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Abstract

This paper introduces a new method for building 2D low-
discrepancy sequences and fast hierarchical importance sampling.
Our approach is based on self-similar tiling of the plane with a
set of aperiodic tiles having twelve-fold (dedecagonal) rotational
symmetry. Sampling points of our low-discrepancy sequence are
associated with tiles, one point per tiles. Each tile is recursively
subdivided until the desired local density of samples is reached. A
numerical code generated during the subdivision process is used
for thresholding to accept or reject the sample. A special number
system is specially tailored in order to allow linear numbering of
the tiles. The resulting point distribution is more even, compared
with that of popular Halton and Hammersley 2D low-discrepancy
sequences. It can be successfully applied in a large variety of graph-
ical applications, where fast sampling with good spectral and visual
properties is required. Typical applications application are digital
halftoning, rendering, geometry processing etc.

1 Introduction

Sampling is widely used in computer graphics. Hundreds of articles
are devoted to studying important properties and limitations of sam-
pling. Traditionally, Halton and Hammersley 2D low-discrepancy
sequences are widely used for fast and efficient sampling of arbi-
trary functions defined on a 2D domain [Niederreiter 1992; Pharr
and Humphreys 2004].

It is generally accepted today that sampling with blue-noise prop-
erties is preferable to others, for many reasons: for avoiding alias-
ing, for producing visually satisfactory artifact-free distributions,
etc. [Ulichney 1987; Kollig and Keller 2003; Pharr and Humphreys
2004]. Very recently, a family of very fast techniques for the gen-
eration of blue-noise or Poisson-disc-like distributions have ap-
peared [Ostromoukhov et al. 2004; Kopf et al. 2006; Dunbar and
Humphreys 2006; Lagae and Dutré 2006]. All of them work in
almost-linear time, with respect to the number of samples, with very
low computational cost per sample. Each of the cited techniques
has important advantages and limitations. Namely, boundary sam-
pling [Dunbar and Humphreys 2006] and corner Wang tiling-based
sampling [Lagae and Dutré 2006] do not offer any mechanism for
smooth variation of the sample density as a function of arbitrary
importance. Finally, recursive Wang tiling-based sampling [Kopf
et al. 2006] produces a higher level of noise, compared to the oth-
ers. Another important limitation of the latter technique consists in
the large number of samples per tile (thousands, as presented in the
paper). This is obviously an obstacle for hierarchical rendering al-
gorithms, where the total number of samples is only a few dozens,
and where the treatment of each sample, even rejected, has a cost.

The method presented in this paper is build upon the basic ideas
of [Ostromoukhov et al. 2004]. The main difference of the
proposed method is the nature of aperiodic tiling we use: in-
stead of Penrose aperiodic tiling, we use here a derivation of the
twelve-fold (dedecagonal) tiling called triangle-and-squares tilings,
which is in tern a derivative of Solocolar’s dodecagonal aperiodic
tiling [Grünbaum and Shephard 1986; Socolar 1989]. As for the
algorithm of adaptive importance sampling with the dodecagonal

tiling, it is very close to that used in the cited article.

In this paper, we use a modified version of the original dodecagonal
tiling. We build a dual of the triangle-and-squares tilings, as shown
in Figure 1. The pentagons and the hexagons of the dual tiling form
the basic tiles of our modified tiling. We build a set of original pro-
duction rules for them, as it will be explained in the next section. It
can be observed that the centers of the modified dodecagonal tiling
(which are the vertices of the original triangle-and-squares tiling)
do not move from one subdividion to the next one (see Figure 2-
left). Also, it can be observed on Figure 2-right that the distribution
of the sampling points achieved with our dodecagonal tiling is very
even.

We take advantage of two important properties of dodecagonal ape-
riodic tiling. First, their construction is simple and determinis-
tic, and their geometrical properties can be exhaustively studied.
Second, dodecagonal tiling is fundamentally self-similar. Conse-
quently, we can easily build a sampling system very close to the
Penrose tiling-based one.

In summary, the main contributions of the paper consist in

• building explicit production rules for dodecagonal aperiodic
tiling, dual to triangle-and-square tiling;

• building the number system which allows to assign to each
sampling point a threshold value between 0 and 1, linearly
distributed. The sampling point sets obtained with our method
are evenly distributed;

• building 2D low-discrepancy sequences for hierarchical im-
portance sampling based on dodecagonal aperiodic tiling; the
sequences exhibit blue-noise spectral properties.

In the next section, we show the basic construction of dodecagonal
aperiodic tiling. Then, in 3 we describe briefly the number system
associated to the dodecagonal aperiodic tiling. In Section 4, we
present the importance sampling algorithm. Finally, in Section 5,
we draw some conclusions and discuss future work related to this
article.

Figure 1: Triangle-and-squares aperiodic tiling (red lines) and its
dual (blue lines).
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Figure 2: (left) Two levels consecutive of subdivision) of our do-
decagonal tiling, superimposed. (right) A typical distribution of
dots obtained with our dodecagonal tiling.
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Figure 3: Production rules used in dodecagonal aperiodic tiling.

2 Basic Construction of Dodecagonal Aperi-
odic Tiling

Let us consider the dodecagonal subdivision process shown in Fig-
ure 3 as a recursive subdivision process. A special binary code
called F-code (the term borrowed from [Ostromoukhov et al. 2004])
is assigned to each tile.

Out tiling is composed of four tiles of types ‘a’, ‘b’, ‘c’ and ‘d’. This
subdivision process can be described by the following production
rules:

Pdodecagonal :=



a# 7→ {a0#,c4#,c5#,c6#,cA#,cB#,cC#
b1#,b2#,b3#,b7#,b8#,b9#},

b# 7→ {a0#,c4#,c5#,c6#,cA#,cB#,cC#
d1#,d2#,b3#,d7#,d8#,d9#,dD#},

c# 7→ {a0#,c5#,c6#,c7#,cB#,cC#,cD#
b1#,d2#,b3#,d4#,b8#,d9#,dA#},

d# 7→ {a0#,c4#,c5#,c6#,cA#,cB#,cC#
d1#,d2#,b3#,d7#,d8#,b9#,dD#}

(1)

where xy means a tile of type x having F-code y. The
symbol ‘#’ replaces the F-code of a tile before subdivision.
Each subdivision left-concatenates one symbol in the range
[0,1,2,3,4,5,6,7,8,9,A,B,C,D] to the current F-code. Thus, af-
ter n subdivisions, the F-code will have the length of n symbols.
F-codes can be interpreted as integer numbers according to the spe-
cially tailored number system explained in the next section. This
number system is similar to the Fibonacci number system as de-
scribed in [Knuth 1997] and [Graham et al. 1994].

Figure 6 shows the an example of application of our number system,
starting with a sinfle tile of type ‘a’.

3 Number System for Dodecagonal Aperi-
odic Tiling (δ - and D- number systems)

We build an original number system for the dodecagonal aperiodic
tiling, based on φ - and F- (Fibonacci) number systems (See [Knuth
1997] and [Graham et al. 1994]).

First, let us recall the basics of φ - and F- (Fibonacci) number sys-
tems. The φ -system is a positional number system in base φ , where
φ = 1+

√
5

2 is the Golden Ratio. Any real number x can be expressed
in this system exactly as in our conventional binary or decimal sys-
tems, except that instead of using powers of two or ten, this system
employs powers of φ . For example, the number (101.001)φ in base
φ is

(101.001)φ = φ
2 +φ

0 +φ
−3 ≈ 3.854110

The φ -system is closely related to the F-system (the abbreviation
for Fibonacci system). The F-system is also a positional sys-
tem. Any integer n can be presented in the F-system as a sum of
Fibonacci numbers Fj multiplied by their positional coefficients,
which may be 0’s or 1’s. Thus, a number n can be expressed by its
F-code (bmbm−1 . . .b3b2)F :

n = (bmbm−1 . . .b3b2)F ⇐⇒ n =
m

∑
j=2

b jFj. (2)

The first index in the summation is j = 2 because of the convention
used for Fibonacci numbers Fj:

F0 = 0, F1 = 1, F2 = 1, F3 = 2, F4 = 3, F5 = 5, F6 = 8,F7 = 13, . . .

The representation of numbers is not unique in the F-system, but
it becomes unique if the rule of normal form is imposed: two ad-
jacent 1’s are not permitted. The procedure of conversion from an
arbitrary sequence of 0’s and 1’s to the normal form, along with
many other technical details, can be found in [Graham et al. 1994].
Here are the first twelve integers expressed in the F-system in nor-
mal form:

1 = (00001)F , 2 = (00010)F , 3 = (00100)F ,
4 = (00101)F , 5 = (01000)F , 6 = (01001)F ,
7 = (01010)F , 8 = (10000)F , 9 = (10001)F ,

10 = (10010)F , 11 = (10100)F , 12 = (10101)F .

In our dodecagonal tiling the linear scaling factor is λ = 2 +
Sqrt(3) ≈ 3.73205, therefore the area scaling factor is δ = (2 +
Sqrt(3))2 ≈ 13.9282. Like in φ -number system, any real number
can be real number x can be expressed as the sum of powers of δ :

x = (amam−1 . . .a0a−1 . . .a−n)δ ⇐⇒ x =
m

∑
j=−n

a jδ
j. (3)

Similar to F-system, D-system allows to express any integer num-
ber in terms of its f-code:

n = (bmbm−1 . . .b1b0)D ⇐⇒ n =
m

∑
j=0

S( j)
b j

. (4)
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where the sequences Sn are defined as follows:

Sn =
{

n∗σ1, when m < 2
σ1 +(n−1)∗σ2 otherwise. (5)

and where i-th term of the integer sequences σ1 and σ2 are defined
as

σ
(i)
1 =

(λ1−1)λ1
i−1 +

(
1
λ2
−1

)
λ2

i

λ1−λ2
(6)

σ
(i)
2 =

λ1
i−λ2

i

λ1−λ2
(7)

and the constants λ1 and λ2 are

λ1 = (7+4∗Sqrt(3)), λ2 = (7−4∗Sqrt(3)).

Thus, for i = 0,1,2, ..., the integer sequences σ1 and σ2 are

σ1 = {1,13,181,2521,35113,489061,6811741,94875313, ...}

σ2 = {1,14,195,2716,37829,526890,7338631,102213944, ...}

Formulas (6) and (7) can be can be seen as an extension of the well-
known Binet’s formula for Fibonacci sequences.

The routine DODECATODECIMAL converts F-codes to the conven-
tional decimal representation.

DODECATODECIMAL(fcode)
1 accumulator← 0
2 for i← 0 to LENGTH( f code)−1
3 do
4 index← f code[i]
5 accumulator← accumulator +S(i)

index
6 return accumulator

Function Ψ(x) that maps a real positive x onto interval [0..1], as
shown in Figure 4, is defined as follows:

Ψ(x) = (logδ ·x) mod1

4 Importance Sampling with dodecagonal
Aperiodic Tiling

This allows us to build an adaptive importance sampling system
based on the dodecagonal subdivision system with the production
rules (1). Our adaptive importance sampling system is simple.
First, we cover the area of interest, where the importance is de-
fined, with a tile of any type, say of type ‘a’, as shown in Figure 6.
Then, we apply the recursive subdivision process according to the

production rules (1). We stop subdividing when the required local
subdivision level κ is reached. In this case, we output the coordi-
nates of the center of each tiles, if the local importance is greater
than the decimal value of the F-code of the current tile. Pseudo-
code for this algorithm is as follows:

ADAPTIVESAMP(p o f type tile)
1 � Structure tile contains the fields:
2 � type: determines type of subdivision
3 � LOS: Level of Subdivision
4 � refPoint
5 � v1, v2: tile’s basis vectors
6 � fcode: used for computing threshold
7 local LOS← GETMAXLOSWITHINPOLYOMINO(p)
8 if p.LOS≥ local LOS
9 then � Terminal: don’t need more subdivisions

10 local importance← GETLOCALIMPORTANCE(p)
11 threshold← GETTHRESHOLD(p. f code)
12 if local importance≥ threshold
13 then � Output Selected Sample
14 position← p.re f Point
15 OUTPUTSAMPLE(position)
16 return
17 else � Need more subdivisions
18 {p1, .., pA }← SUBDIVIDEUSINGPRODUCTIONRULES(p)
19 return {ADAPTIVESAMP(p1), ..,ADAPTIVESAMP(pA )}

Here, the function GETTHRESHOLD( f code) can be interpreted ei-
ther as normalized version fo DODECATODECIMAL( f code) intro-
duced earlier, or as a real fractional number in δ -system, in the
range [0..1]

Importance density may be scaled by a factor mag, constant for
the entire importance density image, in order to obtain the desired
number of points. The required local level of subdivision κ can be
determined as

κ = dlogδ max
tile

(mag · I(x,y))e, (8)

where d e is the usual notation for ceiling, I(x,y) is the importance
value at position (x,y), and δ = λ 2 = 7 + 4 ∗ Sqrt(3) is the tiling’s
area scaling factor. The value maxtile(·) can be achieved with stan-
dard scan-conversion each tile. This scan-conversion is opened to
possible optimization. If less precision is required but speed is cap-
ital, the importance can be tested only at a few points within the
tile.

When compared to the popular Halton and Hammersley 2D low-
discrepancy sequences, our 2D low-discrepancy sequence offers
higher level of regularity, approaching blue noise property, as
shown in Figure 7.

Applying dodecagonal importance sampling on a linear importance
function produces very satisfactory result, shown in Figure 5.

Figure 5: A grayscale ramp (top) sampled with our method (bot-
tom).
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Figure 6: (Top row) A tile of type ‘a’ subdivided two times, applying production rules (1). The normalized threshold is shown as a real
number in the range [0..1]. (low row) Zooming into the red square of the top row, then subdividing and zooming into red squares of the
leftmost distribution. It can be observed that any local area contains almost-linear distribution of threshold values in the range [0..1].
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Figure 7: (left) Halton, (center) Hammersley, and (right) do-
decagonal low-discrepancy sequences of 2D points. Color desig-
nates threshold value in the range [0..1].

5 Conclusion and Future Work

We have presented a new method for building 2D low-discrepancy
sequences and fast hierarchical importance sampling, based on self-
similar tiling of the plane with a set of aperiodic tiles having twelve-
fold (dedecagonal) rotational symmetry.

The main contributions of the paper consist in (1) building explicit
production rules for dodecagonal aperiodic tiling, dual to triangle-
and-square tiling, (2) building the number system which allows to
assign to each sampling point a threshold value between 0 and 1,
linearly distributed, and (3) building 2D low-discrepancy sequences
for hierarchical importance sampling based on dodecagonal ape-
riodic tiling; the sequences exhibit blue-noise spectral properties
The sampling point sets obtained with our method are evenly dis-
tributed. Thanks to these features, the proposed method can be
used in large variety of graphical applications, namely in digital
halftoning, rendering (importance sampling), geometry processing
etc. Typical examples of such applications can be found in [Os-
tromoukhov et al. 2004; Kopf et al. 2006; Dunbar and Humphreys
2006; Lagae and Dutré 2006].

In the future, we would like to better understand the limitations of
the proposed method. Namely, we would like to explore the bias
and aliasing artifacts that our method could eventually introduce in
rendering. This will be the topic of future research.
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