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Abstract

This paper deals with local interpolation and approximation of
meshes by quadrics. Our goal is to estimate the shapes on meshes,
which are closely related to discrete curvatures. Our study aims
at analyzing a vertex shape through the properties of a local fitting
quadric. One of the most important difficulties in the discrete case
is due to artifacts requiring a more detailed classification of vertices
than in the continuous case. Our approach proposes a solution and
permit a better processing of geometrical data.

Keywords: quadrics, interpolation, approximation, discrete cur-
vatures

1 Introduction

Clouds of points, originating from physical measures or data
processing, must be analyzed prior to a triangulation, in order to
determine points yielding difficulties during further processings.
Local approximation by a quadric is a simple way to obtain indi-
cations on geometrical properties in the vertex neighborhood. This
approach provides interesting results but requires additional work:
analysis of the numerical difficulties which can sometimes be en-
countered, determination of a good number of neighbors defining
the associated system and choice of the best constraints to solve it
(see section 3). But the main problem is that the method exhibits
the characteristics of a C? surface and is thus completely ineffi-
cient to detect any of the artifacts encountered in the discrete case,
as described in section 3. In order to apply this approach with ro-
bustness, an a priori local analysis of the geometry of the vertex and
its neighbors (number of neighbors, spatial distribution, efc.) must
be achieved. The techniques developed use both numerical criteria
(analysis of singular values and residue) and geometrical ones.

The paper is organized as follows: in section 2, we present a short
review of works on discrete curvatures. In section 3, we introduce
the principle of our method. Section 4 emphasizes the interesting
results we obtained during numerous tests. We conclude in section
5.
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2 Related works

The shape of an object is usually studied in any point with an analy-
sis of its curvatures. All the fundamental results of differential
geometry can be found in [DoCarmo 1976]. Analyzing polyedral
surfaces implies the definition of second order discrete estimators
called discrete curvatures. Mainly two approaches have already
been proposed.

The first one is based on the “angular defect” computation (see for
example [Dyn et al. 2001; Borrelli et al. 2003; Alboul and Van-
Damme 1997; Alboul and VanDamme 1995; Meyer et al. 2002]).
The idea is to propose an analogy of the well-known Gauss defini-
tion (see [Bac et al. 2005] for a more detailed presentation). Con-
sider a triangulation of a vertex and its first neighbors. The normal-
ized normal vector to each triangle are called NV;. These vectors can
be placed on a sphere and connected by great circle segments (see
figure 1) defining the discrete Gaussian indicatrix. The Gaussian
discrete curvature is defined by a ratio N/ D, where D is a quantity
related to the area of the previous triangles and N the area of the
spherical polyhedron on the discrete indicatrix. This area is called
the angular defect and is defined by 27 — Y «;, where the «; are
the angles between two consecutive edges connected to the vertex
(figure 1).

Figure 1: Angular defect of a point and its Gaussian indicatrix.

The angular defect can be interpreted as the angle that remains
when cutting one edge in order to unfold the faces. 27— a; =0
corresponds to a parabolic or flat point which can be directly un-
folded without any cut. 2w — Y «; > 0 corresponds to a convex
point and when 27 — 3 a; < 0, there is an overlap of faces in the
plane corresponding to a saddle point.

But this approach has limitations due to “artifacts” inexisting in the
continuous case. They have been first pointed out in [Alboul and
VanDamme 1995]. Alboul and Van Damme classified vertices in 3
categories according to the spherical indicatrix (see figure 2) which
are: “Convex vertices” when the indicatrix turns counterclockwise
(positive loop), “saddle vertices” when the indicatrix turns clock-
wise (negative loop), and “mixed” when the indicatrix changes its
orientation (there exists at least a self-intersection). We prefer to
use the term ‘‘fan points” in relation with the shape of such ver-
tices.

A more complete analysis emphasizes a more complex situation
[Bac et al. 2005]. A convex vertex and its symmetrical concave one
have the same spherical indicatrix (there are differentiated in the
continuous case by the values of the principal normal curvatures).



Figure 2: Convex, saddle and mixed vertices.

For two contiguous vertices in the discretization, one can be convex,
the other concave without intermediate case (one is a fan point).
There exist also at least six cases: convex, concave, saddle, fan
convex, fan concave and fan saddle. They correspond to completely
different situations, one of the most important being the existence
of a supporting plane or not. Finally, it is possible to create a fan
convex with a negative angular defect as shown in figure 3 (left),
while increasing the number of vertices moves the angular defect
toward —oo, figure 3 (right).
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Figure 3: Fans convex with negative angular defect.

In addition to the drawbacks previously pointed out, the results con-
trolling the convergence toward the Gaussian continuous curvature
when the density of points increases are poor ([Borrelli et al. 2003]).
A triangulation must also already be constructed, and the results are
highly dependent on this triangulation.

This explains why, even if powerful applications are based on the
angular defect calculation, another approach is developed. A local
fitting with a low degree polynomial surface, mainly a “quadric”
is computed (see [Berger and Gostiaux 1988; Buxton and Douros
2002; Cipolla and Giblin 2000; Lane 1940; Daniel et al. 2007]).
Approximation with quadrics has been used by many authors with
different goals, one of the first main contributions being ([Sander
and Zucker 1990]). A global reconstruction by adjusting local es-
timators for quadrics (principal curvatures and principal directions)
was proposed there. Recently, improvements have been made by
developing tests to choose between global approximation by a gen-
eral quadric, local approximation in a local coordinate system or
particular treatment for edges and corners ([Ohtake et al. 2003]); the
results are weighted to find a complete model in an implicit form.
In this model, extraordinary points have been removed to receive a
smooth object. These approaches often have a common point: they
use normals at each vertex, either by estimation or because they are
given as data.

We on the other hand want to use raw points, without characteri-
zation of normals or triangulation. This choice is motivated by the
fact that computation of normals, coming from some technique of
geometric approximation (weighted mean, Voronoi cells, estima-
tion of tangent plane) is rarely very reliable and is not necessarily
a good starting point for second order estimations. Moreover, the
reality of digitized data sets is the existence of noise, which raises
problems in the normal vector estimation process and which often
leads to artifacts we try to detect.

Once a local quadrics is obtained, the local differential characteris-
tics of this surface can be considered as relevant local discrete esti-

mators. The principal curvatures k1, k2, the principal directions, the
Gaussian and mean curvatures can be defined. They evidently must
be carefully interpreted, taking into account the switch between the
discrete and continuous spaces. As a consequence, the method ex-
hibits the characteristics of a C'? surface and is thus completely in-
efficient to detect any of the artifacts described above, without any
additional analysis.

The following sections will present our approach to fit with a
quadric and how we can detect the different situations. Some works
deal with “cubics” ([Cazals and Pouget 2005]), which allows a
wider system of classification. We will focus on quadric fitting
which is faster in terms of calculations and easier to classify.

3 Fitting with a quadric

A general quadric is represented by a homogeneous equation with
10 coefficients. As explained in the following part, one of these co-
efficients will be conditionally fixed. Linear equations are obtained
by writing conditions for a quadric to contain 9 (or more than 9)
given points. Thus, the quadric is determined by 9 equations for
interpolation, or more than 9 equations for approximation.

The general equation of a quadric in homogeneous coordinates is
ViQV = 0, Q being a symmetric 4 x 4 matrix. The developped
form in cartesian coordinates is F(z,y,z) = az> + by + cz* +
2dxy + 2exz + 2fyz + 2gx + 2hy + 2iz 4+ j = 0 and the points
that we propose to be on a quadric must satisfy:

F(zi,yi,2i) =0, i=1ton M

We then obtain the linear system: Az = B represented in matrix
form by:

'T% y% Z% 2x1y1 2121 ... 1 a 0
z2 oyl 22 2woys  2mezy ... 1 b 0
T2 oyl 2l 2%ayn 2Tnze ... 1 J 0

To solve the system of equations we use a Singular Value Decom-
position (SVD in the following) ([Ciarlet 1998]) which have two
advantages: robustness in pathological or degenerated cases, easi-
ness for fine analysis of conditioning. We can study then some re-
lated issues like the condition number, the residue, singular values,
singular vectors.

In order to treat the problem of homogeneity, Buxton and Douros
in [Buxton and Douros 2002] proposed the constraint (a> + b +
c® +2d% 4 2e? + 21 +2¢g° + 2h* + 23> + 52 = 1), but it implies
more calculations. In order to keep the linear system approach,
we chose to set arbitrarily a coefficient, and in particular to set the
coefficient j of the quadric equation to —1 (we chose j which is a
factor independent of the coordinates).

To experimentally check, we tested the choice of value 7, in all the
cases and for all the quadrics. With respect to the condition number
value there was no change. On the other hand, the coefficients of
the quadric were multiplied by —j and the residue value by —j52,
which was predictable. The only problem with this choice is when
the quadric passes through the origin. This issue will be studied in
paragraph 4.2.

We need at least 9 points to get a system of equations giving so-
lutions that does not depend on a parameter. In fact, we can take



a neighborhood of more than 9 points in order to get a better uni-
form distribution around the point and to have greater smoothing
if desired. However, we must be aware of the risks of taking an
important number of neighbors. On the one hand, more points al-
low better smoothing of a possible noise. On the other hand, more
points involve as a matter of fact points which are far away from our
vertex and thus the risk of losing local information which is never-
theless the characteristic of the analysis of shapes (the differential
geometry works in the neighborhood of a vertex). The neighbors
are determined through a distance computation from the given ver-
tex.

From a theoretical point of view all condition numbers lower than
infinity correspond to a matrix of maximum rank. In practice, con-
sidering the computations, the condition number increase indicates
quickly a problem of rank numerical degeneracy. Only the order
of magnitude of the condition number is relevant (see [Daubisse
1984]). In practice, condition numbers of 100 and 150 are consid-
ered to be equivalent, while values 100 and 1000 are different (102
et 10%). As all manipulated values are approximated (accuracy of
the digitized or computed data, approximation errors, calculations
rounding, ...), studying the condition number is necessarily very
important.

We programmed using double precision floating arithmetic. 10~*°
is the order of magnitude of the rounding error. As a consequence,
a condition number greater or equal to 10'° can be considered as
infinity: there is at least one vanishing singular value compared to
the largest one.

To analyze the shapes of determined quadrics, we use the eigenval-
ues of the 3 x 3 matrix of degree 2 terms, which, together with con-
stant term, enable to have a reduced form of the equation. Eigen-
values of same sign determine an ellipsoid and opposite signs de-
termine an hyperboloid, either with one sheet or two sheets. A null
eigenvalue indicates a paraboloid in presence of first degree terms
otherwise a cylinder. Finally, a degenerate case corresponds to the
situation where the 4 x 4 matrix @ is singular. (see [Berger and
Gostiaux 1988] for typology of quadrics).

4 Results

Sub-sections 4.1 to 4.4 exhibit the results we obtained to detect the
different configuration of point shape encountered on digitized ob-
ject.

4.1 General Tests

We classify the quadrics according to standard typology:

1. The so-called genuine quadric surfaces that correspond to the
great family of quadric surfaces, like: hyperboloid with two
Sheets (H2), hyperboloid with one Sheet (H1), ellipsoid (E),
hyperbolic paraboloid (HP) and elliptic paraboloid (EP).

2. Individual cases of known surfaces that are not classified as
degenerated surfaces but do not pertain to the previous cat-
egory, like: hyperbolic cylinder, parabolic cylinder, elliptic
cylinder and cone.

3. And finally all degenerated quadric surfaces, like two inter-
secting planes, two parallel planes, a plane, a line, a point and
the empty set.

The first sequence of tests is, given a vertex on a quadric, dis-
cretize it to obtain the vertex neighbors, then fit this set of points

as described in section 3 and analyze the result. Different types of
quadric surfaces have been considered and the following charac-
teristics have been considered: the condition number, the residual,
the singular values, the singular vectors, the eigenvectors, the point
distribution around the vertex. The various examples of quadric
surfaces lead to the same results.

A typical example is proposed with an ellipsoid, é + y2—2 +22 =1,
with irregular distributions of distance and angle around the vertex.
The condition number is compatible with correct results. Table 1
collects the coefficients of the ellipsoid. The eigenvalues and the
constant 7 which is equal to 1 are characteristics of an ellipsoid.

The quadric with j = —1
Cond2(A) = 1.112517 x 10*

a 0.5
b 0.5
c 1
d —1.80438 x 107 1°
e —1.50276 x 107
b 4.86293 x 10”14
g 1.46562 x 1014
h —4.54661 x 10~
i —4.95171 x 10~ '3
Residual = 3.9409 x 10~ °
A1 1
Ao 0.5
A3 0.5

Classification : ellipsoid

Table 1: Ellipsoid with irregular distance and angle distributions

In general, it was noticed that the more regular the points are around
the vertex, the worse the condition number. The condition number
is closely linked with the regularity of neighbor distribution. In
extreme cases, having a regular sampling around the vertex may
produce a rank deficiency (the symmetries entail linear combina-
tions of lines). This situation is not only an academic vision since
laser digitizing machine can produce regular set of digitized points.
Taking a second round of neighbors can solve this problem by in-
creasing the number of points and overcoming the problem of linear
combinations. As already mentioned in section 3, increasing the
number of neighbors also permits to decrease the noise influence
but one must be clearly aware that this approach is only relevant for
dense set of points. As a matter of fact, the fitting must absolutely
remain a local one.

In order to illustrate the previous problem let us consider the ellip-

soid % + % + 2% = 1, with 8 points regularly distributed around
the vertex. The quadric system provides the results given in table 2.

Adding one point at a time chosen in a second circle of neighbors,
the number of small singular values decreases by one for each point
added as can be seen in table 3. The condition number is finally
correct.

It can occur that increasing the number of neighbors does not im-
prove the condition number. In such a case, the problem is not
linked with the point distribution but with other difficulties as it is
explained in the following sections.

4.2 Quadric surfaces passing through the origin

A quadric which passes through the origin does not have the free
coefficient j in the equation, this coefficient vanishes for this type
of surfaces. Fixing j = —1 will raise a problem. This situation
must be detected in order to be able to fix another coefficient in the
equation.



The quadric with j = —1

Cond2(A) = 8.055085 x 107

a 0.5

b 0.5 Singular Values

c 1 6.28594

d —1.50823 x 10~ 1! 2.80249

e —4.78182 x 1010 2.66991

f —1.10959 x 107° 0.505404

g 4.62764 x 10710 0.347779

h 1.07357 x 107° 0.186733

i 3.29437 x 10~8 7.80369 x 10710

Residual = 1.04738 x 10~ 6.01801 x 10~°

The quadric with j = —1

Conda(A) = 3.268193 x 1017 Singular values
a -2.10225 15.5412

b -1.33333 2.81943

c -0.687117 3.43523

d —5.57331 x 10716 0.441707

e 1.54601 0.298576

f 4.72253 x 10716 4.75529 x 10~17
g 1.89571 0.0517809
h 3.82529 x 10716 0.751543

i -1.53783 0.0968345
Residual = 0.078326

A1 1 5.24592 x 107°
A2 0.5
A3 0.5

Classification : ellipsoid

Table 2: Ellipsoid with 8 points regularly distributed around the

vertex
Adding 15% point 279 point 379 point
Condz2(A) 1.2 x 10° 1.2 x 10° 1.5 x 103
a 0.5 0.5 0.5
b 0.5 0.5 0.5
c 1 1 1
d 43x107 1% 1.1 x 10718 —1.8 x 10715
e 7.3 x 10713 3.3 x 10712 —5.3 x 10718
bi —4.6 x 10712 1.6 x 10712 —7.3x 10715
g —6.9 x 10713 | —3.1 x 1072 5.5 x 10715
h 4.3 x 10712 —1.6 x 10~12 6.9 x 10715
i —5.8x 10712 | —1.9 x 107! 3.2 x 10714
6.5373 6.86435 7.13032
3.61568 4.04667 4.07827
2.74951 3.06364 3.80877
Singular 0.790143 0.977407 0.989041
Values 0.500267 0.790076 0.871103
0.268158 0.304277 0.705743
0.0766955 5.66 x 10° 0.00459343
5.34 x 10° 0.0766941 0.0779594
5.24 x 10° 0.0796133 0.104754
Residual 3.46 x 10~ 1° 2.58 x 10~ 1° 2.36 x 10~

Table 3: Adding points around the vertex

The solution is exposed with the hyperbolic paraboloid (HP): z* —
y? = z. The results are gathered in table 4.

Computations are achieved in double precision (64 bits). The order
of magnitude of the condition number (greater than 10%) clearly in-
dicates a rank deficiency which is confirmed by one singular value
numerically equals to 0 compared to the largest one. As explained
in the previous section, an attempt to increase the number of neigh-
bors does not modify the results. We also noticed that the solution
found through the SVD (one solution is always provided) does not
fit well since the residual is not really small. This behavior is not so
surprising since the fitting quadric cannot pass through the origin.
It is reasonable to try to fit the point set using another equation of
quadric. For that purpose, we analyzed the singular vector associ-
ated with the vanishing singular value (see table 5).

We noticed, but it is just an observation, that the non-vanishing co-
ordinates exactly correspond to the coefficients of the quadric equa-
tion we started from (multiplied by a constant). We can set one of
the non-zero coefficients equal to —1 instead of j = —1 in the
quadric equation and recompute the SVD. We fixed in the previous
example coefficient « = —1. Table 6 gathers the results. The con-
dition number and the residual are now correct and the right quadric
equation is received as a result. This approach is only a heuristic.
Another solution could have been to fix sequentially one coefficient

Table 4: Hyperbolic paraboloid

Singular Vector
-0.666667
0.666667

7.48479 x 10716
8.12592 x 10~ 16
—1.48133 x 10~ 1?
—4.48012 x 10~ 16
—5.64899 x 10716
—4.86195 x 10~ 16
0.333333

Table 5: Singular vector corresponding to the vanishing singular
value

(a, b, ¢, etc.) to —1 until a correct result is received. This systematic
algorithm is reliable but is not a neat solution and we advice to use
the heuristic.

The quadric witha = —1
Cond2(A) = 1.046961 x 10°
b 1

c 1.10593 x 10~ 1%
d —7.15555 x 10716
e —1.76655 x 107 1®
f 6.08581 x 10~ 16
9

h

i

J

R

4.13131 x 1071
—4.27765 x 10~ '8
0.5
—3.05256 x 10~ 15
esidual = 8.49828 x 10~ 1°

Table 6: Hyperbolic paraboloid with a = —1

In conclusion, a high condition number with one vanishing singular
value and a residual numerically not equal to zero, one can figure
out that the quadric passes through the origin. The singular vector
corresponding to the vanishing singular value, suggests which are
the non-vanishing coefficients of the quadric. One of them can be
fixed instead of j and the SVD can be recomputed.

4.3 The degenerated quadric surfaces

The most interesting degenerated quadrics in our context are the
two intersecting planes, the two parallel planes and a plane. As a
matter of fact, many manufactured objects include pieces of planes
in their shape, and depending on the digitizing process the previous
three cases of degenerated quadrics can be encountered.

Fitting a set of points pertaining to 2 intersecting planes or 2 par-
allel planes is computed without problem and such degenerating
quadrics can not be detected by studying the condition number or



the singular values. But the classification of quadrics with respect to
their eigenvalues (see section 3) provides the required information.

There is obviously a problem if the number of points in one plane is
less that 3, since at least three points are necessary to define a plane.
In the case of 2 planes (intersecting or parallel), we looked out to
the distribution of points on the 2 planes, considering we handle a
minimal set of 9 points. In fact 4 points can lay in one plane and
5 on the other, 3 and 6, 2 and 7, 1 and 8. While cases 4 — 5 and
3 — 6 do not produce vanishing singular values, cases 2 — 7 and
1 — 8 can obviously not lead to the correct results. One singular
value vanishes in case 2 — 7, two in case 1 — 8 and 3 in case 0 — 9.
In practice, the SVD finds two planes, one being the plane defined
with the higher number of points and the other is one of the infinity
of planes which contain the remaining points.

In R? the general second degree equation of a plane is the product
of 2 plane equations (parallel or intersecting). When three singular
values vanish and the distribution of neighbors does not correspond
to a singular one as described in section 4.1, a degenerated quadrics
is found: all the points pertain to one plane. As a result, the product
of two planes is received, one of them being expected, as illustrated
is the following example.

Let us consider nine points laying on the plane, x + y+ z = 1. The
results are given in table 7

The quadric with j = —1

Cond2(A) = 2.353903 x 10™7 Singular Values
a 0.111111 8.34377

b 0.111111 2.87435

¢ 0.111111 2.33408

d 0.111111 0.791703

e 0.111111 0.602589

f 0.111111 0.238302

g 0.444444 2.49502 x 10~ 16
h 0.444444 7.88942 x 10717
i 0.444444 3.54465 x 1017
Rsidu = 3.17337 x 10~ 1

Table 7: One plane

Normalizing the coefficients of this quadric yields the equation:

2?4y’ + 2 20y + 222+ 2y2+ 82+ 8y +82—-9=0
A formal calculus procedure gives the factorization:
(z+y+z—1)(z+y+2+9)=0

—z+y+z=lorc+y+z=9

It is easy to analyze which plane must be kept (by checking which
equation vanishes for one data point).

4.4 The fan points

Fan points, which have no equivalent in the continuous case, raise
the most important issue in shape analysis of polyhedral surfaces.
These points must be detected as soon as possible in the process
in order to avoid loosing them during the forthcoming steps. A
first easy detection is obtained if the points belong to 2 sheets of
one quadric. Experiments prove that this situation is not the most
frequent. All the fitted points can be on a quadric, but not inside a
unique neighborhood of the vertex. To illustrate the situation, let us
consider a very flat ellipsoid. Points on each side of this quadric are
very close together but absolutely not in the same neighborhood.

This configuration can easily be detected by considering the angles
between the normal vectors on the quadric for the different fitted
points. Consequently, we call “x-opposite” point, a point where
its normal vector on the quadric forms an obtuse angle with the
normal on the quadric at point Xx. In other words, they belong to
two different neighborhoods.

We will illustrate our approach with two examples, a convex vertex
and a saddle vertex. Starting from these vertices, we will move the
position of one or more points to obtain a fan convex and a fan sad-
dle respectively. At the vertex, we will calculate the angular defect
and its Gaussian indicatrix. We also calculate the dot products be-
tween the normal vector on the quadric at the vertex and the normal
vector for all the neighbors. It provides information concerning the
existence of vertex-opposite points on the quadric.

Let us first consider an elliptic paraboloid, 2 + y? + z = 1, with
8 neighbors. As illustrated in figure 4, the Gaussian indicatrix has
a positive loop, characterizing a convex vertex.

Figure 4: Gaussian indicatrix of the elliptic paraboloid

Table 8 groups the information concerning the quadric received
from system (1) and the different dot products. The results exactly
correspond to a convex vertex: the angular defect is positive and
there is no vertex-opposite point.

The quadric with j = —1
Cond2(A) = 6.098853 x 102

a 1 i | VF[py -VF|p;
b 1 1 1.28
c 1.51851 x 10~ 14 z l.?324;6
d —6.09898 x 10717 ;; 1'08
e 2.99573 x 10715 s 0-88
5.86715 x 107 1° .
g —2.86627 x 10 1% 6 0.825442
h —4.61138 x 107 1% 7 0.88
i 0.5 8 1.08
- 2m — ;i =0.
Residual = 2.92897 x 10~ ° T — > a; =0577333

Classification: Elliptic paraboloid

Table 8: Convex elliptic paraboloid

‘We move point n. 2 to produce a fold between two faces, as shown
in figure 5. The Gaussian indicatrix has a positive loop and a nega-
tive loop, corresponding to a fan convex.

Table 9 proposes the equivalent results as those proposed in table 8.
An ellipsoid is obtained. The condition number is reasonable and
the angular defect remains positive. On the other hand, point n. 2
is a vertex-opposite. The convex fan is clearly detected.

We will now move two points (points n. 2 and n. 6) to produce 2
folds, as shown in figure 6. The Gaussian indicatrix has a positive
loop and 2 negative loops. There exists a supporting plane. The
vertex is a fan convex.



Figure 5: Gaussian indicatrix of the first fan convex

The quadric with j = —1

Conda(A) = 4.862589 x 10°2 -

a = 17175 i | VFlry - VElp
: 1 2.94113

l; 11 '179177 jg 2 -1.88982
: 3 94113

d -0.161397 p i 23;;2

e -0.141541 s 380382

f -0.141541 p 115653

g 0.099979 ; 230382

h 0.099979 g 16075

i -0.0845403 S —— 0335706

Residual = 1.26097 x 10~ 1° l Qi =00

Classification: Ellipsoid

Table 9: First fan convex

Figure 6: Gaussian indicatrix of the second fan convex

The results are presented in table 10. Points 2 and 6 are vertex-
opposite points. The vertex is a fan vertex. Notice that using the
angular defect would have classified the point as saddle.

Let us now consider an hyperbolic paraboloid, % — %2 + % =z,
with 8 neighbors. As illustrated in figure 7, the Gaussian indicatrix
has a negative loop characterizing a saddle vertex. Table 11 groups
the information concerning the quadric and the dot products. The
results exactly correspond to a saddle vertex: the angular defect is
negative and there is no vertex-opposite point.

We move two points (points n. 3 and n. 7 ) in order to create folds
between faces as illustrated on figure 8. The Gaussian indicatrix
has changes in its orientation. The vertex is now a fan saddle. An
hyperboloid with two sheets is obtained (see table 12 ). Four points
(points no. 1, 3, 5 and 7) are on one sheet, while the others are on
the second sheet. The angular defect is still negative.

Finally, our approach with a fitting quadric allows us to determine
fan convex and fan saddle vertices.

The quadric with j = —1
— 02
fondQ(A) 13:?;‘71;77724 x 10 ; Sl VIR,
b 3.34677 ! 13.1847
. 2.84647 2 -9.24905
d -0.0213485 z ﬁ)éggg
e 0.569294 5 3 2'97] 5
f 0.569294 6 _1’5 4695
g -0.495997 7 3 2'97] s
h -0.495997 3 lhl 8925
i -0.931133 =
Residual = 2.44753 x 10~ 1 2m = 3 ai = —0.150051
Classification: Ellipsoid

Table 10: Second fan convex with a negative angular defect

Figure 8: Gaussian indicatrix of the fan saddle

5 Conclusion

We propose a local fitting with a quadric, in order to analyze the
shape of mesh vertices. Discrete curvatures are deduced from the
differential values on the quadric. The classical approach using the
angular defect has insufficiencies in pathological configurations of
points. Computing a quadric enables us, with an additional geomet-
rical analysis, to receive promising results on the artifacts encoun-
tered on vertex shapes.
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The quadric with j = —1
Conds(A) = 2.653029 x 1097 -
< 2(4) = T [ Ve VEIr,
b 4 1 16
¢ 7.95479 x 10716 i }2
d —1.52706 x 10716 1 16
e —3.85248 x 10716 p 6
f 2.67282 x 10716 6 .
g 2.39647 x 10717 5 6
h 1.79713 x 10716
; 5 8 16
—_ s o= . 5
Residual — 3.68387 x 10~ 10 2m = 3 ai = -1.58001
Classification: Hyperbolic paraboloid

Table 11: Saddle hyperbolic paraboloid

The quadric with j = —1
Cond2(A) = 5.971166 x 107"
onds(A) X i [ VFlr, VFIp,
a 456164 i
1 -15.4035
b 1.36565
2 14.8163
c -10.5374 3 849600
d —1.97894 x 10716 ) -
“17 4 14.8163
e 5.39131 x 10 s 15.4035
f 8.14518 x 1017 ° Pt
_16 6 14.8163
g —5.40481 x 10 ; 8.49609
h 3.25683 x 10716 :
X 8 14.8163
i 3.31718 S ar = 32770
Residual = 7.53971 x 10~ T i =
Classification: Hyperboloid with two sheets

Table 12: Fan saddle
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