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Abstract 
This paper presents an effective compressed multiresolution mod-
el for interactive large-scale terrain rendering. In contrast to pre-
vious approaches, our model enables construction of adaptive 
terrain triangulation that takes into account local surface features 
and, at the same time, supports compact representation of the 
elevation data. The model enables fast extraction of the certain 
terrain area height field approximation with the specified resolu-
tion from the compressed form that is essential for real-time view-
dependent rendering. The core structure of the proposed approach 
is the quadtree. Each quadtree node represents the square patch 
that approximates some terrain region with the specific accuracy. 
Each patch is assigned a compact data that is sufficient to incre-
mentally refine its triangulation and height field and obtain the 
next-finer approximation. Progressive representation of the eleva-
tion data uses the JPEG2000 image coder to compress the quan-
tized differences between the values predicted from the coarser 
approximation and the exact elevations. The algorithm enables 
constructing compressed representation with the controlled maxi-
mum or root-mean-square world space error. This imposes the 
strict bound on the screen-space error when rendering the simpli-
fied model. Due to the high granularity of the LOD selection, the 
algorithm is not CPU-consuming and fully exploits the power of 
modern graphics hardware. The algorithm was tested on different 
data sets; the experiments proved its effectiveness. 
Keywords: interactive terrain visualization, multiresolution rep-
resentation, data compression, quadtree, wavelet transform, 
JPEG2000. 

1. INTRODUCTION 

Real-time large-scale terrain visualization is a complex and chal-
lenging task and it is an important component in a number of 
practical applications. These applications include virtual envi-
ronments, computer games, flight or drive simulators, geographi-
cal information systems, landscape editors and other. 
The terrain surface is most commonly defined by the height field, 
which is a set of elevations measured in the nodes of a regular 
grid. For the large terrain area such height field may contain bil-
lions of elevation samples and even the highest-end graphics plat-
forms are not able to render the complete terrain model at interac-
tive frame rates. To effectively render large terrains, a number of 
dynamic multiresolution models have been developed during the 
last years. The proposed algorithms adapt the terrain tessellation 
based on local surface roughness and view parameters to dramati-
cally reduce the model complexity without significant loss of 
visual accuracy. In these algorithms planar and distant terrain 
areas are assigned larger triangles than sharp and close to camera 

regions are. An overview of different terrain rendering approaches 
is given in the following section. 
Another problem related to the massive terrain dataset handling is 
that the size of the height field can easily exceed memory capac-
ity. The usual way to cope with this problem is to store all data on 
the disk and upload the desired regions as necessary. However, 
such approach requires a lot of disk space and complicated out-of-
core memory management algorithms. The alternative way is to 
keep the elevation data in a compressed form. In this case all data 
can be stored in RAM and necessary regions can be extracted at 
run time. 
Though a lot of works on constructing adaptive terrain geometry 
exist, just a few publications are devoted to effective elevation 
data management. In this article we present an efficient terrain 
data compression algorithm that is naturally incorporated in our 
previous adaptive terrain simplification and rendering approach 
[21]. In the base method, the geometry of the whole multiresolu-
tion hierarchy is encoded into compact progressive form. This 
paper presents an extension of the base multiresolution model that 
progressively encodes the elevation data as well and significantly 
reduces memory requirements. 

2. RELATED WORK 

A number of different large-scale terrain rendering approaches 
have been proposed during the last years. The majority of works 
concentrate on the problems of constructing adaptive terrain tri-
angulation that takes into account local surface roughness and 
camera view parameters. 
Some of such algorithms generate irregular triangulations. For 
example, two approaches based on the principal of 2D-Delaunay 
triangulation are presented in [1] and [2]. Other approaches that 
allow arbitrary connectivity are presented in [3] and [4]. 
Other algorithms use hierarchical data structures. A good survey 
of different hierarchical terrain simplification approaches is pre-
sented by R. Pajarola in [5]. The first algorithm that produces 
continuous LOD triangulation is presented by P.Lindstrom et al. 
in [6]. The algorithm is based on the vertices quadtree. The 
ROAM (Real-Time Optimally Adapting Meshes) algorithm pre-
sented by M.Duchaineau et al. in [7] is conceptually very close to 
the method described in [6] and uses triangle bintree hierarchy. 
The ideas proposed in [6] and [7] were further developed in [8], 
[9], [10]. 
The next step in evolution of terrain rendering algorithms was 
made when the power of graphics processors increased signifi-
cantly comparing to that of CPUs. Simplification granularity 
shifted from single vertices and triangles to more complex primi-
tives (triangle clusters, batches, aggregates etc.) 
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The first method that effectively utilizes power of graphics proc-
essors is called RUSTiC (ROAM Using Surface Triangle Clus-
ters) and is presented by A. Pomeranz in [11]. In [11] it is pro-
posed to replace single triangles from the bintree hierarchy of the 
ROAM algorithm from [7] with more complex elements called 
clusters. Each cluster is a small triangulated mesh. This idea was 
further developed by J. Levenberg in [12], where it was proposed 
to cache such small meshes (which in [12] are called aggregate 
triangles) in the fast video memory to assure the most effective 
rendering by the graphics card. Extensions of quadtree-based 
algorithms, that use square patch as a base element for the adap-
tive mesh construction, are presented in [13] and [14]. 
The main idea proposed in [11] and [12] was further improved by 
P. Cignoni et al in [15]. In [15] it was proposed to replace single 
triangle from the bintree hierarchy of the ROAM algorithm with 
small TINs (triangulated irregular networks) called batches. In 
[16] this algorithm was extended to successfully render the 
planet-sized terrains in real time. Noteworthy that in approaches 
presented in [15] and [16], the whole hierarchy requires a lot of 
disk space and constant disk access at run time. 
A radically new terrain rendering approach was proposed by 
F. Losasso and H. Hoppe in 2004 in [17]. The method is called 
geometry clipmaps. It treats the terrain as a set of nested regular 
grids centered about the camera position and completely ignores 
the local adaptability. The authors prove this decision by the fact 
that the performance of graphics processors has reached such a 
high level that the task of constructing adaptive triangulation is no 
longer important. And the main problem is to adaptively feed the 
graphics pipeline. In [18], a GPU-based implementation of the 
geometry clipmaps framework is presented. The implementation 
is enabled by the shader model 3.0 and vertex textures. 
Among publications listed above, the terrain compression algo-
rithms are considered in [17], [18] and [19]. The method proposed 
in [19] extends the previous author work presented in [15] and 
[16]. The method is called C-BDAM (Compressed Batched Dy-
namic Adaptive Meshes) and uses wavelet transform to compress 
the terrain data. The geometry clipmaps framework [17] adapts 
the image compression algorithm presented in [20] to compress 
the elevation data. 

3. ALGOPRITHM DESCRIPTION 

3.1 Motivation 
As we mentioned in Section 2, a lot of works on adaptive terrain 
simplification [12-16] as well as successful terrain compression 
approaches [17, 19] exist. However, none of works combines 
adaptive triangulation with the data compression in one multireso-
lution model. The methods presented in [12-16] propose effective 
adaptive terrain tessellation algorithms, but they do not use com-
pressed representation. On the other hand, the C-BDAM approach 
[19] exploits terrain compression, but in this method each triangle 
patch from the hierarchy has the same regular triangulation. Any 
local surface roughness increases tessellation density of the whole 
patch. As the result, a too redundant adaptive triangulation is 
generated. The geometry clipmaps approach [17, 18] utilizes 
compressed representation, but it ignores local terrain features at 
all: the triangulation depends solely on camera position. 
We propose the multiresolution model that enables constructing 
adaptive terrain triangulation and supports compact compressed 
representation of the elevation data. The algorithm described in 
this article extends the adaptive terrain simplification and render-

ing method presented in [21]. The brief description of the base 
algorithm is given in the following section. 

3.2 The Base Approach 
3.2.1 Multiresolution representation of the source 
elevation data 
The proposed method consists of two phases: the preprocess stage 
and the run-time stage. At the preprocess stage, the algorithm 
constructs initial multiresolution representation of the source ele-
vation data. During this process the source height field of the size 

MN ×  vertices is filtered into multi-layer pyramid, a mipmap-
like structure (Figure 1.a), which is similar to the structure used in 
the geometry clipmaps framework [17]. For the convenience, the 
sizes N and M are set to power of two. Each layer of the pyramid 
approximates the source data with diminishing accuracy and has 
two times lower resolution in each grid dimension than the under-
lying level does. To coarsen each layer and construct the next 
coarser approximation, we use order 4 Neville interpolating filter 
[22], see [21] for more details. The same filter is also used in the 
C-BDAM approach [19]. The pyramid can also be interpreted as a 
vertices quadtree where each vertex in the coarse level has four 
children in the finer level (Figure 1.b). 

 
Figure 1: Multiresolution representation of the source data. 

Vertices in each pyramid level are identified by the triple index (i, 
j, k), where }1,...,1,0{ −∈ hfDk

}12 −k

 denotes the resolution level and 

 denote the vertex position in the layer’s grid. 
 denotes the number of levels in the pyramid (or the depth of 

the height field quadtree). Level 0 is the coarsest approximation 
represented by the single root vertex; level 

,...,1,0{, ∈ji

hfD

1−hfD  is the original 
height field and provides the finest representation. 

3.2.2 The meta quadtree 
In our approach, as in the algorithms described in [11-16], the 
LOD selection is performed on a per-block basis to reduce CPU 
load and fully exploit the power of modern graphics processors. 
The core structure of the algorithm is the quadtree; each quadtree 
node represents the patch that covers the square terrain region. To 
distinguish this structure with the vertices quadtree mentioned in 
the previous section, we call it meta quadtree. Nodes that lie in 
the finer resolution levels cover smaller terrain regions with the 
higher accuracy, while nodes in the coarser levels cover larger 
area with the lower resolution. Each quadtree node covers the 
same area as its four immediate children, but child nodes provide 
more accurate approximation. 
Each patch in the meta quadtree specifies a multiresolution repre-
sentation of the local terrain area that it covers. This multiresolu-
tion representation encompasses some subset of vertices from the 
whole multiresolution pyramid and forms a sub-pyramid (Fig-

level 0 (root) vertex

level 1 vertices 

level 2 vertices 

(b) (a)



ure 2.a). It can also be interpreted as a sub-quadtree (Figure 2.b). 
Each such sub-pyramid has a fixed number of levels, which is 
denoted by . The number of levels in the meta quadtree , in 

the patch sub-pyramid  and, in the whole multiresolution rep-

resentation , are bound by the following rela-

tion:  

pD

hfD

−hfD

mD

pD

D .1+= pm D

The sub-pyramid of the patch that lies in the meta quadtree level q 
and has horizontal order m, and vertical order n encompasses the 
following set of layers: , where  is 
the k-th level of the patch sub-pyramid and comprises of the fol-
lowing vertices: 

}1...1,0,{ ,, −= p
k

qnm DkL k
qnmL ,,

}{ ,,,, qkji
k

qnm hL +=
k

 where (1) 

}22)1(...,,22{ +⋅+−⋅∈ knni
kk

 (2) 

}22)1(...,,22{ +⋅+−⋅∈ mmj  (3) 

Note that each pyramid layer is extended by 2 additional vertices 
behind each patch boundary to seamlessly stitch neighbor patches 
and correctly perform texture and normal mapping, see [21]. 

 
Figure 2: Multiresolution representation of the terrain area cov-
ered by some patch and its relationship to the whole multiresolu-
tion representation of the source elevation data: a) sub-pyramid 

and b) sub-quadtree. 
It follows from (1) that the finest level  of the mul-
tiresolution representation associated with the patch, which lies in 
meta level q, consists of vertices from the level 

1−= pDk

1−+ Dq p  of the 
whole multiresolution representation. This level contains maxi-
mum elevation information that is available for the patch. 
Multiresolution representation of the area covered by the patch 
enables constructing adaptive triangulation that takes into account 
local surface features. Flat areas can be approximated by the ver-
tices from the coarser levels while sharp features must be repre-
sented by the vertices from the fine levels to preserve accuracy. 
The adaptive triangulation construction algorithm is thoroughly 
discussed in [21]. 
Each quadtree node is assigned a geometric world-space ap-
proximation error, which is calculated at the preprocess stage. At 
the run-time stage, the screen-space error estimation is calculated 
for each quadtree block using camera view parameters. Basing on 
these values, the algorithm selects the desired patches that ap-
proximate the surface with the user-specified tolerance (Figure 3). 

 
Figure 3: Example of an adaptive terrain approximation with the 

square patches. 

Camera

The base algorithm presented in [21] stores compact progressive 
data for each meta quadtree node, which enables reconstructing 
adaptive triangulation of its children. In this paper we extend the 
progressive representation with the data necessary to reconstruct 
child elevation data as well. 
Our terrain compression algorithm is based on the JPEG2000 
image coding scheme. JPEG2000 has been chosen because it 
proved itself to be one of the best image compression algorithms 
available for the moment. It outperforms the previous DCT-based 
JPEG compression in terms of image quality and compression 
ratios [23], besides it does not suffer from blocking artifacts typi-
cal for the JPEG-based compression at high compression ratios. 
Furthermore, the JPEG2000 standard offers efficient lossless 
compression scheme. Below provide the basic information about 
the JPEG2000 standard. 

3.3 The JPEG2000 Image Coding Standard 
The flow diagram of the encoder is presented in Figure 4. Below 
we briefly describe each stage of the encoding process. More 
detailed information about JPEG2000 can be found in [24], [25]. 

 

(a) (b) 

Figure 4: JPEG2000 encoding diagram. 
At the pre-processing stage, the original image is pre-processed 
so that the discrete wavelet transform (DWT) can be properly 
performed. This step consists of three sub-stages: 1) tiling, which 
is partitioning the source image into rectangular and non-
overlapping tiles of equal size; 2) level offset, which ensures that 
the input sample data has a nominal dynamic range centered 
about zero and 3) irreversible color transform (ICT), which con-
verts the input RGB data into the YCrCb format. 
Discrete Wavelet Transform (DWT) is used to decompose each 
image tile into its low and high subbands. The DWT [22] is per-
formed many times, so that the resulting coarser representation 
obtained by applying low-subband filtering for rows and columns 
(LL-subband) is further decomposed by the DWT. 
At the quantization stage, the wavelet coefficients are quantized 
using a uniform quantizer with the dead zone. At the embedded 
image coding stage, the subbands of each tile are partitioned into 
small code blocks of equal size (e.g. 64x64 or 32x32 samples), 
which are encoded independently using a context-based adaptive 
binary arithmetic coder. Rate control is the process by which the 
code-stream is altered so that a target bit rate can be reached. At 



the final bit-stream organization stage, the compressed bit 
streams of each compressed block are organized into the final 
compressed image data composed of packets. 
The JPEG2000 decoder works symmetrically to the encoder. The 
wavelet coefficients contained in the packets of the bit-stream are 
dequantized, processed using inverse DWT, and then the reverse-
ICT is performed. 

3.4 Terrain Compression Algorithm 
As it was mentioned earlier, the lowest level of the patch sub-
pyramid contains maximum elevation information that is avail-
able for that patch. This level is represented by the grid heaving 

 vertices (see (1)-(3) when)42()42( 11 +×+ −− pp DD 1−= pDk ). 

We denote this grid by CoarseH  (indices i and j are shifted, and the 
third index is omitted for convenience): 

}32,22,...1,0{,|{ 11 ++∈= −− pp DD
ij

Coarse jihH  

If the elevation information contained in the patch sub-pyramid is 
insufficient to approximate the terrain surface with the desired 
accuracy (the screen-space error exceeds the threshold), the patch 
needs to be refined. In this case, the patch is replaced with its four 
immediate children, which contain more information about the 
surface and can provide the desired approximation. To accom-
plish this task, it is necessary to reconstruct the multiresolution 
representations associated with the child patches. The child trian-
gulations can be obtained as described in [21]. Here we describe a 
method to reconstruct the child elevation data. 
All levels of the child patch sub-pyramids excepting the finest 
levels can be obtained by copying vertices from the parent patch 
pyramid (vertices from the level k of the parent patch constitute 
the level k-1 of the children). The main challenge is to reconstruct 
the finest levels that actually contain additional information. The 
finest levels of four child patches together cover the same area as 

CoarseH  but provide higher resolution. We denote this set 
by FineH : 

}32,22,...1,0{,|{ * ++∈= pp DD
ij

Fine jihH  

Note that vertices from CoarseH  and FineH  lie in different levels of 
the whole multiresolution representation. Figure 5 shows relation-
ship between the finest levels of the multiresolution representa-
tions associated with the parent patch and its children. 
The finest resolution grid of the multiresolution representation 
associated with a patch contains  
vertices. (In practice, patch quadtree has much more levels. For 
example, when , the grid contains  vertices and 
memory overhead caused by 2 additional vertices is less than 
3%). Double line in Figure 5 bounds the area covered by the patch 
and its four children. Vertices from the finest level of the parent 
patch sub-pyramid (

88)42()42( 11 ×=+×+ −− pp DD

260260×9=pD

CoarseH ) are denoted by crosses and are la-
beled by ; vertices from the finest levels of the child sub-

pyramids, which constitute
jih ,

FineH , is denoted by circles and are 
labeled by . Dotted line defines vertices that constitute the 
finest resolution grid of each child patch sub-pyramid. Note that 
they overlap. 

*
,ih j

 
Figure 5: Relationship between the finest levels of the child patch 
sub-pyramids and the finest level of the parent patch sub-pyramid. 
In the example shown in Figure 5, the number of levels in the 
patch sub-pyramid (or in the patch sub-quadtree) is 3: 3=pD .  

The first step of the compressed representation construction proc-
ess is predicting values in FineH . The prediction is performed by 
linear interpolation of values stored in CoarseH  onto the samples 
in FineH . The linear interpolation is chosen because it can be ef-
fectively performed by every modern graphics processor (for 
example, the Sample() function in the HLSL performs this 
task, see Section 4). We denote this predicted set as : FineH~

}32,22,...1,0{,|
~

{~ * ++∈= pp DD
ij

Fine jihH  

At the next step, the algorithm constructs difference layer that 
contains discrepancies between the predicted values from FineH~  
and the exact values from FineH . We denote the difference layer 
as D: 

}32,22,...1,0{,|
~

{ 11** ++∈−== −− pp DD
ijijij jihhdD  

The exact values  come from the corresponding layer of the 
whole multiresolution pyramid. 

*
ijh

At the next step, the minimum and maximum values in the D are 
identified: 

ijdd minmin = ,  ijdd maxmax =

And the 32-bit floating point difference layer D is quantized to 8-
bit integer according to the following rule: 

]255)/()[(ˆ minmaxmin ⋅−−= ddddd ijij  

The resulting quantized difference layer is denoted by . At the 
next step, it is compressed using the JPEG2000 coding algorithm 
described in Section 3.3 and compressed bit stream is stored in the 
database as well as  and  values. Note that since differ-
ence values constitute a monochrome image, the ICT is not per-

D̂

mind maxd

formed. At this step, the main loss of data takes place. The ap-
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proximation accuracy is controlled by adjusting compression ratio 
as described in Section 3.4.1. 
To eliminate error accumulation, we reconstruct the finest resolu-
tion levels of the child patches after compressing the data. Since 
compression scheme is lossy, the resulting reconstructed set dif-
fers from the original exact set FineH . We denote the recon-

structed set by
Fine

H . To calculate
Fine

H , we decompress the bit 
stream obtain the recon ted quantized difference layerand struc D . 
We then de-quantize this layer using mind  and maxd  values, and 

add the layer to the predicted grid ineFH~ . The resulting set 
Fine

H  
is the one that will be obtained at the run-time stage. 

 
Figure 6: Progressive coding algor chart. 

Terrain ursive 
ithm flow

data compression is performed top-down using rec
quad tree traversal algorithm. The algorithm starts from the root 
node that provides the coarsest approximation. The finest resolu-
tion level of the coarsest patch sub-pyramid is stored as is without 

compression. To eliminate error accumulation, the 
Fine

H  set ob-
tained at each step of the compression process serves as the input 
for the next step (at the next step, it is treated as the CoarseH  set). 
The compression algorithm flowchart is presented in Figure 6. 
To demonstrate advantages of progressive compression scheme, 
we also implemented the direct terrain compression algorithm. In 

this algorithm, the FineH  set is quantized and is compressed as is 
without any prediction from the coarser level patch. The 32-bit 
floating values from FineH  are quantized to n-bit integer values 
and then compressed using the JPEG2000 image coding algo-
rithm. The comparison of this algorithm with the progressive 
compression scheme is presented in Section 5. 

3.4.1 Controlling compression process and com-
pression criteria 
While a lot of criteria bound the approximation error of the recon-
structed signal with the approximation error in wavelet space in 

2L  sense, there is no one that bounds the distortion in ∞L  sense 
[28]. However, the 2L  (or root-mean-square) error is not always 
satisfactory when dealing with the terrain compression. For ex-
ample, the geometry clipmaps approach [17, 18] is not able to 
provide the guaranteed maximum absolute world space error. To 
solve this problem, we adaptively adjust the compression ration to 
satisfy the desired criterion (maximum absolute or root-mean-
square error in the world space). The diagram of the adaptive 
compression algorithm is presented in Figure 7. 

 
Figure 7: Finding optimal compression ratio flowchart. 

After compressing the patch data, we reconstruct data and check 
the criterion. If the criterion is not satisfied, we adjust the com-
pression parameter. This scheme enables finding the best ap-
proximation parameter for each terrain patch. 

4. IMPLEMENTATION DETAILS 

The proposed terrain data compression algorithm has been inte-
grated with the adaptive terrain simplification method presented 
in [21]. The test system is written in C++ in Microsoft Visual 
Studio .NET environment on the base of Microsoft DirectX10 and 
Shader model 4.0. In our current implementation, the extraction 
of difference data from the compressed bit-stream is performed on 
the CPU. To hide processing time and stabilize the system per-
formance, the algorithm extrapolates the camera trajectory and 
anticipates its future position to extract the desired elevation data 
ahead of time. Furthermore, to minimize Direct3D resource crea-
tion overhead, the resource cache is used. The resources are not 
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released when they are no longer needed, but placed in the cache 
and re-used when they are needed again. 
The JPEG2000 codec in our system is implemented using the 
Intel Integrated Performance Primitives library. This library im-
plements different media processing algorithms using SIMD in-
struction set (SSE, SSE2, and SSE3) to achieve high performance. 
While difference data is extracted from the compressed bit-stream 
on the CPU, the residuals can be added on the GPU in a pixel 
shader. In this case, predicted values can be obtained by sampling 
the texture with the bilinear filtration. To get the difference data, 
it is enough to read an 8-bit difference texture, since the hardware 
automatically scales the [0..255] range to the [0..1] diapason. The 
only thing we have to do is to scale the obtained value to the de-
sired range [ , ] and to add it to the predicted coarse 
value. 

mind maxd

Normal maps in our system are generated on the GPU at the re-
finement stage and do not require additional storage. The GPU 
also performs geomorph to hide LOD switches (see [21]), and 
performs surface texturing. 

5. RESULTS 

5.1 Compression 

  
Figure 8: Puget Sound and Grand Canyon data sets rendered with 

our system. 
We have experimented with two different data sets to test our 
compression scheme. The first one is the Puget Sound and the 
second one is the Grand Canyon data set (see Figure 8). Both are 
8192x8192 32-bit floating point girds at 30 meters spacing. The 
original data occupies 256 MB of disk space. 
The compressed multiresolution representation of the first data set 
was constructed using the patch size of 256x256 vertices 
( 9 ). In the first experiment, the data was compressed with 
the maximum world space error of 1 meter that is 3% of the 
height field spacing. Table 1 shows the compression ratios, 
maximum absolute difference and root-mean square differences 
between the original data set and the reconstructed data set in 
meters. The last column shows the peak signal-to-noise ratio 
(PSNR). 

=pD

Pro-
gressive 

Quant 
depth 

Compress. 
ratio 

Max abs. 
diff. rms diff. PSNR 

Yes 8 7.2 0.9993 0.1809 87.7 DB

No 12 5.69 0.9948 0.1655 88.4 DB

Table 1: Compressing the Puget Sound data set with 1 meter 
maximum world space error. 

As Table 1 shows, using progressive encoding algorithm im-
proves compression ratio for this data set by a factor of 1.26. 

In the next experiment, the data set was compressed with the 
guaranteed maximum world space error of 3.0 meters. The com-
pression results are presented in Table 2. 

Pro-
gressive 

Quant 
depth 

Compress.
ratio 

Max abs. 
diff. rms diff. PSNR 

Yes 8 14.32 2.9995 0.4245 80.2 DB

No 12 10.85 2.9993 0.4422 79.9 DB

Table 2: Compressing the Puget Sound data set with 3 meters 
maximum world space error. 

In case of immediate encoding, the quantization depth should be 
much higher than that of the progressive encoding to keep the 
desired quality. In this case progressive encoding brings 1.3x 
compression gain. 
In the next experiment, the data set was compressed with the 3.0 
meters maximum rms error, the patch size was 128x128 vertices. 
The results are presented in Table 3. 

Pro-
gressive 

Quant 
depth 

Compress.
ratio 

Max abs. 
diff. rms diff. PSNR 

Yes 8 104.34 46.57 2.76 64 DB 

No 12 74.1 49.49 2.68 64.26 DB

Table 3: Compressing the Puget Sound data set using 3 meters 
rms world space error. 

Comparison with other algorithms is rather difficult, because we 
do not have the same data set. For example, in [19], authors used 
a height filed with 10 meter spacing. With one meter rms error 
threshold they reported 57x compression ratio. 
In the next experiment, the quantized difference data was com-
pressed using lossless encoding path that is supported by the 
JPEG2000 standard. The patch size is 256x256 vertices. Table 4 
shows that the data set was reconstructed with the rms error of 
only 13 cm that is only 0.4 % of the height field spacing. Note 
that the error is caused by the loss of data at the quantization of 
difference data from 32-bit float to 8-bit integer. 

Pro-
gressive 

Quant 
depth 

Compress.
ratio 

Max abs. 
diff. rms diff. PSNR 

Yes 8 5.73 0.55 0.13 90.5 DB

Table 4: Compressing the Puget Sound data set with lossless 
difference data compression. 

The Grand Canyon data set was compressed using three different 
criteria. In all experiments, the progressive encoding was used, 
the patch size was 256x256 vertices, and residuals quantization 
depth was 8 bit. The results are presented in Table 5. 

Criterion Compress.
ratio 

Max abs. 
diff. rms diff. PSNR 

Max abs error 3.0 12.3 2.9998 0.4635 77.42 DB

Max rms error 3.0 69.05 58.29 2.7366 62 DB 

No res. compr. 6.44 1.2936 0.2613 82.4 DB

Table 5: Compressing the Grand Canyon data set using different 
criteria. 

Table 5 shows that with compression ratio more than 69x, the data 
are compressed with 62 DB PSNR. In the residuals lossless com-
pression mode, the data compressed with 6.44x ratio and differs 
from the original one with only 26 cm rms error. 



5.2 Performance 
We compared the performance of our algorithm with the perform-
ance of our implementation of the geometry clipmaps approach 
[17, 18]. The test platform was equipped with the Intel Pentium D 
3.0 GHz processor, 2 GB RAM and GeForce 8800 GTS graphics 
card with 640 MB of video memory. In all experiments, the cam-
era was moving along the predefined path. In geometry clipmaps 
approach, we used uncompressed terrain representation, so our 
implementation should work faster than the original one. Our 
original data set having size 256 MB was compressed to 19 MB. 
In both algorithms, the terrain was rendered using the same visual 
settings. The terrain was rendered into the 1024x768 window. In 
both systems, we implemented an atmospheric light scattering 
algorithm presented in [26], [27]. The comparison of the algo-
rithms performance is presented in Figure 9 and Figure 10. In the 
first run of our algorithm, we used the screen space threshold of 4 
pixels that provides quality equal to that of the geometry clipmaps 
approach with the clipmaps n=255 and the window size of 
1024x768 pixels. The second run was performed with the screen 
space error of 2 pixels that provides much higher quality than the 
geometry clipmaps. Figures 9 and 10 show that our algorithm 
provides higher frame rates and rendering performance even with 
higher image quality. 
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Figure 9: Comparison of the frame rates of the geometry clip-

maps approach and our algorithm.  
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Figure 10: Comparison of the rendering efficiency of the geome-
try clipmaps approach and our algorithm measured in million 

triangles processed per second. 
The reason for our algorithm to outperform the geometry clip-
maps approach [17, 18] is that our algorithm caches the data in 
the video memory while geometry clipmaps permanently transfers 
data from the host to the GPU, which hinders performance. 
To test maximum performance of our algorithm and explore ef-
fectiveness of GPU utilization, we rendered the scene with mini-
mal GPU load. The scene was rendered without light scattering 
atmospheric effects, and simple height-based surface shading was 
used. The results are presented in Figure 11. 
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Figure 11: Maximum rendering performance of our algorithm. 
Figure 11 shows that the average rendering performance of our 
system is 220 millions triangles per second (M∆/s), while peak 
performance is 262 M∆/s. The average scene complexity was 
586,000 triangles. The average frame rendering rate was 407 fps, 
and it never dropped below 250 fps. Figure 11 shows that our 
algorithm does not CPU-bound and very effectively exploits 
power of modern graphics processors. 

6. CONCLUSION AND FUTURE WORK 

We described an effective multiresolution model for interactive 
terrain rendering. The model encodes adaptive surface approxima-
tion at different levels of details and supports an efficient data 
compression. Our model enables constructing adaptive triangula-
tion with the variable resolution that is minimally redundant, 
while other approaches that uses compressed terrain representa-
tion resort to regular triangulations or ignore local terrain feature. 
Our compression scheme is based on the JPEG2000 image com-
pression standard that proved to be the one of the best image 
compression algorithms available for the moment. Our com-
pressed representation greatly reduces the size of the elevation 
data so it can reside completely in system memory thereby avoid-
ing the complexity of out-of-core memory management. The con-
struction process allows direct controlling of the approximation 
accuracy using rms or maximum absolute world space error crite-
rion, which is essential for terrain rendering. 
The model is well-optimized for the current graphics hardware 
and allows very efficient utilization of the GPU rendering per-
formance. Our experiments showed that it outperforms such re-
cent approach, as geometry clipmaps [17, 18] in terms of render-
ing frame rates and triangle processing performance. Our algo-
rithm is not CPU bound and due to the efficient asynchronous 
implementation, it demonstrates a high rendering performance 
that is far enough for interactive terrain visualization systems. 
In our current implementation, the extraction of compressed re-
siduals from the compressed bit-stream is performed on the CPU. 
The advances of the current graphics hardware enable executing 
complicated programs on the GPU. For example, the GPU-based 
implementation of wavelet transform is presented in [29]. One 
possible direction of our future work is to implement the decom-
pression step entirely on the GPU to greatly decrease the CPU 
load. The other way of improvement is to procedurally generate 
the fine terrain details by using some sort of noise as the differ-
ence data rather than extracting it from the compressed form. 
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