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Abstract

Robust time-to-contact calculation belongs to the most desirable
techniques in the field of autonomous robot navigation. Using only
image measurements it provides a method to determine when con-
tact with a visible object will be made. However the computation of
the time-to- contact values is very sensitive to noisy measurements
of feature positions in a image. Instead of developing a new feature
extraction and tracking algorithm this paper presents an approach
which deals with the inaccurate measurements. It is based on the
here derived equations which describe the process how a feature di-
verges from the focus of expansion. The results presented testify
the stability and the robustness of this approach.
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1 Introduction

Robot obstacle and hazard detection is an important task within the
field of robot navigation. It is fundamental to applications where
successful and collision free robot navigation is required. 3D recon-
struction of the surrounding environment is one possible solution to
this problem.

In the case where the robot sensor system consists of video cam-
eras only, visual information has to be used to obtain a three-
dimensional structure or model of the world. This is a difficult task
because the third dimension, the depth of the scene, has to be re-
constructed from the two-dimensional images.

Numerous means of constructing such 3D models exist. Hartley et
al. [2003] present a wide variety of stereo based algorithms for 3D
reconstruction of the environment. Depending on how much prior
information is available about the camera calibration and the rel-
ative positions of the cameras different algorithms can be applied
to achieve different degrees of reconstruction. However these algo-
rithms perform badly in the structure from motion approach if the
only camera of the robot is headed in the direction of the robot mo-
tion and the robot is performing a forward movement. In this case
the back projected rays are almost parallel for much of the field of
view. This usually results in a poor reconstruction.

Since the described scenario is very common in the field of au-
tonomous robot navigation different approaches exist to resolve
this problem. A very promising technique is the estimation of
the remaining time to contact with surrounding objects [Lee 1976],
[Longuet-Higgins and Prazdny 1980], [van der Horst 1991], [Cut-
ting et al. 1995], [van der Horst and Hogema 2003], [Hecht and
Savelsbergh 2004]. Using only image measurements, and without

knowing robot velocity or distance from the object, it is possible to
determine when contact with a visible object will be made.

To achieve reliable time-to-contact values accurate measurement of
feature positions in two consecutive images is of high importance.
It has been shown that the quality of the time-to-contact values de-
pends strongly on how precise the feature position in the image can
be measured. This also corresponds to the conclusions made by
Souhila et al.[Souhila and Karim 2007]. They have used an opti-
cal flow method to compute the point divergence from the focus of
expansion. Bad light conditions caused large errors in the measure-
ment and this resulted in unreliable time-to-contact values.

To resolve this problem much of the past research had been fo-
cused on developing algorithms for extracting outstanding features
and for tracking them robustly ([Harris and Stephens 1988], [Shi
and Tomasi 1994], [Lowe 2004], [Mikolajczyk and Schmid 2002]).
However depending on the hardware used, image resolution and
environmental conditions the required high accuracy of the mea-
surement of the feature position can usually not be warranted.

This paper suggests a different approach. At first model equations
are derived which describe how features diverge from the focus of
expansion. Then based on the noisy measurements of feature posi-
tions the parameters of these equations are adapted in such a way
that the true feature positions are best estimated. It will be shown
that time-to-contact values which have been computed based on
these estimated feature positions are much more stable and allow
more reliable statements about the time to contact.

2 Calculating Time-to-Contact

This section discusses shortly the theory behind the calculation of
the time-to-contact values and shows that the performance of this
simple algorithm in an indoor environment is not satisfactory.

2.1 Theory behind the time-to-contact calculation

Time-to-contact calculation is widely used in the field of robotic
vision. As stated before it allows to compute when contact with
a visible object will be made by the robot. Knowledge of the ro-
bot velocity or its initial distance from the object is not required.
However the approach works properly only in the case of a static
environment. It also implies that the robot is moving with a constant
velocity.

Good explanations of the theory behind time-to-contact can be
found in [Trucco and Verri 1998], [Lee 1976] or [Camus 1995].
The following explanation overlaps largely with those made by Ca-
mus [1995].

Figure 1 describes the optical geometry for time-to-contact. A point
of interestP at coordinates(X, Y, Z) is projected through the fo-
cus of projection centered at the origin of the coordinate system
(0, 0, 0). In physical spaceP is fixed and does not move. The ori-
gin or focus of projection, however move forward with a velocity
dZ
dt

. If the direction the camera is facing equals the direction of
motion, then this direction is called the focus of expansion (FOE).
In the case of a mobile robot it is quite reasonable to assume that



Figure 1: Optical geometry for time-to-contact.

the camera points the same direction as the direction of translation.
The image plane is fixed at a distancez in front of the origin; for
convenience we setz = 1. The actual value ofz depends on factors
such as the focal length of the camera. The world pointP projects
onto the pointp in the image plane. When the robot is moving the
image plane moves closer toP and the position ofp in the image
plane changes. Using equilateral triangles:
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Finally divide byy and take the reciprocals of both sides:
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The quantityτ is known as the time-to-contact. Note that the com-
putedτ does not give any information about distance or velocity per
se, but only about their ratio. The above equation gives a method
for calculating time-to-contact: for a camera heading in the same
direction as the FOE, pick a point in the image, and divide its dis-
tance from the FOE by its divergence from the FOE.

Thus the algorithm for computing time-to-contact values consists
of the following steps:

1. Compute the FOE from a sequence of consecutive images.

2. Find corresponding features in two consecutive images. For
each of these correspondences time-to-contact values will be
estimated.

3. Compute the lengths of the disparity vectors or optic flow vec-
tors formed by two corresponding features. The lengths of the
disparity vectors provide an estimation for the divergence of
a given point from the FOE.

4. For every relevant feature compute its distance to the FOE and
with this the time-to-contact value.

FOE calculation is based on the fact that it builds the center of the
radial flow pattern which arises when the robot is moving forward.
Usually FOE is computed as the intersection point of disparity vec-
tors.

2.2 Details of the experimental setup

For experimental purpose the only camera (standard off the shelf
web camera) of the robot was oriented in the direction of the ro-
bot movement. The robot was then programmed to perform a pure
translational motion in a forward direction with a constant velocity
for a given time interval.

For features to track SIFT Features (Scale Invariant Feature Trans-
form) [Lowe 2004] have been chosen. Empirically it has been
shown in [K. Mikolajczyk 2003] that they outperform most point
detectors and are more resilient to image deformations. They are
also robust to changes in illumination and noise.

For FOE calculation an initial sequence of seven consecutive im-
ages has been used. Figure 2 depicts graphically the idea behind
the FOE calculation.

Figure 2: FOE calculation: The left graphic shows the principal
idea behind the FOE calculation. The right image shows the results
of its implementation.

After having tracked different SIFT features over a given sequence
of consecutive images least mean squares (LMS) method has been
used to find the optimal lines through these points. Then several in-
tersection points of two randomly chosen lines have been computed
and the average of these intersection points has been set as the FOE.

2.3 Results of the simple time-to-contact calculation

Figures 3 and 4 show exemplary the experimentation results of the
described algorithm.
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Figure 3: Experimentation results: The graphic shows the posi-
tions of one selected feature which could have been tracked over 28
consecutive images.
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Figure 4: Experimentation results: The graphic shows the time-to-
contact values which correspond to the feature in figure 3.

Figure 3 shows the positions of one randomly selected SIFT fea-
ture measured in every image of a sequence. The resulting time-to-
contact values are shown in figure 4. The computed values provide
no reliable information about the time to contact. Since the robot is
approaching an object the computed time-to-contact values should
be monotonic decreasing with respect to time. As one can see in
figure 4 it is not the case.

Experimentally it was shown that the following reason has a ma-
jor impact on the results: Due to small image resolution and inex-
act feature localisation the euclidean distances (disparities) between
two consecutive feature positions do not result in a strictly increas-
ing curve when plotted over time.

3 Method for robust time-to-contact calcula-
tion

The approach presented here aims the computation of time-to-
contact values which allow more concrete statements. The main
goal was to develop an algorithm which has the same noisy data
as an input but produces more reliable time-to-contact values com-
pared to those presented in the previous section.

The major idea behind the approach is that the tracked features do
not diverge randomly from the FOE, but do follow a certain pattern.

3.1 Constructing a model

The feature position in the next image depends strongly on the 3D
coordinates of the real world point and on the distance the robot
drives before taking the next image. To demonstrate this relation,
consider a 3D pointP with the coordinatesPt1 = (X, Y, Z) rela-
tive to the robot position at timestampt1. When the robot covers a
distanced, only theZ-coordinate of the pointP changes. Thus at
timestampt2 the pointP has the coordinatesPt2 = (X, Y, Z − d)
and at timestampt3 the coordinatesPt3 = (X, Y, Z − d− d). As-
suming a perspective camera model the 3D pointP projects onto
the following image pointsp at different timestamps.

pt1 = (x1, y1) =
(

X
Z

, Y
Z

)

pt2 = (x2, y2) =
(

X
(Z−d)

, Y
(Z−d)

)

pt3 = (x3, y3) =
(

X
(Z−d−d)

, Y
(Z−d−d)

)

Considering only thex-coordinates of these points one gets the fol-
lowing three equations:

X = x1 · Z (2)

X = x2 · Z − x2 · d (3)

X = x3 · Z − x3 · d − x3 · d (4)

Equating (2) and (3):

Z =
x2 · d

(x2 − x1)
(5)

Substituting equations (2) and (5) into (4) results in:

x1

(

x2 · d

(x2 − x1)

)

= x3

(

x2 · d

(x2 − x1)

)

− x3 · d − x3 · d

Rearranging the values:

d ·
x1 · x2

(x2 − x1)
= d ·

(

x3 · x2

(x2 − x1)
− x3 − x3

)

After canceling the variabled and further rearranging the values
one gets the following final equation:

x3 =
x1 · x2

(2 · x1 − 1 · x2)

Using complete induction (a method of mathematical proof) it can
be shown that the above equation holds for everyn ∈ N>0:

x (n) =
x1 · x2

((n − 1) · x1 − (n − 2) · x2)
(6)

The same considerations also hold for they-coordinates of these
image points:

y (n) =
y1 · y2

((n − 1) · y1 − (n − 2) · y2)
(7)

As one can see only values which can be measured directly from the
image occur in these equations. Thus knowing the feature position
in the first two images one can predict the feature position in the
(n − 1)-th and in then-th image by applying the equations (6)
and (7). By combining these values with FOE it is then possible to
compute future time-to-contact values.

However experimentally it was shown that due to inexact feature
localisation the computation of future time-to-contact values yields
poor results. It is very sensitive to the first two measured positions
of a feature. As stated above in most applications the precise mea-
surement of feature positions can usually not be warranted.

3.2 Defining the optimization problem

Another way of interpreting the equations (6) and (7) is thinking of
them as regression equations. Both equations describe the process
of how a feature diverges from the FOE with every image taken
from the camera. In other words they describe the relationships
between the dependent variablesxn andyn and the independent
variablen. By settingax = x1, bx = x2 anday = y1, by = y2

one gets:

x(n) =
ax · bx

((n − 1) · ax − (n − 2) · bx)
(8)

y(n) =
ay · by

((n − 1) · ay − (n − 2) · by)
(9)



Thus the task to solve is to find best estimate for the regression pa-
rametersax, bx, ay andby using positions of a given feature in the
previously taken images. The following error functionsF (ax, bx)
andF (ay, by) have to be minimized:

F (ax, bx) =

N
∑

n=1

Fn (ax, bx) , F (ay, by) =

N
∑

n=1

Fn (ay, by)

whereFn (ax, bx) andFn (ay, by) are defined as follows:

Fn (ax, bx) =

(

xn −
ax · bx

((n − 1) ax − (n − 2) bx)

)2

(10)

Fn (ay, by) =

(

yn −
ay · by

((n − 1) ay − (n − 2) by)

)2

(11)

Herexn andyn are the measured coordinates of a given feature in
then-th image andN is the number of images taken until the actual
timestamp.

By minimizing the error functions with every image taken from the
camera one gets better and better estimation of the regression para-
meters and with it a better estimation of the true position of a given
feature. Results show that time-to-contact values computed based
on these estimated feature positions are more stable and allow more
reliable statements about the robot relative distance to the objects.

3.3 Solving the optimization problem

The use of standard optimization methods (like gradient descent) to
find the minimum of the functions defined above was shown to be
very inefficient. With every image taken the error functions change
and thus have to be optimized again.

To overcome this problem the stochastic gradient descent [Spall
2003] has been used. Here the true gradient is approximated by
the gradient of the error function only evaluated on the recently ob-
served position of a given feature. The parameters are then adjusted
by an amount proportional to this approximate gradient. The update
equations for the regression parameters have the following form:

a
n+1
x = a

n
x − δ

∂Fn (ax, bx)

∂ax

∣

∣

∣

∣

(an

x
,bn

x
)

b
n+1
x = b

n
x − δ

∂Fn (ax, bx)

∂bx

∣

∣

∣

∣

(an

x
,bn

x
)

Here thean
x andbn

x are the latest estimations for the regression para-
metersax andbx andFn (ax, bx) is defined as in equation 10. The
variableδ is also updated with every image taken and has the value
δ = 0,1

n2 . As initial values for the parametersax andbx the first two
x-coordinates of a given feature have been chosen:ax = x1 and
bx = x2. This choice assures that the searched minimum lies in the
near neighborhood.

The error function for thex-coordinates was then minimized under
the following condition:

|ax| < |bx|

The condition implies that a feature diverges from the FOE. As the
origin of the image coordinate system the calculated FOE was cho-
sen.

The error function for they-coordinates was minimized equiva-
lently.

4 Results of the presented approach

Using the estimated regression parameters the positions of a fea-
ture in then-th and the(n − 1)-th image were calculated using the
equations 8 and 9. Together with the computed FOE the time-to-
contact values for every tracked feature were estimated using the
equation 1. The achieved results are shown in figure 5 and 6.
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Figure 5: Each graphic shows calculated time-to-contact values
for one respective feature.

In every graphic the time-to-contact values are plotted over the
number of images the respective feature had been tracked. The con-
tinuous line shows the time-to-contact values which have been com-
puted using the usual method described in Section 2. The dashed
line shows the time-to-contact values which have been computed
using the proposed approach. To gain some insight about the accu-
racy of the results also the ground truth time-to-contact values have
been plotted on every graphic. Since the robot is moving forward
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Figure 6: Each graphic shows calculated time-to-contact values
for one respective feature.

with the constant velocity the ground truth values are represented
through the straight lines.

As one can see the simple time-to-contact computation is not suf-
ficient at all. The values jump from hight to low and at no point
one can predict the further development of this curve. As the con-
sequence no reliable statements about the time to contact can be
made. In contrast the dashed line is more smooth and avoids sud-
den jumps. Moreover after a period of about ten images it starts
to approximate the real time-to-contact values. During this initial
period the regression parameters are adapted due to noisy measure-
ment of feature positions.

Figure 7 shows a snapshot of a time-to-contact map calculated by
the robot while moving forward. The upper figure shows the corre-
sponding image taken from the camera.

Figure 7: Time-to-contact map: The upper image was taken from
the camera and the lower image shows the corresponding time-to-
contact map computed by the robot.

The red points in the upper image depict the measured positions of
tracked SIFT features. For every successfully tracked feature the
corresponding time-to-contact values have been estimated. The re-
sults are shown in the lower image. Here the black color means
that either no information is available or the object is relatively far
away. The brighter the color the nearer is the respective object. As
one easily realises the chair to the left is nearer than the box on
the right side of the image. Thus on the time-to-contact map the
chair is marked via the white spots and the box via the gray spots.
Due to the smoothness of the curves which in figure 5 and 6 repre-
sent the recomputed time-to-contact values the computed time-to-
contact map does not change abruptly from one image to the next.
This is important if the results of the reconstruction should be used
for planning tasks.



5 Conclusions

A new robust approach for calculating time-to-contact values has
been presented. It is based on the here derived equations which
describe how a feature diverges from the FOE. These equations are
based only on the general rules about the image formation process
and do not require any prior knowledge about the camera intrinsic
parameters.

The thereon formulated error functions are minimized using the sto-
chastic gradient descent optimisation algorithm. Due to this opti-
misation method it was shown that this approach is suitable for real
time applications also.

It was successfully tested in an indoor environment with a robot
which was equipped with a simple web cam. The results presented
here testify the stability and the robustness of this approach.

6 Future Work

Although the presented method produce reliable time-to-contact
values, it would be interesting to see how robust this approach
is against low quality features or against false feature correspon-
dences. Very important is also the extension of this approach to
rotational movement of the robot.
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