order
monomials are of no interest, redundancy is evident from the fact
that lower order even monomials can be reproduced from higher
order ones through contractions as a consequence of the quadratic
constraint that defines the embedded unit sphere, recall Eq. (2). As
a result, we have, e.g.,

gi1 . . . gik = ηik+1ik+2 gi1 . . . gik+2 , (8)

1The covector model reflects the physical nature of the components as
normalized diffusion sensitizing gradients, i.e. covectors.

and, by recursion, we find similar dependencies for all lower order
monomials in terms of higher order ones. Thus any monomial of
order k ≤ N ∈ N ∪ {0} is linearly dependent on the set of N -th
order monomials of equal (even/odd) parity. This, of course, jus-
tifies the approach by Özarslan and Mareci [Özarslan and Mareci
2003], in which the data are fitted only against linear combinations
of N -th order monomials, discarding all lower order terms. In par-
ticular, the larger N is, the better the approximation of the data will
be. However, in the process of updating N , all HARDI data in-
formation will migrate to the tensor coefficients of corresponding
rank. The reader is referred to the seminal paper by Özarslan and
Mareci [Özarslan and Mareci 2003] for further details and physical
background.

Still, it is not necessary to employ a basis of fixed order monomials.
One can actually exploit the redundancy in B, Eq. (6). For instance,
we have

FN =

(
N + 2
N

)
(9)

independent N -th order basis monomials due to symmetry, as op-
posed to N ! for an arbitrary rank-N tensor. It also follows that FN

is in fact the exact number of degrees of freedom of our full N -th
order polynomial expansion, i.e. including all monomials of orders
less than N . Consequently, if we retain all lower order monomials,
it follows from Eq. (8) that the effective number of independent de-
grees of freedom in our N -th order term must be lower than FN ,
recall Eq. (9), viz. equal to the number of independent components
of the symmetric rank-N tensor minus the number of degrees of
freedom already contained in the lower order terms:

F residual
N = FN −FN−2 = 2N + 1 . (10)

This number therefore corresponds to the dimensionality of the
residual degrees of freedom. If, in case of even N , we count all
spherical harmonics Y m` for even ` = N,N − 2, . . . , 0, and all
m ∈ {−`, . . . , `}—let us call this number GN—then we reobtain
Eq. (9), since

GN =

N∑
`=0 ,` even

(2`+ 1) =
(N + 1)(N + 2)

2
= FN . (11)

(The same result holds for N odd, in which case summation should
be restricted to odd `-values only, but this is not relevant for us.)
Notice that, in particular, the number of independent degrees of
freedom of the spherical harmonics of order N , G residual

N say, like-
wise equals

G residual
N = GN − GN−2 = 2N + 1 = F residual

N . (12)

These counting arguments suggest an intimate relationship between
the rank-k tensor coefficients of Eq. (5) in our scheme, v.i., and the
spherical harmonics of order k.

Model redundancy may be beneficial, to the extent that it enables us
to distribute the HARDI degrees of freedom hierarchically over the
various orders involved, in such a way that only residual informa-
tion is encoded in the higher order tensor coefficients. As N →∞
this residual tends to zero, while all established tensor coefficients
of lower rank than N remain fixed in the process of incrementing
N . (The hierarchy implicit in Özarslan and Mareci’s scheme is of a
different nature.) We return to the potential benefit of our inhomo-
geneous polynomial expansion below.

We construct the coefficients as follows. Suppose we are in pos-
session of Di1...ik for all k = 0, . . . , N − 1, then we consider the



function

EN (Dj1...jN ) =

∫ (
D(g)−

N∑
k=0

Di1...ikgi1 . . . gik

)2

dg ,

(13)
and find the N -th order coefficients by minimization. Setting

∂EN (Dj1...jN )

∂Di1...iN
= 0 , (14)

one obtains the following linear system:

Γi1...iN j1...jND
j1...jN = (15)∫

D(g) gi1 . . . giN dg −
N−1∑
k=0

Γi1...iN j1...jkD
j1...jk ,

with symmetric covariant tensor coefficients

Γi1...ik =

∫
gi1 . . . gik dg . (16)

The appearance of the second inhomogeneous term on the r.h.s. of
Eq. (15), absent in the scheme proposed by Özarslan and Mareci,
reflects the fact that in our scheme higher order coefficients encode
residual information only.

It is immediately evident that

Γi1...i2k+1 = 0 (k ∈ N ∪ {0}) , (17)

since no odd-rank tensors with covariantly constant coefficients ex-
ist. All even-rank tensors of this type must be products of the Eu-
clidean metric tensor, so we stipulate

Γi1...i2k = γk η(i1i2 . . . ηi2k−1i2k) , (18)

for some constant γk. Parentheses denote index symmetrization.
The constant γk needs to be determined for each k ∈ N ∪ {0}.

One way to determine γk is to perform a full contraction of indices
in Eq. (18), which, with the help of Eqs. (2) and (16), yields

γk =
Γ

η(i1i2 . . . ηi2k−1i2k) ηi1i2 . . . η
i2k−1i2k

. (19)

To find the denominator on the r.h.s. is an exercise in combi-
natorics [Grimaldi 1993], and requires the basic trace property
ηijη

ij = δii = n. A simpler way to find γk is to evaluate Eq. (18)
for i1 = . . . = i2k = 1 in a Cartesian coordinate system, since the
symmetric product of metric tensors on the r.h.s. evaluates to 1 for
this case:

γk = Γ1...←2k indices→...1 =

∫
g2k

1 dg . (20)

This integral is a special case of the closed-form multi-index rep-
resentation of Eq. (16), cf. Folland [Folland 2001] and Johnston
[Johnston 1960], viz.:∫

gα1
1 . . . gαn

n dg =
2

Γ( 1
2
|α|+ n

2
)

n∏
i=1

Γ(
1

2
αi +

1

2
) , (21)

if all αj are even (otherwise the integral vanishes). Here |α| =
α1 + . . .+ αn = 2k denotes the norm of the multi-index, and

Γ(t) =

∫ ∞
0

st−1 e−s ds = 2

∫ ∞
0

r2t−1 e−r
2
dr (22)

is the gamma function. Recall Γ(`) = (` − 1)! and Γ(` + 1
2
) =

(` − 1
2
) . . . 1

2

√
π = (2`)!

√
π/(4` `!) for non-negative integers

` ∈ N ∪ {0}. For the specific monomial in Eq. (20) we have α =
(2k, 0, . . . , 0) ∈ Zn.

Result 1 Recall Eqs. (16–18). For general n we have

γk =
2 Γ(k + 1

2
)Γ( 1

2
)n−1

Γ(k + n
2

)
,

in other words,

Γi1...i2k =
2 Γ(k + 1

2
)Γ( 1

2
)n−1

Γ(k + n
2

)
η(i1i2 . . . ηi2k−1i2k) .

For n = 3 in particular, we obtain

γk =
2π

k + 1
2

,

whence
Γi1...i2k =

2π

k + 1
2

η(i1i2 . . . ηi2k−1i2k) .

This result is the tensorial counterpart of Eq. (21). Some examples
(n = 3):

k = 0 : Γ = 4π

k = 1 : Γij =
4π

3
ηij

k = 2 : Γijk` =
4π

15
(ηij ηk` + ηik ηj` + ηi` ηjk) .

The corresponding linear systems, recall Eq. (15), are as follows:

ΓD =

∫
D(g) dg ,

Γij D
j =

∫
D(g) gi dg − ΓiD ,

Γijk`D
k` =

∫
D(g) gi gj dg − Γij D − ΓijkD

k .

It follows that the scalar constant D is just the average diffusivity
over the unit sphere:

D =

∫
D(g) dg∫
dg

. (23)

The constant vector Di vanishes identically, as it should. For the
rank-2 tensor coefficients we find the traceless matrix

Dij =
15
∫
D(g) gi gj dg − 5

∫
D(g) dg ηij

2
∫
dg

, (24)

and so forth. If, instead, we fit a homogeneous second order poly-
nomial to the data (by formally omitting the second term on the
r.h.s. of Eq. (15)), as proposed by Özarslan and Mareci, we obtain
the following rank-2 tensor coefficients:

DÖ.M.
ij =

15
∫
D(g) gi gj dg − 3

∫
D(g) dg ηij

2
∫
dg

, (25)

which is clearly different. However, Özarslan and Mareci’s homo-
geneous polynomial expansion should be compared to our inhomo-
geneous expansion. Indeed, if we compare the respective second
order expansions in this way we observe that DÖ.M.

2 (g) = D2(g).
The difference in coefficients, in this example, is explained by the
contribution already contained in the lowest order term of our poly-
nomial, which in Özarslan and Mareci’s scheme has to migrate to
the second order tensor.

In general we raise the conjecture that to any order N we have
equality.



Theorem 1 Let DN (g) denote the truncated expansion of Eq. (5)
including monomials of orders k ≤ N only, and letDÖ.M.

N (g) denote
the N -th order homogeneous polynomial expansion proposed by
Özarslan and Mareci, loc. cit., then

DÖ.M.
N (g) = DN (g) .

However, the interesting claim we wish to make is the following,
which shows exactly what we mean by the hierarchical ordering of
degrees of freedom in our inhomogeneous expansion:

Theorem 2 If ∆ denotes the Laplace-Beltrami operator on the unit
sphere, then for any N ∈ N ∪ {0,∞}

DN (g, t) ≡ et∆ DN (g) =

N∑
k=0

Di1...ik (t) gi1 . . . gik ,

with
Di1...ik (t) = e−k(k+1)tDi1...ik .

For brevity we set D(g, t) = D∞(g, t).

This is nontrivial, since the monomials gi1 . . . gin are themselves
not eigenfunctions of the Laplace-Beltrami operator. The construc-
tion of the coefficients in the linear combinations as they occur in
the inhomogeneous expansion, implicitly defined by Eq. (15), is ap-
parently crucial. For instance, the scaling of the second order term
in Theorem 2 is a direct consequence of the fact that the coefficient
matrix in Eq. (24) is traceless, as opposed to Eq. (25).

Proof of Theorems 1–2. Consider the following closed linear sub-
space of L2(Ω) for even N :

XN = span {gi1 . . . giN } =

N/2⊕
k=0

S2k ,

in which S2k=span {Y m2k |m = −2k,−2k+1, . . . 2k−1, 2k}.
Set φN (g) = D(g) − DN−2(g), with induction hypothesis
PS2kφN = 0 for all k = 0, . . . , N/2 − 1, in which PS2k denotes
orthogonal projection onto S2k. In other words, by hypothesis,

φN ∈
∞⊕

k=N/2

S2k .

Let ψN ∈ XN be such as to minimize E(ψ) = ‖φN − ψ‖L2(Ω)

for ψ ∈ XN . Obviously PSNφN ∈ XN , so that by definition of
ψN we obtain

‖φN − ψN‖L2(Ω) ≤ ‖φN − PSNφN‖L2(Ω) .

On the other hand, since φN − PSNφN ⊥ PSNφN − ψN , we also
have

‖φN − ψN‖2L2(Ω) = ‖φN − PSNφN + PSNφN − ψN‖
2
L2(Ω) =

‖φN − PSNφN‖
2
L2(Ω) + ‖PSNφN − ψN‖

2
L2(Ω)

≥ ‖φN − PSNφN‖
2
L2(Ω) .

We conclude that

‖φN − ψN‖L2(Ω) = ‖φN − PSNφN‖L2(Ω) ,

in other words, ψN = PSNφN , so that apparently ψN ∈ SN .
Note that Sk is precisely the degenerate eigenspace of the Laplace-
Beltrami operator, ∆, with corresponding eigenvalue −k(k + 1),
whence the eigenvalue of exp(t∆) equals exp(−k(k + 1)t). This
completes the proof. �

The significance of Theorem 2 is that it segregates degrees of free-
dom in the polynomial expansion in such a way that we may in-
terpret each homogeneous higher order term as an incremental re-
finement of detail relative to that of the lower order expansion. To
see this, note that DN (g, t) satisfies the heat equation on the unit
sphere, recall Eq. (3):

∂u

∂t
=

1
√
g
∂µ (gµν

√
g∂νu) = ∆u , (26)

in which the initial condition corresponds to the N -th order expan-
sion of the raw data, DN (g, 0) = DN (g). Recall that in the usual
polar coordinates in n = 3 dimensions we have for a scalar function
on the unit sphere:

∆u(θ, φ) =

(
1

sin2 θ

∂2

∂φ2
+

1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

))
u(θ, φ) .

(27)
The remarkable fact is thus that the linear combinations
Di1...ik gi1 . . . gik , unlike the monomials gi1 . . . gik separately, are
eigenfunctions of the heat operator exp(t∆), i.e. self-similar poly-
nomials on the sphere, which admit a reformulation in terms of
purely k-th order spherical harmonics, with eigenvalues e−k(k+1)t.
The heat operator can be seen as the canonical resolution degrading
semigroup operator [Koenderink 1984; Florack 1997]. The param-
eter t denotes the (square of) angular scale, or inverse resolution, at
which the raw data are resolved. Indeed, the classical rank-2 DTI
representation, defined via the Stejskal-Tanner formula [Özarslan
and Mareci 2003; Stejskal and Tanner 1965]:

S(g) = S0 exp (−bD(g)) , (28)

arises not merely as an approximation under the assumption that the
diffusion attenuation can be written as

D(g) ≈ DDTI(g) = Dij
DTI gi gj , (29)

but expresses the exact asymptotic behaviour ofD(g, t) as t→∞,
recall Eq. (2) and Theorem 2:

D(g, t) =
(
Dηij + e−6tDij

)
gi gj︸ ︷︷ ︸

DDTI(g, t) = Dij
DTI(t) gi gj

+O(e−12t) (t→∞) .

(30)
It shows that the DTI tensor is not self-similar, but has a bimodal
resolution dependence. The actual limit of truly vanishing resolu-
tion is of course given by a complete averaging over the sphere:

lim
t→∞

D(g, t) = lim
t→∞

DDTI(g, t) = D , (31)

recall Eq. (23). See Figs. 1–2 for an illustration of Theorem 2 for
N = 8 on a synthetic image with Rician noise.

3 Conclusion

We have proposed a tensorial representation of high angular reso-
lution diffusion images (HARDI), or derived functions defined on
the unit sphere, in terms of a family of inhomogeneous polynomials
on the sphere. The resulting polynomial representation, truncated
at some arbitrary order, or formally extended into an infinite series,
may be regarded as the canonical way of decomposing HARDI data
into “higher order diffusion tensors”, to the extent that the succes-
sive homogeneous terms capture residual information only, i.e. de-
grees of freedom that cannot be detailed by a lower order expansion.
In this sense they form the tensorial counterpart of the spherical har-
monic decomposition. A related consequence is that the inhomo-
geneous polynomial expansion neatly segregates the HARDI signal



into a hierarchy of homogeneous polynomials that are self-similar
under the act of graceful resolution degradation induced by heat op-
erator, exp(t∆), generated by the isotropic Laplace-Beltrami oper-
ator ∆ on the sphere, with a characteristic decay that depends on
order (for fixed t ∈ R+). The asymptotic case of almost vanish-
ing resolution (t → ∞) reproduces the diffusion tensor of clas-
sical diffusion tensor imaging (DTI), with one constant and one
resolution-dependent mode. The true asymptotic case leads to a
complete averaging over the sphere, as expected. The general N -th
order expansion provides control over the trade-off between reg-
ularity (choice of t) and complexity (choice of N ), i.e. descriptive
power. Finally, we have related our result to the homogeneous poly-
nomial expansion proposed by Özarslan and Mareci [Özarslan and
Mareci 2003], and argued that the expansions lead to identical re-
sults despite the differences in coefficients. We have stressed the
fact that this is possible by virtue of the redundancy inherent in the
use of an inhomogeneous polynomial representation.
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Figure 1: Left: Synthetic noise-free profile induced by two crossing fibers at right angle. Right: Same, but with Rician noise.

Figure 2: Regularized profiles produced from the right image in Fig. 1 using Theorem 2 for N = 8. The regularization parameter t increases
exponentially from top left to bottom right over the range 0.007–1.0.
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