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Abstract 
This paper highlights some fast algorithms for image filtering, 
specifically – box and Gaussian smoothing, Hann filtering, me-
dian filtering, and morphological operations. It is shown that 
some of these algorithms can be implemented with computational 
cost independent of a filter radius. 
Keywords: fast image filtering, Gaussian filter, Hann filter, me-
dian filter. 

1. INTRODUCTION 

Image smoothing is one of the most widely used operations in 
image processing. A variety of well-known linear and non-linear 
smoothing algorithms exist, such as Gaussian or median filtering. 
They are used as parts of more complex algorithms including 
lightness equalization, noise reduction, contrast and sharpness 
enhancement. 
A constant increase of resolution of digital images and photo-
graphs implies significant increase of calculations for image proc-
essing. The computational cost is not only affected by the in-
creased image area, but also by the fact that required filter radi-
uses increase together with resolution. With straightforward O(r2) 
filter implementations (r is a filter radius) the increase of resolu-
tion (image area) by a factor of k brings the increase of computa-
tional complexity by a factor of k2. Many modern CPUs contain 
vector instructions (e.g. MMX technology) to increase perform-
ance of many filtering operations. 
The purpose of this paper is to highlight some widely used and 
less known optimizations of image filtering algorithms. We also 
suggest a fast algorithm for Hann-window smoothing. Some of 
these algorithms achieve fixed computational cost per pixel, inde-
pendent of a filter radius, and can significantly outperform 
straightforward implementations in case of large filter radiuses. 

2. LINEAR SMOOTHING 

2.1 Box blur 
A box blur, also known as “moving average”, is a simple linear 
filter with a square (or rectangular) kernel and all kernel coeffi-
cients equal. It is the quickest blur algorithm, but it lacks smooth-
ness of a Gaussian blur. 
A box blur allows implementation with a complexity independent 
of a filter radius. The algorithm is based on a fact that sum S of 
elements in the rectangular window can be decomposed into sums 
C of columns of this window: 
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This allows a simple update rule when window S is moving from 
left to right: 
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Column sums C can be, in turn, effectively updated when window 
S is moving down to the next row: 
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Here x[i,j] are image pixel values, C[i,j] are sums of (2r+1)-pixel 
columns centered at [i,j], and S[i,j] are sums of (2r+1)(2r+1)-pixel 
square windows centered at [i,j]. 
The result of the box filter is equal to 
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and it requires one multiplication per pixel after S[i,j] is calcu-
lated. So, the overall per-pixel complexity of the box filter is 4 
additions and 1 multiplication per pixel. Some additional over-
head is required to calculate initial values of C and S at the image 
boundaries. 

2.2 Triangular blur 
A box blur turns impulsive image pixels into squares, step func-
tions into linear ramps and its frequency response has high side 
lobes. So, its smoothing effect is often not sufficient. A simple 
improvement is an iterative application of a box filter to the im-
age. Consecutive passes of filtering are equivalent to convolution 
of filter kernels. So, as the number of iterations increases, the 
superposition filter approaches a Gaussian. 
A widely used triangular filter (or Bartlet window) can be con-
structed as a superposition of 2 box filters with the same radius. 
The computational complexity of such filter is twice the complex-
ity of a box filter, and the visual effect is very similar to Gaussian 
blur. The filter requires 2 passes through the image which can be 
overlapped due to filter locality. 

2.3 Gaussian blur 
Gaussian blur is considered a “perfect” blur for many applica-
tions, provided that kernel support is large enough to fit the essen-
tial part of the Gaussian. Indeed, the Gaussian filter’s frequency 
response is also Gaussian, it has fast fall-off and no side lobes. 
Gaussian filter on a square support is separable, i.e. 2D filtering it 
can be decomposed into a series of 1D filtering for rows and col-
umns. When the filter radius is relatively small (less than few 
dozens), the fastest way to calculate the filtering result is direct 
1D convolution. The filter symmetry can be exploited to reduce 
the number of multiplications by a factor of 2. 
When a filter radius is large, direct convolution becomes expen-
sive, and FFT-based OLA convolution is the algorithm of choice. 
A common mistake here is to transform the whole image row (or 
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column) with FFT, do the same with a zero-padded Gaussian 
kernel, multiply complex spectra and do the inverse transform. 
First of all, it should be considered that the result of convolution 
has a length N+M–1, where N is the signal size and M is a filter 
kernel size (equal to 2r+1), i.e. the output signal is longer than the 
input signal. Without proper padding (extension) of data, regular 
convolution will turn to a circular convolution, leading to prob-
lems near image boundaries. 
Secondly, calculating FFT of the complete image row is not opti-
mal, since the complexity of FFT is O(NlogN). The complexity 
can be reduced by breaking the kernel into sections with an ap-
proximate length M and performing overlap-add (OLA) convolu-
tion section-wise. The FFT size should be selected so that circular 
convolution is excluded. Usually optimal performance is achieved 
when FFT size F is selected as the smallest power of 2 larger than 
2M, and signal section size is selected as F–M+1 for full utiliza-
tion of FFT block. This reduces the overall complexity of 1D 
convolution to O(NlogM). 
So, the per-pixel complexity of Gaussian blur becomes O(logr). 
However, the constant is quite large, and for many practical pur-
poses Gaussian blur can be successfully approximated with sim-
pler filters. 

2.4 Hann window 
Hann window is a smooth function defined as 

ππ ≤≤−+= tttH ),cos(1)(  

It is characterized by a compact support and fast fall-off of side 
lobes in frequency response, i.e. good smoothing effect. 
The algorithm that we propose for 1D Hann smoothing is based 
on modulation of the input signal with a complex exponent. Let’s 
consider a discrete filtering with a Hann kernel: 
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This can be rewritten as sum of a box filter and a cosine-
modulated input signal. A box filter can be effectively calculated 
as described in section 2.1. Now we will deduce the update for-
mula for fast calculation of a cosine modulated real-valued signal. 
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If we denote 
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This update rule can be used for effective calculation of y[t] and 
h[t]. So, the complexity of a 1D Hann filter is 7 real-valued mul-
tiplications and 9 additions per pixel independently of a filter 
radius. 
The separable 2D Hann filter does not have strict radial symme-
try, but it is close to symmetric. It allows a fast separable 2D al-
gorithm. 

2.5 Simple recursive filters 
Another fast way to blur the image is to use 1st order recursive 
filters: 
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This simple formula can be modified to include only 1 multiplica-
tion: 

])1[][(]1[][ −−+−= tytxtyty α  

This filter has a one-sided exponential infinite impulse response 
(IIR). To obtain a symmetric impulse response, the filter can be 
applied twice: in forward and backward direction, giving the 
complexity of 4 multiplications per pixel in a separable 2D vari-
ant. 

2.6 Recursive approximations of Gaussian 
Using higher orders of recursive filter allows a good approxima-
tion of Gaussian filtering. The following recursive 1D filter is 
suggested in [1]: 
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This filter should be applied twice: in forward and backward di-
rections, yielding 12 multiplications per pixel in 2D case, inde-
pendently of a filter radius. Filter coefficients can be calculated as 
follows: 
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A relative accuracy of this approximation increases as filter radius 
σ increases, but even with small σ the accuracy is good [1]. 

3. NON-LINEAR PROCESSING 

3.1 Median filtering 
Median is a non-linear local filter whose output value is the mid-
dle element of a sorted array of pixel values from the filter win-
dow. Since median value is robust to outliers, the filter is often 
used for reduction of impulse noise. Another useful property of a 
median is retention of edge sharpness while removing minor de-
tails from the image. 
The straightforward implementation of median filter requires 
O(r2logr) operations per pixel to sort the array of (2r+1)(2r+1) 
pixels in a window. However an optimization is possible when 
image data takes a limited range of discrete values, e.g. 8-bit pixel 
values. It is based on a fact that median value can be easily calcu-
lated from a histogram of pixel values in a window. For 8-bit 
pixel values such a histogram contains 256 bins and can be 
searched for a constant time (8 comparisons) independently of a 
filter radius. When a filter window shifts, this histogram can be 
effectively updated using the following algorithm: if the filter 
window shifts one pixel down, the pixels of upper window row 
are removed from the histogram (2r+1 operations), and pixels of a 
new lower window row are added to the histogram (2r+1 opera-
tions). During the course of 2D median filtering, the filter window 
can zigzag through the image allowing effective histogram up-
dates on every step. Such a histogram-based algorithm requires 
only O(r) operations per pixel. 
To optimize the histogram search, a previously calculated median 
value can be used as a starting point in a search for a new median 
value. 
A further optimization of median filtering is possible by maintain-
ing several histograms as combining them in a certain way. In [2], 
the O(logr) algorithm is presented and ways to adapt this algo-
rithm to 16-bit and floating-point data are discussed. 

3.2 Binary morphological operations 
A basic morphological operation is dilation. When a structuring 
element is defined inside a square window with a radius r, the 
dilation operation sets to 1 all the pixels from which the structur-
ing element overlaps at least one non-zero pixel of the source 
image. A straightforward implementation of dilation requires 
O(r2) operations per pixel to check all the points of a structuring 
elements. 
If we keep the number of non-zero pixels that are overlapped by a 
structuring element, an efficient update rule can be used for this 
number. When a structuring element window shifts one pixel to 

the right, some image pixels that can become overlapped are shift-
ing in from the right border of a structuring element, and some 
image pixels can be shifting out of overlapping area through the 
left border of a structuring element. So, instead of counting a total 
number of overlapping pixels, we can increment the previous 
count by a number of pixels covered by the right border of the 
structuring element and decrement by the number of pixels that 
are lying to the left of the left border of a structuring element. The 
complexity of this optimized dilation is O(r). 
A similar optimization is possible for erosion operation. For ero-
sion we will count the number of zero image pixels overlaid by a 
structuring element. 

3.3 Min/Max filters 
A max filter outputs a maximal pixel value from its rectangular 
window. A straightforward implementation requires O(r2) opera-
tions per pixel. 
In case of small data bit depth, a histogram approach described in 
section 3.1 can be used. But when the bit depth is large, another 
approach based on a 1D running max filter appears more practi-
cal. Fast implementations of 1D running max filter are described 
in [3]. A simple and fast algorithm called MAXLINE2 is using a 
circular buffer of delayed input elements. The anchor points to the 
current maximal value. When the window is shifted, a new ele-
ment is added to the delay line and compares against anchor ele-
ment. If the new element is smaller, the maximum stays at the 
anchor. Otherwise anchor moves to a new element. When the 
anchor shifts out of the delay line, the whole delay line is scanned 
for a new anchor. 
This algorithm works very fast on i.i.d. (independent identically 
distributed) data, but has a worst-case complexity of O(r) for a 
monotonically decreasing data. An algorithm with a better worst-
case complexity (although with a worse complexity on i.i.d. data) 
is also introduced in [3]. It has a complexity of O(logr). 
This running max algorithm can be used for adding pixels to a 2D 
window of a 2D min/max filter with a worst-case complexity of 
O(rlogr) operations per pixel. 

3.4 Grayscale morphological operations 
Grayscale morphological operations are based on min/max filters. 
When structuring element is rectangular, they can be optimized 
using min/max filters discussed in section 3.3. 

4. CONCLUSION 

Many image filtering algorithms can be effectively implemented 
with a reduced number of operations per pixel. This paper de-
scribes some optimizations that in many cases allow achieving 
computational complexity independent of a filter radius.  
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