
Tips & Tricks: Fast Image Filtering Algorithms

Alexey Lukin
Department of Computational Mathematics and Cybernetics

Moscow State University, Moscow, Russia
lukin@graphics.cs.msu.ru

Abstract
This paper highlights some fast algorithms for image filtering,
specifically – box and Gaussian smoothing, Hann filtering, me-
dian filtering, and morphological operations. It is shown that
some of these algorithms can be implemented with computational
cost independent of a filter radius.
Keywords: fast image filtering, Gaussian filter, Hann filter, me-
dian filter.

1. INTRODUCTION

Image smoothing is one of the most widely used operations in
image processing. A variety of well-known linear and non-linear
smoothing algorithms exist, such as Gaussian or median filtering.
They are used as parts of more complex algorithms including
lightness equalization, noise reduction, contrast and sharpness
enhancement.
A constant increase of resolution of digital images and photo-
graphs implies significant increase of calculations for image proc-
essing. The computational cost is not only affected by the in-
creased image area, but also by the fact that required filter radi-
uses increase together with resolution. With straightforward O(r2)
filter implementations (r is a filter radius) the increase of resolu-
tion (image area) by a factor of k brings the increase of computa-
tional complexity by a factor of k2. Many modern CPUs contain
vector instructions (e.g. MMX technology) to increase perform-
ance of many filtering operations.
The purpose of this paper is to highlight some widely used and
less known optimizations of image filtering algorithms. We also
suggest a fast algorithm for Hann-window smoothing. Some of
these algorithms achieve fixed computational cost per pixel, inde-
pendent of a filter radius, and can significantly outperform
straightforward implementations in case of large filter radiuses.

2. LINEAR SMOOTHING

2.1 Box blur
A box blur, also known as “moving average”, is a simple linear
filter with a square (or rectangular) kernel and all kernel coeffi-
cients equal. It is the quickest blur algorithm, but it lacks smooth-
ness of a Gaussian blur.
A box blur allows implementation with a complexity independent
of a filter radius. The algorithm is based on a fact that sum S of
elements in the rectangular window can be decomposed into sums
C of columns of this window:

∑
+

−=

+=
r

rk

kjiCjiS],[],[

This allows a simple update rule when window S is moving from
left to right:

],[]1,[],[]1,[rjiCrjiCjiSjiS −−+++=+

Column sums C can be, in turn, effectively updated when window
S is moving down to the next row:

],[],1[],[],1[jrixjrixjiCjiC −−+++=+

Here x[i,j] are image pixel values, C[i,j] are sums of (2r+1)-pixel
columns centered at [i,j], and S[i,j] are sums of (2r+1)(2r+1)-pixel
square windows centered at [i,j].
The result of the box filter is equal to

],[
)12(

1],[2 jiS
r

jiB
+

=

and it requires one multiplication per pixel after S[i,j] is calcu-
lated. So, the overall per-pixel complexity of the box filter is 4
additions and 1 multiplication per pixel. Some additional over-
head is required to calculate initial values of C and S at the image
boundaries.

2.2 Triangular blur
A box blur turns impulsive image pixels into squares, step func-
tions into linear ramps and its frequency response has high side
lobes. So, its smoothing effect is often not sufficient. A simple
improvement is an iterative application of a box filter to the im-
age. Consecutive passes of filtering are equivalent to convolution
of filter kernels. So, as the number of iterations increases, the
superposition filter approaches a Gaussian.
A widely used triangular filter (or Bartlet window) can be con-
structed as a superposition of 2 box filters with the same radius.
The computational complexity of such filter is twice the complex-
ity of a box filter, and the visual effect is very similar to Gaussian
blur. The filter requires 2 passes through the image which can be
overlapped due to filter locality.

2.3 Gaussian blur
Gaussian blur is considered a “perfect” blur for many applica-
tions, provided that kernel support is large enough to fit the essen-
tial part of the Gaussian. Indeed, the Gaussian filter’s frequency
response is also Gaussian, it has fast fall-off and no side lobes.
Gaussian filter on a square support is separable, i.e. 2D filtering it
can be decomposed into a series of 1D filtering for rows and col-
umns. When the filter radius is relatively small (less than few
dozens), the fastest way to calculate the filtering result is direct
1D convolution. The filter symmetry can be exploited to reduce
the number of multiplications by a factor of 2.
When a filter radius is large, direct convolution becomes expen-
sive, and FFT-based OLA convolution is the algorithm of choice.
A common mistake here is to transform the whole image row (or

GraphiCon'2007 Russia, Moscow, June 23-27, 2007

mailto:lukin@graphics.cs.msu.ru

column) with FFT, do the same with a zero-padded Gaussian
kernel, multiply complex spectra and do the inverse transform.
First of all, it should be considered that the result of convolution
has a length N+M–1, where N is the signal size and M is a filter
kernel size (equal to 2r+1), i.e. the output signal is longer than the
input signal. Without proper padding (extension) of data, regular
convolution will turn to a circular convolution, leading to prob-
lems near image boundaries.
Secondly, calculating FFT of the complete image row is not opti-
mal, since the complexity of FFT is O(NlogN). The complexity
can be reduced by breaking the kernel into sections with an ap-
proximate length M and performing overlap-add (OLA) convolu-
tion section-wise. The FFT size should be selected so that circular
convolution is excluded. Usually optimal performance is achieved
when FFT size F is selected as the smallest power of 2 larger than
2M, and signal section size is selected as F–M+1 for full utiliza-
tion of FFT block. This reduces the overall complexity of 1D
convolution to O(NlogM).
So, the per-pixel complexity of Gaussian blur becomes O(logr).
However, the constant is quite large, and for many practical pur-
poses Gaussian blur can be successfully approximated with sim-
pler filters.

2.4 Hann window
Hann window is a smooth function defined as

ππ ≤≤−+= tttH),cos(1)(

It is characterized by a compact support and fast fall-off of side
lobes in frequency response, i.e. good smoothing effect.
The algorithm that we propose for 1D Hann smoothing is based
on modulation of the input signal with a complex exponent. Let’s
consider a discrete filtering with a Hann kernel:

∑
−=

+⎟
⎠
⎞

⎜
⎝
⎛

+
+

+
=

r

rk
ktx

r
k

r
th][

5.0
cos1

12
1][π

This can be rewritten as sum of a box filter and a cosine-
modulated input signal. A box filter can be effectively calculated
as described in section 2.1. Now we will deduce the update for-
mula for fast calculation of a cosine modulated real-valued signal.

=
+
−

+=

=
+

++=

=
+

++=+

∑

∑

∑

+

+−=

−=

−=

1

1 5.0
)1(exp][Re

5.0
exp]1[Re

5.0
cos]1[]1[

r

rk

r

rk

r

rk

r
ikktx

r
ikktx

r
kktxty

π

π

π

=
⎭
⎬
⎫

+
−−

−−
+

+++

⎩
⎨
⎧

+
+
−

⎟
⎠

⎞
⎜
⎝

⎛
+

+= ∑
−=

5.0
)1(exp][

5.0
exp]1[

5.0
exp

5.0
exp][Re

r
irrtx

r
irrtx

r
i

r
ikktx

r

rk

ππ

ππ

()
⎭
⎬
⎫

+
−−+++

⎩
⎨
⎧

+
+
−

⎟
⎠

⎞
⎜
⎝

⎛
+

+= ∑
−=

5.0
exp][]1[

5.0
exp

5.0
exp][Re

r
irrtxrtx

r
i

r
ikktx

r

rk

π

ππ

If we denote

∑
−= +

+=
r

rk r
ikktxtz
5.0

exp][][π

then

][Re][tzty =

and

()
5.0

exp][]1[

][
5.0

exp]1[

+
−−+++

+
+
−

=+

r
irrtxrtx

tz
r

itz

π

π

This update rule can be used for effective calculation of y[t] and
h[t]. So, the complexity of a 1D Hann filter is 7 real-valued mul-
tiplications and 9 additions per pixel independently of a filter
radius.
The separable 2D Hann filter does not have strict radial symme-
try, but it is close to symmetric. It allows a fast separable 2D al-
gorithm.

2.5 Simple recursive filters
Another fast way to blur the image is to use 1st order recursive
filters:

][]1[)1(][txtyty αα +−−=

This simple formula can be modified to include only 1 multiplica-
tion:

])1[][(]1[][−−+−= tytxtyty α

This filter has a one-sided exponential infinite impulse response
(IIR). To obtain a symmetric impulse response, the filter can be
applied twice: in forward and backward direction, giving the
complexity of 4 multiplications per pixel in a separable 2D vari-
ant.

2.6 Recursive approximations of Gaussian
Using higher orders of recursive filter allows a good approxima-
tion of Gaussian filtering. The following recursive 1D filter is
suggested in [1]:

0321])3[]2[]1[(][][btybtybtybtBxty −+−+−+=

This filter should be applied twice: in forward and backward di-
rections, yielding 12 multiplications per pixel in 2D case, inde-
pendently of a filter radius. Filter coefficients can be calculated as
follows:

0

3211
b

bbbB ++
−=

GraphiCon'2007 Russia, Moscow, June 23-27, 2007

32
0 422205.04281.144413.257825.1 qqqb +++=

32
1 26661.185619.244413.2 qqqb ++=

32
2 26661.14281.1 qqb −−=

3
3 422205.0 qb =

⎩
⎨
⎧

≤≤−−
≥−

=
5.25.0,26891.0114554.497156.3

5.2,96330.098711.0
σσ

σσ
q

A relative accuracy of this approximation increases as filter radius
σ increases, but even with small σ the accuracy is good [1].

3. NON-LINEAR PROCESSING

3.1 Median filtering
Median is a non-linear local filter whose output value is the mid-
dle element of a sorted array of pixel values from the filter win-
dow. Since median value is robust to outliers, the filter is often
used for reduction of impulse noise. Another useful property of a
median is retention of edge sharpness while removing minor de-
tails from the image.
The straightforward implementation of median filter requires
O(r2logr) operations per pixel to sort the array of (2r+1)(2r+1)
pixels in a window. However an optimization is possible when
image data takes a limited range of discrete values, e.g. 8-bit pixel
values. It is based on a fact that median value can be easily calcu-
lated from a histogram of pixel values in a window. For 8-bit
pixel values such a histogram contains 256 bins and can be
searched for a constant time (8 comparisons) independently of a
filter radius. When a filter window shifts, this histogram can be
effectively updated using the following algorithm: if the filter
window shifts one pixel down, the pixels of upper window row
are removed from the histogram (2r+1 operations), and pixels of a
new lower window row are added to the histogram (2r+1 opera-
tions). During the course of 2D median filtering, the filter window
can zigzag through the image allowing effective histogram up-
dates on every step. Such a histogram-based algorithm requires
only O(r) operations per pixel.
To optimize the histogram search, a previously calculated median
value can be used as a starting point in a search for a new median
value.
A further optimization of median filtering is possible by maintain-
ing several histograms as combining them in a certain way. In [2],
the O(logr) algorithm is presented and ways to adapt this algo-
rithm to 16-bit and floating-point data are discussed.

3.2 Binary morphological operations
A basic morphological operation is dilation. When a structuring
element is defined inside a square window with a radius r, the
dilation operation sets to 1 all the pixels from which the structur-
ing element overlaps at least one non-zero pixel of the source
image. A straightforward implementation of dilation requires
O(r2) operations per pixel to check all the points of a structuring
elements.
If we keep the number of non-zero pixels that are overlapped by a
structuring element, an efficient update rule can be used for this
number. When a structuring element window shifts one pixel to

the right, some image pixels that can become overlapped are shift-
ing in from the right border of a structuring element, and some
image pixels can be shifting out of overlapping area through the
left border of a structuring element. So, instead of counting a total
number of overlapping pixels, we can increment the previous
count by a number of pixels covered by the right border of the
structuring element and decrement by the number of pixels that
are lying to the left of the left border of a structuring element. The
complexity of this optimized dilation is O(r).
A similar optimization is possible for erosion operation. For ero-
sion we will count the number of zero image pixels overlaid by a
structuring element.

3.3 Min/Max filters
A max filter outputs a maximal pixel value from its rectangular
window. A straightforward implementation requires O(r2) opera-
tions per pixel.
In case of small data bit depth, a histogram approach described in
section 3.1 can be used. But when the bit depth is large, another
approach based on a 1D running max filter appears more practi-
cal. Fast implementations of 1D running max filter are described
in [3]. A simple and fast algorithm called MAXLINE2 is using a
circular buffer of delayed input elements. The anchor points to the
current maximal value. When the window is shifted, a new ele-
ment is added to the delay line and compares against anchor ele-
ment. If the new element is smaller, the maximum stays at the
anchor. Otherwise anchor moves to a new element. When the
anchor shifts out of the delay line, the whole delay line is scanned
for a new anchor.
This algorithm works very fast on i.i.d. (independent identically
distributed) data, but has a worst-case complexity of O(r) for a
monotonically decreasing data. An algorithm with a better worst-
case complexity (although with a worse complexity on i.i.d. data)
is also introduced in [3]. It has a complexity of O(logr).
This running max algorithm can be used for adding pixels to a 2D
window of a 2D min/max filter with a worst-case complexity of
O(rlogr) operations per pixel.

3.4 Grayscale morphological operations
Grayscale morphological operations are based on min/max filters.
When structuring element is rectangular, they can be optimized
using min/max filters discussed in section 3.3.

4. CONCLUSION

Many image filtering algorithms can be effectively implemented
with a reduced number of operations per pixel. This paper de-
scribes some optimizations that in many cases allow achieving
computational complexity independent of a filter radius.

5. REFERENCES

[1] I.T. Young, L.J. van Vliet “Recursive implementation of the
gaussian filter” // Signal Processing (44), pp. 139–151, 1995.
[2] B. Weiss “Fast Median and Bilateral Filtering” // ACM
Transactions of Graphics (proceedings of the ACM SIG-
GRAPH'06 Conference), 2006.
[3] M. Brookes “Algorithms for max and min filters with im-
proved worst-case performance” // IEEE Transactions on Circuits
and Systems, Volume 47, Issue 9, Sep 2000, pp. 930–935.

GraphiCon'2007 Russia, Moscow, June 23-27, 2007

The work has been supported by RFBR grant 06-01-39006-
ГФЕН.

About the author

Alexey Lukin (Ph.D.) is a member of scientific staff of a Moscow
State University, Department of Computational Mathematics and
Cybernetics. His contact email is lukin@graphics.cs.msu.ru

GraphiCon'2007 Russia, Moscow, June 23-27, 2007

mailto:lukin@graphics.cs.msu.ru

	INTRODUCTION
	LINEAR SMOOTHING
	Box blur
	Triangular blur
	Gaussian blur
	Hann window
	Simple recursive filters
	Recursive approximations of Gaussian

	NON-LINEAR PROCESSING
	Median filtering
	Binary morphological operations
	Min/Max filters
	Grayscale morphological operations

	CONCLUSION
	REFERENCES

