
A hybrid simplification algorithm for triangular meshes

Alexandra. Bac∗

LSIS Marseille
Nam Van Tran†

LSIS Marseille
Marc Daniel‡

LSIS Marseille

Abstract

This paper deals with a hybrid simplification method for triangu-
lar meshes. Our approach is based on a first simplification step
where vertices are clustered, followed by an iterative edge collapse
step. More precisely, vertices are first clustered into surface patches
through an adaptive segmentation process (using both absolute dis-
crete curvature and principal component analysis); the edge col-
lapse process is based on quadratic error metrics.

Keywords: Simplification, segmentation, adaptive, quadratic error
metric, PCA, large data sets

1 Introduction

Our work originates in the study of triangular mesh surfaces orig-
inated from geology and geologic surface modelling (as part of a
collaboration with the IFP - French Institute of Petroleum). Our
data, obtained by physical measures, are typically inhomogeneous,
sparse, noisy and voluminous. Therefore, we are interested in the
improvement of such surfaces and more particularly in the detec-
tion and filling of holes and faults. However, most improvement
algorithms are both time and space consuming and thus, it is fun-
damental to simplify, smooth and homogenize data before any fur-
ther treatment while preserving curvatures and critical areas such as
faults (see [Bac et al. 2005]).

The present work was undertaken in this context: our hybrid mesh
simplification method allies both vertex clustering and iterative
edge collapse techniques. These approaches are actually com-
plementary: iterative edge contraction (based on quadratic error
metrics, see [Garland 1999]), compared to vertex clustering ap-
proaches, leads to results of good quality but proves very costly
both in terms of time and space. Vertex clustering algorithms are
simple, light and efficient methods but they hardly take into account
the local geometry of the surface. Therefore, our idea was to com-
bine both an adaptive segmentation step followed by an iterative
edge collapse process (this last step ends when the expected simpli-
fication rate is reached).

The paper is organized as follows: in section 2, we present related
works in the field of simplification. In section 3, we introduce our
two step method, while sections 4 and 5 respectively detail each
step. Section 6 emphasizes the very interesting results we obtained
and we conclude in section 7.

∗e-mail: alexandra.bac@esil.univmed.fr
†e-mail: van.tran-nam@esil.univmed.fr
‡e-mail: marc.daniel@esil.univmed.fr

2 Related works

In the last ten years, the average size of the geometric models han-
dled has drastically increased, therefore, the issue of mesh simpli-
fication has become more and more important. Many studies deal
with this problem; they can be classified into two families: vertices
clustering or iterative edge contraction.

Vertex clustering approaches are based on the following idea: the
initial mesh is split into small patches (called cells); all the ver-
tices of a cell are then replaced by a unique representative vertex.
One of the simplest method has been proposed by Rossignac and
Borrel (see [Rossignac and Borrel 1993]). The mesh is segmented
by subdivision of its bounding box with a regular cubic grid; the
representative vertex of each cell is taken to be the barycenter of
the vertices it contains. The main advantage of this method is that
it is extremely fast, but the quality of its results is however insuf-
ficient. Such insufficiency mostly results from the choice of the
representative vertex (barycenter) which hardly takes into account
the geometry of the surface and cloud of points.

Many other algorithms improve and optimize this choice. Let us
mention the approach of Peter Lindstrom (see [Lindstrom 2000])
in which the representative vertex is computed by minimization of
a quadratic form, namely, the quadratic error metric (see [Garland
1999]). This metric gives for each point x in R3, the sum of the
squared distances between x and the faces of the cell. It is closely
related to the 2-norm of the principal curvatures and this heuristic
gives, in practice, results of better quality than previous methods.

All these methods, based on vertex clustering by means of a uni-
form grid, are very quick. However using such a uniform grid can
produce approximation errors (whatever the quality of the choice of
the representative vertex). Indeed, any detail of the original model
smaller than the size of the grid is lost by the simplification process.
Therefore, it is tempting to introduce the local curvature of the sur-
face in this process: in order to improve the quality of the simplified
surface, more details should be kept in the strongly bent areas. The
R-simp algorithm by Brodsky and Watson [Brodsky and Watson
2000] groups vertices by means of an adaptive process. Starting
from a single cell containing the initial mesh, cutting planes are it-
eratively inserted by means of a principal component analysis of
the normals of the cell. This analysis provides approximate min-
imal and maximal curvature directions for the cell. Subdivisions
are performed until the desired resolution is reached; the represen-
tative vertex of each cell is then computed by minimization of its
quadratic error metric (same as in [Lindstrom 2000]).

Besides the R-simp algorithm, Shaffer and Garland ([Garland and
Shaffer 2002]) presented their own mesh simplification method
consisting of two steps. First, the initial mesh is segmented using a
uniform grid; simultaneously, all the quadratic error metrics of the
cells are computed and then used to compute the representative ver-
tices. Second, an edge collapse step is applied (based on quadratic
error metric) to improve again simplification while preserving the
quality of the resulting mesh.

Let us conclude this section by some elements concerning simpli-
fication algorithms based on iterative edge collapse. Most of these
algorithms use a greedy approach to chose their next target edge. A
cost function is attached to each edge and at each step of the algo-
rithm, the lower cost edge is chosen and collapsed. The difference

GraphiCon'2007 Russia, Moscow, June 23-27, 2007

between the various algorithms (in terms of quality and computa-
tional efficiency) lies in the choice of this cost function as well as in
that of the vertex towards which the edge is collapsed. Let us men-
tion Garland and Heckbert ([Garland and Heckbert 1997]) where
both the cost and the target vertex are obtained with quadratic error
metrics, and more recently Borouchaki and Frey ([Borouchaki and
Frey 2005]) who use an estimate of the Hausdorff distance between
the original and the simplified mesh.

Other approaches are, of course, possible: Hoppe algorithm
([Hoppe et al. 1993]) is based on the minimization of an energy
function (the number of vertices, their position and topology are
modified in order to decrease the energy of the mesh). This algo-
rithm leads to good visual results (similar to those obtained with
quadratic error metrics) but it proves both time and space consum-
ing.

The “memory less” algorithm of Lindstorm and Turk ([Lindstrom
and Turk 1998]) minimizes geometric deviations between the origi-
nal and simplified meshes (such as volume, area); this minimization
is expressed by linear constraints (their resolution is far lighter than
Hoppe algorithm).

3 Method General presentation

Our work starts from an observation: the approaches to triangular
mesh simplification are various and actually each of them is rele-
vant in its own field. On the one hand, vertex clustering approaches
are particularly interesting in terms of time and space consumption
and will be more efficient for low simplification rates. On the other
hand, iterative edge contraction is slower and requires more mem-
ory, but produces better results (specially for high simplification
rates).

The purpose of our algorithm is to conciliate the advantages of both
approaches in order to efficiently handle models of any size while
preserving the quality of the resulting approximations.

The underlying idea of our algorithm is to combine a first adaptive
segmentation step with a second iterative edge collapse step. This
scheme is summarized in figure 1 (where N denotes the number of
vertices of the mesh and B the expected number of vertices).

Figure 1: General view of our simplification algorithm

3.1 Vertex grouping: spatial adaptive clustering

The first step of our algorithm consists in a vertices grouping step.
As we have explained previously, in order to obtain satisfactory re-
sults, it is necessary to take into account the local geometry of the
surface and hence to use an adaptive approach. However, if the
original data is inhomogeneous and if some areas of the original

surface are sparse, a purely adaptive approach can lose too many
informations in these areas. Therefore, in order to avoid such prob-
lems, our algorithm starts from a rough regular grid. This initial
grid is then refined by successive approximations: splitting planes
are determined by a principal component analysis and inserted in
the cells where more detail is necessary (see section 4.2).

In order to split cells efficiently, it is necessary to define a priority
for their treatment. We chose to estimate the absolute curvature
at each vertex (we use the estimation by Meyer et al. [Meyer et al.
2002], see section 4.1). The indicator attached to a cell is the sum of
the absolute curvatures of its vertices; cells are processed according
to this indicator.

Last, a representative vertex is computed for each cell (by mini-
mization of the quadratic error metric associated to the cell), and
a topology is rebuilt over these vertices, inherited from the initial
topology (see section 4.2.3).

3.2 Iterative edge collapse

Starting from the intermediate approximation of the mesh obtained
by vertices grouping together with the quadratic error matrices pre-
viously computed, an iterative edge collapse process is applied in
order to produce a smaller and smoother simplification (see section
5).

4 Vertex clustering : adaptive segmentation

4.1 Discrete curvatures

A triangular mesh is a piecewise linear surface. Therefore, its cur-
vature (in the sense of differential geometry) is null everywhere
except on the edges where it is not defined. However, it can be in-
teresting to consider such a surface as a discrete approximation of a
continuous surface. In this perspective, one can define discrete cur-
vature indicators; ideally these discrete indicators should converge
to the continuous ones as the mesh density increases. Several def-
initions have been proposed for such discrete curvature indicators
(see [Cazals and Pouget 2005], [Meyer et al. 2002], [Taubin 1995]).
We chose to use the definition by M. Meyer and al. ([Meyer et al.
2002]) as it constitutes a good trade-off between quality and com-
plexity (convergence results have been formally obtained by G. Xu
in [Xu 2006]).

For any vertex v, we use Meyer’s estimates to compute both mean
curvature H and Gaussian curvature K at v. Let κ1 and κ2

be the principal curvatures at vertex v, then: κ1κ2 = K and
κ1 + κ2 = 2H . Therefore κ1 and κ2 are the roots of the polyno-
mial X2 − 2H ·K + K. The absolute curvature at v is defined by:
Kabs = |κ1|+ |κ2|. In our algorithm, this indicator is used through-
out the vertex clustering process. Figure 2 presents absolute curva-
ture fields for both a geological surface and the well known rocker
arm model.

Figure 2: Discrete absolute curvature fields: left, a rocker arm -
right, a geological surface

GraphiCon'2007 Russia, Moscow, June 23-27, 2007

4.2 Adaptive segmentation

The spatial vertex partition is technically handled using a forest of
BSP trees in order to control efficiently the size of the resulting
mesh. Provided that each leaf of the BSP trees eventually produces
a vertex, the leaves of the BSP tree are subdivided until the desired
number of vertices is reached.

This process consists of three steps: initialization, adaptive segmen-
tation, and last post-processing. Let us now detail each of them.

4.2.1 Initialization

After loading the mesh, the initialisation step consists both in regu-
larly segmenting the surface (subdividing the whole mesh by a 3D
regular grid) and in computing for each vertex the corresponding
absolute curvature indicator. The number of trees created corre-
sponds to the number of cells of the uniform grid used for segmen-
tation. Each root of this forest maintains a list of vertices and an
absolute curvature value (defined as the sum of the absolute curva-
tures at the vertices of the cell).

Note that the size of the uniform grid does not directly control those
of the resulting segmented mesh: this control arises from the adap-
tive segmentation step.

When the input data are voluminous, it is important that the size
of the regular grid cells be small enough to simplify and acceler-
ate the adaptive segmentation step. Moreover, in the sparse areas,
the initial uniform clustering step prevents that too distant vertices
be grouped by adaptive segmentation (which would result in distor-
tions).

4.2.2 Adaptive segmentation of the mesh

Once the surface has been segmented by means of a regular grid (as
described previously) we obtain an array of n BSP trees (where n
is the number of cells of the initial regular grid). Moreover, these
trees are sorted in a priority queue ordered by decreasing absolute
curvature value.

The BSP tree is then iteratively updated as follows (let n be the
number of leaves of the forest and let m be the number of vertices
required for the simplified mesh):

While n < m:
1. chose the leaf of maximal absolute curvature
2. create a subdivision plane by PCA analysis
3. subdivide the leaf according to this plane and update the

BSP tree

In order to determine a subdivision plane appropriate to the repar-
tition of vertices in the cell (see [Garland and Shaffer 2002]), we
use a principal component analysis of the normals of the cell (see
[Jolliffe 1986]).

Let us recall the main results on principal component analysis. Let
{x1, . . . , xn} be a set of vertices. The covariance matrix of this set
is defined by:

Z =
1

n− 1

nX
i=1

(xi − x̄)(xi − x̄)>

where v̄ denotes the average of the set {x1, . . . , xn}.

The eigenvectors of this matrix give the main variation directions
of the set of vectors (for a cloud of points inscribed in a rugby ball,

these directions are the axes of the ball). The eigenvector associ-
ated to the largest (resp. smallest) eigenvalue corresponds to the
direction in which vectors spread out1 the most (resp. the least).

In our setting, at each step of the adaptive process, the strongly
bent cells are split in order to decrease their curvature as much as
possible. Ideally, the subdivision plane should be orthogonal to the
direction of maximal curvature (see figure 3). However, contrarily
to figure 3, we are not interested in smooth surfaces but in cells
issued from a triangular mesh. Therefore, it is necessary to find a
discrete approximation of principal directions.

Figure 3: Principal curvatures on smooth surfaces: (in red, direc-
tion of maximal curvature - in blue, direction of minimal curvature)

Normal curvature in direction τ is the normal component of accel-
eration in this direction. Therefore, principal directions correspond
to directions (in the tangent plane) of minimal and maximal varia-
tion of the normal vector.

In the discrete case, principal component analysis of the set of nor-
mals of the cell provides the main spreading directions of this set.
Let e1, e2 and e3 be unitary eigenvectors of the covariance ma-
trix, associated to eigenvalues λ1 < λ2 < λ3 (eigenvalues and
eigenvectors are computed with the Jacobi method [Vertterling et al.
2003]) . Direction e1 is that of minimal variance, therefore it ap-
proximates the average normal vector of the cell. Direction e3 (or-
thogonal to e1) is that of maximal variance. Thus it approaches the
principal direction of maximal curvature and we will take e3 to be
the normal of the splitting plane.

Moreover, the affine subdivision plane should be inserted around
the vertex of maximal curvature; but in order to split the cell effi-
ciently, this vertex should not be too close from the border. There-
fore, we insert the splitting plane at the barycenter of the vertices
weighted by their absolute curvature. The resulting clustering is
quite satisfactory both for large and small cells (see figure 4).

Once the subdivision plane is determined, the leaf corresponding
to the considered cell in the BSP tree is split into two new leaves.
Vertices of the original cell are assigned to one of these leaves de-
pending on their position with respect to the splitting plane. Then,
we assign each triangle to the set of cells its vertices belong (thus,
a triangle generally belongs to up to three cells). The discrete sur-
faces we are studying are topologically connected. However, nodes
can contain distinct disconnected components. In such a case, re-
placing the vertices of the cell by a single vertex would produce
a non-manifold mesh; thus we test the connectivity of nodes and
eventually split the non connected leaves into their connected com-
ponents.

1The direction in which vectors spread out the most is actually the direc-
tion of maximal variance

GraphiCon'2007 Russia, Moscow, June 23-27, 2007

Figure 4: Splitting planes for small cells (top) and a 300 vertices
cell

The following test is applied to each leaf of the BSP tree; the algo-
rithm uses a list L (initially containing all the vertices of the leaf)
and a queue f (initially empty).

• Get the head of L into v
• Insert v into f
• While f is not empty :

– Get the head of f into v
– For any v′ neighbour of v:

if v′ belongs to L then
∗ Insert v′ into f
∗ Remove v′ from L

At the end of this test, if L is empty, the cell contains a single con-
nected component and thus, the simplification process goes on nor-
mally. If L is not empty, the cell contains disconnected compo-
nents. The leaf is split into two new leaves respectively containing
the vertices still present in L and the others. The topological test
goes on on the first set until all the connected components have been
identified.

In spite of its cost, this test is necessary to guarantee the topologi-
cal properties of the simplified surface. Figure 5 presents both the
uniform cells and those obtained after the adaptive subdivision pro-
cess.

Figure 5: Results of the adaptive subdivision process: left, uniform
clustering - right, adaptive clustering

4.2.3 Post-processing

Once the cells have been split and the expected decimation rate is
reached, a representative vertex must be computed for each of them
(together with an appropriate topology, inherited from the original
mesh).

In order to approximate cells as precisely as possible, we use a
method similar to [Brodsky and Watson 2000], [Lindstrom 2000]
and [Shaffer and Garland 2001]. For each cell, we define a
quadratic form (called quadratic error metric) estimating the dis-

tance between any point of space and the cell. The optimal posi-
tion of the representative vertex is obtained by minimization of this
quadratic form.

Let us now define this quadratic form. For any triangle t in the cell,
let Pt be the plane defined by t, the quadratic form Qt : R3 → R
associated to t is defined by Qt(v) = d(v,Pt)

2. The cartesian
equation of Pt can be written: n>v + d = 0 where n denotes the
unitary normal of t and d is a constant. The distance d(v,Pt)

2 can
thus be written as d(v,Pt)

2 = v>(nn>)v + 2(dn>)v + d2. Let
us define:

Qt(v) = v>Atv + 2B>
t v + C

with At = nn>, Bt = dn> and Ct = d2.

The quadratic form associated to a cell is the sum of the forms asso-
ciated to each of its triangles. As a consequence, it can also be writ-
ten: Q(v) = v>Av+2B>v+C. Figure 6 presents quadratic error
metrics for different cells. The red axes represent the axes of Q;
they originate at the point vmin minimizing Q (let εmin = Q(vmin)).
The isosurface Q = 1.5× εmin is represented in black.

Observe that the axes produced by the principal component analysis
of the cell (represented in blue) are quite similar to the axes of the
quadratic error metric2.

Figure 6: Quadratic error metric for different cells - top: a saddle
cell - bottom: a convex cell

We have dQ(v).h = 0 and as matrix A is symmetric and non neg-
ative, minimizing Q comes to solving Av + B = 0. This linear
system is solved by singular values decomposition: A = UΣV >

where Σ is a diagonal matrix and U and V are orthogonal matrices.
Let us define matrix Σ+ by:

(Σ+)i,j =

(
1

Σi,j
if Σi,j 6= 0

0 else

Let x̂ be the barycenter of the cell. The closest point to x̂ satisfying
equation Ax + B = 0 is given by:

x = x̂− V Σ+U>(B + Ax̂)

Once this representative vertex is determined for each cell, it re-
mains to rebuild a topology over these vertices, inherited from the
initial topology of the surface. The algorithm is as follows:

For any face f in the initial mesh:
• if f belongs to three different cells, it is kept,
• otherwise, it is degenerate (reduced to a segment or vertex

in the new mesh) and therefore, it is removed.
The remaining faces generate the topology over the set of rep-
resentative vertices and the quadratic error metric of each cell
becomes that of its representative vertex.

2Which is not so surprising as

A =
X

t∈cell

ntn
>
t whereas Z =

1

k − 1

X
t∈cell

(nt − n̄)(nt − n̄)>

where nt denotes the normal of triangle t and n̄ the average normal of the
cell.

GraphiCon'2007 Russia, Moscow, June 23-27, 2007

Let us point out that this post-processing (also used by [Brodsky
and Watson 2000], [Lindstrom 2000] and [Shaffer and Garland
2001]) does not guarantee the manifoldness of the result (only that
generally, it is manifold). The following example (figure 7) illus-
trates such a topological problem. The initial mesh (drawn in black
on the left figure) is split into four cells and thus, the simplified
mesh (in red) is non-manifold. Flipping edge (e, i) solves the prob-
lem (see right figure).

Figure 7: Heuristic for the well known topological problem (non-
manifoldness): left, the original mesh - right, the corrected mesh
(an edge has been flipped) which gives rise to a manifold simplified
mesh

Our idea is to detect and avoid edges causing non-manifoldness,
and actually, edges of the original mesh belonging to two triangles
that will be non degenerate are one of the main cause for such prob-
lems (as they produce crossing edges). Therefore, before building
the topology of the simplified mesh, we apply the following heuris-
tic to the initial mesh:

1. select the edges (v1, v2) of the initial mesh incident
to two different non degenerate triangles ((v1, v2, v3)
and (v1, v2, v4)); these edges are responsible for non-
manifoldness

2. for each of these edges:
if (v3, v4) belongs to a single cell

flip (v1, v2) ((v1, v2) is replaced by (v3, v4)):

In the previous example, only edge (e, i) is concerned and its flip
makes the simplified mesh a manifold surface.

All this data (representative vertices, topology and quadratic error
metric) is transmitted to the second step of our simplification algo-
rithm.

5 Iterative edge collapse

The second step of our algorithm consists in simplifying more
finely (by iterative edge collapse) the intermediate mesh previously
obtained. We apply the method introduced by Garland and al.
([Garland 1999]) with the quadratic error metrics previously com-
puted.

Contracting a pair of vertices (v1, v2) → v̄ consists in replacing
the vertices v1 and v2 by a new vertex v̄ minimizing the resulting
error (where error is measured with the quadratic error metric just
described). Vertex v̄ is then linked with the neighbours of v1 and
v2.

Let us now come into details. The quadratic error made on the edge
(v1, v2) is estimated by Q(v1,v2)(v) = Qv1(v) + Qv2(v). The
algorithm is as follows:

• For any edge (v1, v2), compute v̄ the vertex minimizing
error Q(v1,v2)(v). The cost of contraction (v1, v2) → v̄
is defined as Q(v1,v2)(v̄).

• Order the pairs in a stack by increasing order.
• While the desired decimation rate is not reached:

– remove the pair (v1, v2) of lower cost from the
stack,

– contract this pair; the quadratic error metric asso-
ciated to the new vertex v̄ is Qv̄ = Qv1 + Qv2

– update the contractions (position of the optimal ver-
tices) and their costs for the 1-neighbour ring of v̄

6 Results

The performances of the simplification process strongly depend on
the following parameters: first the size of the intermediate mesh
(that is the simplified mesh obtained after the first step), second, the
size of the uniform grid.

The size of the uniform grid mustn’t be too small, otherwise, the
following adaptive subdivision makes no more sense and wouldn’t
improve uniform segmentation anymore. However, this parameter
provides a control over the errors made by adaptive segmentation:
at worst, after the adaptive segmentation step, the size of the cells
equals those of the grid. In practice, a good choice for the size
of the cells is to take them between 1.5 and 2 times the average
length of the edges. As for the size of the intermediate mesh, we
experimentally choose a ratio between 0.5 and 0.8 of the size of the
initial mesh. Both parameters must actually be chosen in order to
let enough ”place” to both steps to work over the data.

As one can observe (figure 8 and 9, the simplified surfaces are vi-
sually very satisfactory; actually, they are very close to those ob-
tained by a pure iterative edge contraction - this will illustrated
when studying the Hausdorff distance between the initial surface
and the simplified one. Observe that the sharp edges are well pre-
served. For geological surfaces, it is essential as these characteris-
tic lines are of particular interest for the geological interpretation of
surfaces.

Figure 9: A geological surface simplified with our method: ini-
tial model, 112k vertices (left) - simplified model, 3k vertices - size
of the uniform grid: 151x188x27, size of the intermediate mesh:
56136 vertices

In order to estimate the quality of our results, we have first com-
pared them with those obtained by Shaffer and Garland with their
mixed approach ([Garland and Shaffer 2002]). The tests have been
performed with two models: the “lucky lady” model (500k ver-
tices) and the “dragon” model (437k vertices). Table 1 presents the
numerical results obtained for this comparison. Figure 11 and 10
present the related graphical results. Observe that besides the nu-
merical results, our method visually preserves well the sharp folds
of the models and produces regular meshes.

In order to estimate the quality of our simplified meshes, we have
compared them with surfaces obtained by the pure iterative edge
collapse algorithm ([Garland 1999]). Figure 12 presents running
times and error maps for both of these algorithms.

GraphiCon'2007 Russia, Moscow, June 23-27, 2007

Figure 8: The rocker arm model simplified by our method: initial model, 40k vertices (left) - simplified model, 5k vertices, Dmax = 0.00029,
Davg = 0.0000345 (right) - size of the uniform grid: 41x24x78, size of the intermediate mesh: 20088 vertices

Therefore, the quality of our results is similar to [Garland 1999]
whereas our running time is three times lower.

7 Conclusion

The purpose of our algorithm, was to propose an alternative to ver-
tex clustering simplification methods and to iterative edge collapse
methods, by a compromise between both approaches. Regarding
the results presented in section 6, this objective is reached. The
main interest of this approach is to provide results of high qual-
ity (very similar to those obtained by an iterative edge collapse
method) but with lower running times (by factors around 3 and up
to 5) and memory consumption. Actually, our algorithms behaves
well as for the average errors between the original and the simplified
mesh and the maximal errors are significantly reduced compared to
[Garland and Shaffer 2002]. Moreover, the heuristic we apply in
order to avoid the well known topological problems resulting from
simplification based on vertex clustering proves quite efficient.

In the geological field (in which our questions originated), this hy-
brid method allowed us to solve our initial problem, namely, to sim-
plify very voluminous data while preserving strongly bent areas and
curvatures.

8 Acknowledgement

The authors would like to thank to French Institute of Petrol for sup-
porting this research and Jean-Phillipe Pernot, Phillipe Veron and
the Digital Michelangelo Project for providing the models shown
in this paper.

References

ASPERT, N., SANTA-CRUZ, D., AND EBRAHIMI, T. 2002. Mesh:
Measuring errors between surfaces using the hausdorff distance.
In Proceedings of the IEEE International Conference on Multi-
media and Expo, vol. I, 705–708. http://mesh.epfl.ch.

BAC, A., TRAN, N.-V., DANIEL, M., AND RAINAUD, J.-F.
2005. Traitement de surfaces géologiques pour la construction
de modèles 3d. In journées du GTMG, 22–23.

BOROUCHAKI, H., AND FREY, P. 2005. Simplification of surface
mesh using hausdorff enveloppe. Comput. Methods Appli. Mech.
Engrg. 194, 4864–4884.

BRODSKY, D., AND WATSON, B. 2000. Model Simplification In
Reverse, Vector Quantization. PhD thesis, University of Alberta.

CAZALS, F., AND POUGET, M. 2005. Estimating differential
quantities using polynomial fitting of osculating jets. Comput.
Aided Geom. Des. 22, 2, 121–146.

GARLAND, M., AND HECKBERT, P. 1997. Surface simplification
using quadric error metrics. In Computer Graphics, vol. 31, 209–
216.

GARLAND, M., AND SHAFFER, E. 2002. A multiphase approach
to efficient surface simplification. In VIS ’02: Proceedings of the
conference on Visualization ’02, IEEE Computer Society, Wash-
ington, DC, USA, 117–124.

GARLAND, M. 1999. Quadric-Based Polygonal Surface Simplifi-
cation. PhD thesis, Carnegie Mellon University.

HOPPE, H., DEROSE, T., DUCHAMP, T., MCDONALD, J., AND
STUETZLE, W. 1993. Mesh optimization. In Computer Graph-
ics, vol. 27, 19–26.

JOLLIFFE, I. 1986. Principal component analysis. Springer Verlag.

LINDSTROM, P., AND TURK, G. 1998. Fast and memory efficient
polygonal simplification. In VIS ’98: Proceedings of the con-
ference on Visualization ’98, IEEE Computer Society Press, Los
Alamitos, CA, USA, 279–286.

LINDSTROM, P. 2000. Out-of-core simplification of large polygo-
nal models. In SIGGRAPH ’00: Proceedings of the 27th annual
conference on Computer graphics and interactive techniques,
ACM Press/Addison-Wesley Publishing Co., New York, NY,
USA, 259–262.

MEYER, M., DESBRUN, M., SCHROEDER, P., AND BARR, A.
2002. Discrete differentialgeometry operators for triangulated
2-manifolds. VisMath.

ROSSIGNAC, J., AND BORREL, P. 1993. Multi-resolution 3d ap-
proximation for rendering complexe scences. Geometric Model-
ing In Computer Graphics, 455–465.

SHAFFER, E., AND GARLAND, M. 2001. Efficient adaptative
simplification of massive meshes. In Proceedings of IEEE Visu-
alization 2001 (October), 127–134.

TAUBIN, G. 1995. Estimating the tensor of curvature of a surface
from a polyhedral approximation. Fifth International Confer-
ence on Computer Vision, 902–907.

VERTTERLING, W. T., TEUKOLSKY, S. A., PRESS, W. H., AND
FLANNERY, B. P. 2003. Numerical Recipe in C/C++, The Art
of Scientific Computing.

XU, G. 2006. Convergence analysis of a discretization scheme
for gaussian curvature over triangular surfaces. Comput. Aided
Geom. Des. 23, 2, 193–207.

GraphiCon'2007 Russia, Moscow, June 23-27, 2007

Model Vin Vout (1)/(2) Grid size Occupied
cells

1st phase
mesh size

Non-
manifold
edges

Time(s) Error Gain
(2)/(1)

Venus 134k 20k (1) 78x104x93 31464 31464 210 13 Davg = 0.17E − 3
Dmax = 4.75E − 3

Fig. 10 (2) 62x84x74 20975 31507 84 14 Davg = 0.17E − 3
Dmax = 2.37E − 3

Gavg = 2, 13%
Gmax = 50, 12%

Venus 134k 3k (1) 62x84x74 20975 20975 190 12 Davg = 0.39E − 3
Dmax = 4.94E − 3

(2) 52x70x62 15072 20975 114 16 Davg = 0.38E − 3
Dmax = 2.80E − 3

Gavg = 2, 92%
Gmax = 43, 46%

Lucky 500k 45k (1) 182x311x105 119713 119713 5457 83 Davg = 0, 21
Dmax = 5, 35

(2) 145x249x84 79190 119700 1587 86 Davg = 0, 19
Dmax = 2, 04

Gavg = 8, 24%
Gmax = 61, 93%

Lucky 500k 100k (1) 242x414x139 197251 197251 4579 82 Davg = 0, 12
Dmax = 5, 33

Fig. 11 (2) 182x311x105 119713 194725 866 96 Davg = 0, 11
Dmax = 1, 16

Gavg = 7, 20%
Gmax = 78, 28%

(1) Garland and al. - (2) our method

• Vin is the size of the initial model and Vout is that of the simplified model
• Grid size is the size of the uniform grid
• Occupied cells is the number of leaves in the final BSP tree
• 1st phase mesh size is the size of the intermediate mesh
• Time (s) is the running time of the whole simplification process
• Error: Dmax is the Hausdorff distance between the original and the simplified mesh - Davg is the average symmetric distance between

both models (see[Aspert et al. 2002] for more details)
• Non-manifold edges is the number of non-manifold edges resulting from vertex clustering (our heuristic aims at avoiding them)

Table 1: Numerical comparison between our algorithm and Garland and al. 2002

Figure 10: Comparison of our method and Garland and al. 2002 - the ”venus” model (134k vertices) - simplified model: 20K vertices

GraphiCon'2007 Russia, Moscow, June 23-27, 2007

Figure 11: Comparison of our method and Garland and al. 2002 - the ”lucky lady” model (500k vertices) - simplified model: 100K vertices

Figure 12: Comparison of the map of errors for our method and Garland and al. 1999 - the ”venus” model (134k vertices)

GraphiCon'2007 Russia, Moscow, June 23-27, 2007

