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Abstract 
This paper describes the algorithm for construction of the 
‘naturally’ multi-dimensional pseudorandom point generator 
based on the theory of canonical number systems in 
multidimensional algebraic structures. Applications of the 
generator to the tasks of computer graphics are considered. The 
method for using dual LFSR-CNS generators for scrambling 
existing point sets is described. Numerical results are provided. 
Keywords: Image synthesis, Monte Carlo and Quasi-Monte Carlo 
methods, multidimensional pseudorandom point generation 

1. INTRODUCTION 

Many tasks of the computer graphics may be solved using Monte 
Carlo (MC) and Quasi-Monte Carlo (QMC) methods. Halftoning 
[1], global illumination problem [2],[4], form factor calculations 
[3],  and many other tasks may be reduced to multi-dimensional 
integration over the multidimensional unit cube; contrast 
enhancement [5], edge preserving image smoothing [6] problems 
may be approached via  random walks.     
To estimate the value of the multidimensional definite integral 
both Monte Carlo and Quasi-Monte Carlo methods may be used. 
Even though the Quasi-Monte Carlo approach is more efficient 
(with respect to the number of points necessary to reach the given 
error), it imposes more strict limitations onto the integrands, there 
exist certain problems with projections of the QMC point sets to 
the integration domains of lower dimensionality (e.g., 2D 
projections of 7D/8D Halton and Hammersley point sets), and 
efficiency of the method decreases with the growth of the task 
dimensionality [7]. Application of the Randomized Quasi-Monte 
Carlo (RQMC) approach implies that the QMC point set/sequence 
may be modified using either a multi-dimensional random 
sequence (e.g., using Cranley-Patterson rotations [8] ), a certain 
scrambling algorithm.  
Generating a multidimensional pseudorandom sequence is not an 
‘easy’ task. Usually these sequences (with very rare exceptions) 
are ‘made of’ the 1D sequence produced by the 1D PRNG via 
parallelization so to increase the number of dimensions of the 
original sequence. These methods may result in correlation 
between the coordinate sequences of the multi-dimensional 
sequence and eventually in incorrect calculation results [9]. 
An illustrative example of the correlated 3D sequence obtained 
from the 1D sequence is the 3D Randu [13] sequence. An 
illustration of the ‘non-random’ distribution of Randu 3D points is 
provided in the Figure 1. 
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Figure 1: Randu 3D sequence, [13]. 

 
This should be mentioned, however, that for certain 1D 
generators, the effects of the increasing dimensionality may take 
place in much higher dimensions than that for the Randu sequence 
(e.g. Mersenne Twister is 623-equidistributed) however these 
effects are still observable.  
This paper describes the algorithm for construction of the 
‘naturally’ multi-dimensional pseudorandom point generator 
based on the theory of canonical number systems (LFSR-CNS 
generator) in the multidimensional algebraic structures. Also the 
method for using the dual LFSR-CNS generators for scrambling 
existing sequences is described. 

2. MAIN IDEA 

Many existing 1D pseudorandom number generators (PRNG) 
exploit number representation in conventional number systems 
with different bases. For example, the well known Tausworthe 
PRNG and multiple-recursive generator [23], [24] consist of 2 
stages: (1) generation of  the s − element vectors (usually bit 
vectors); (2) interpretation of the coordinates of these vectors as 
digits of the number expansion (of a fractional number) in a 
certain number system.  
If a concept similar to the conventional number system may be 
defined in the multi-dimensional space, then the similar scheme 
may be used to generate not the 1D numbers but multidimensional 
points. 
Such concept is canonical number systems (CNS), introduced by 
I. Kátai in [12] and further investigated by many authors [10], 
[14], [22]. 
In addition to the ‘conventional number system properties’, CNS 
in the multidimensional space exhibit unique properties, which 
may be successfully used both for random point generation and 
developing the scrambling techniques: in particular, the 
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fundamental domain [10] of the CNS usually represents the 
fractal set with the complex, irregular boundary. Properties of this 
set make this possible to construct an algorithm for ‘random-like 
bijection’ (see Section 7).  
Below we provide description of the CNS-based pseudorandom 
point generation algorithm, the CNS-based scrambling technique 
and their applications to the MC and RQMC-based algorithms. 

3. BACKGROUND  

Let us recall the notation and basic results of the recurrence 
relations theory and theory of canonical number systems (CNS) 
necessary for the sequel.   

Definition 1. A function defined in the finite field ( )qGF  of 
sq p=  elements (  is prime), which satisfies the following 

linear recurrence relations with constant coefficients  
p

  1 0( ) ( 1) ... ( ) 0;sy n b y n b y n s−+ − + + − = (1)

0 1 0,..., ( ), 0, (0) ( (0),..., ( 1))sb b q b Y y y s− ∈ ≠ =GF − , 

is said to be a linear recurrent sequence of degree s  with the 
initial conditions (seed values) . (0) ( (0),..., ( 1))Y y y s= −

Linear recurrent sequence (1) of maximal period 1sT q= −   is 
said to be the -sequence.  m

Definition 2. The sequence { , where ( )} { (0), (1),...}Y n Y Y=

 ,  ( ) ( ( ), ( 1),..., ( 1))TY i y i y i y i s= + + − (2)
is said to be ‘caterpillar sequence of the sequence (1)’ The 
caterpillar sequence of the -sequence also has the period of 

 elements  
m

1sT q= − [11]. 

Let us define the canonical number system in the k -dimensional 
lattice . Let all the eigenvalues of the matrix k k k×∈M  have 
moduli greater than 1. Let the set  form the complete 
residue system , containing the zero, and 

kD ⊆
(mod )M

{ , 0,1,..., det 1}D ve v= = −M , where .  (1,0,...,0) ke = ∈

Definition 3. The pair ( ), DM  is said to form [10] a canonical 

number system (CNS) in , if for every element k kζ ∈  there 
exists a unique expansion of the form: 

0

l
i

i
i

eζ ζ
=

= ∑M , ie Dζ ∈ , , . (3) (1,0,...,0)e = # D q=

For CNS ( ), DM , the matrix  is said to be the ‘base’ of the 

number system and the set  to be the ‘digit set’. The 
companion matrices of the following polynomials may be used as 
the bases of the CNS 

M

D

[22]. 

1 1
kf x c x q= + + , 

iff ; ; 11 2c q− ≤ ≤ − 2q ≥
1

det f q p= =M ;  

1 2
2 ...k k kf x px px px p− −= + + + + + , 

 , 2 p≤ ∈
2

det f q p= =M q p=  ;  

1 2 2 1
4 ...k k k k

2 p≤ ∈ , 
4

det k
f q p= =M . 

4. LFSR-CNS GENERATION ALGORITHM 

The linear feedback shift register generator based on data 
representation in the canonical number system (LFSR-CNS 
generator [20]) generalizes (reinterpretes) the generation scheme 
by Tausworthe [23], [24] (so called Tausworthe generator, LFSR 
generator) and consists of two following stages:  

Stage 1. Generate the caterpillar-sequence  ( )Y i  of the m -

sequence (1) with non-zero seed values .  The degree of the 
sequence 

(0)Y
(1) should be s tk= ,  where  is dimensionality of the 

produced sequence and t
k

∈  is a parameter controlling the 
period of the generator. The element of the caterpillar sequence 
{ ( )}Y i  is said to be the state of the generator, the vector  Y (0)  is 
called the initial state of the generator. 
Stage 2. The state of the generator is interpreted as a vector of 
digits in the expansion (3) of a certain element  in a q -
nary canonical number system: 

k
iu ∈

 1
1

1
( ) ( )

s
j

i j
j

u Y i e−
−

=

= ∑ M .  (4) 

Remark 1. In the lattice  there exist several k q − nary 
canonical number systems with different bases M  and with the 
same digit set .  Thus, the single recurrence relation D (1) used at 
the first generation stage induces a family of LFSR-CNS 
generators. The LFSR-CNS generators from one family will be 
called dual (see Section 7).  

5. PROPERTIES OF THE LFSR-CNS GENERATOR 

Theorem 1. At the output of the LFSR-CNS generator with non-
zero initial state of generator, using the m -sequence of the order 
s tk= ; ,t k ∈  in the finite field , there will be ( )qGF 1sq −  
different points of  lattice generated. k

Proof. As representation of the element  in the form k
iu ∈ (3) is 

unique, output points of the LFSR-CNS generator corresponding 
to different generator states will be different. Thus, if i  runs the 
complete period of the -sequence m (1),  there will be 1sT q= −  
different points  produced by the LFSR-CNS generator.  k

iu ∈

Corollary. For any number of dimensions, there exist parameters 
of the LFSR-CNS generator, which result in k-equidistribution 
[21] of the points at the output of the generator. 
The set of points at the output of the generator (generator 
fundamental domain, )  may for certain CNS have an intricate 
shape and certain fractal properties (the fundamental domain of 
the LFSR-CNS generator is closely related to the fundamental 
domain of the CNS 

F

[10]). 
In the Figure 2 there are illustrations provided of the fundamental 
domains of 3D LFSR-CNS generators.  

kf x px p x p x p− − −= + + + + +  
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Figure 2. Fundamental domains of dual LFSR-CNS generators 

associated with the 
1f

M (left)  

and  
2f

M (right) CNS-bases; ( ) 2q =

This may be shown that for certain CNS, the complex 
fundamental domain of the associated generator may be 
efficiently (in terms of the computational complexity) converted 
into the multidimensional cube.  
Theorem 2.  Let the multidimensional cube be given by: 

 ( )( , , ) [0; )
kt kC q k t q= ∩ , # ( , , , ) #C q k t F=

then for the CNS associated with the 
1f

M , 
2f

M , 
4f

M  there exist 

parameters  of the generator  such that the bijection 

 may be calculated in the following way: 

,k t

: ( ,F C q k tΡ → , )

 ,  
mod

Pr ( ) [Pr ] tj j q
P u u=

where  is a minimal non-negative residue of the class 
mod

[ ] tq
⋅

( )mod tq . 

Remark 2. The bijection  is called unification 
of the generator fractal domain. Steps necessary to compute the 
unification constitute the 3

: ( , , )F C q k tΡ →

rd stage of the LFSR-CNS generation 
scheme. An illustration for unification is provided in the Figure 3. 

 

Figure 3. Unification of the fundamental domain 

The additive shifts of the generator fundamental domain (top-left 
image) tessellate the multidimensional lattice (top-right image). 
However, if points at the output of the generator are considered 
(bottom-left image) not in the lattice but in the torus ( )mod tq , 

the generated points fills all the torus points (except for zero 
point), or, if only the minimal non-negative residues are used, the 
points of the multidimensional cube (bottom-right image). The 
lattice tesselation induced by the fundamental domain represents 
the involute of the torus . ( )mod tq

Below the pseudocode for the LFSR-CNS generation scheme 
(including unification) is provided (Pseudocode 1) 

nst int t = …; //parameter controlling the generator period  

  

ast column in the CNS Base.  

) {   
 contains vectors with only 1st non-zero  

inate, only the first column of the matrices Mi in (3) and 
 the f t column is calculated 

 

to 1 { 
-1]; 

the CNS polynomial f2 

foo = 0; 
erate the next element of the  
urrent sequence 

foo + (Y[i] * A[i]) mod q; 

ate of the generator is calculated 

int 
/with unification 

to k-1 { 

be. 

n scheme including 
unification 

 

. TESTING RESULTS 

duced by the LFSR-CNS generator 
umerical tests including Knuth tests 

esigned for testing 1D sequences, 

ntional 

 
const q = 2;     //generator is binary 
const int k = …; //desired generator dimensionality 
co
    //2^kt-1 
const int s = k*t; 
var int[0..s-1] A = ( ... ); //coefficients ai of the m-sequence

the generator  var int[0..s-1] Y; //state of 
 TBase; //Ltypedef int[0..k-1]

        //For comments, see below. 
var TBase[0..s-1] MM;    
function initializeGenerator(int[0..s-1] Y0) { 

or  from 0 to s-1 f i  { 
  Y[i] = Y0[i]; 
 } 
} 

e(function initializeCNSBas
e Set D of digits// As th

 coord//
// (4) is significant. Thus, only irs
// using the properties of the matrix M.  
 MM[0][0] = 1; 
 for i from 1 to k { 
  MM[0][i] = 0;  
 } 
 for i from 1 to s–1 {
  foo = MM[i-1]; 

tmp = foo[k-1];   
  for j from k-1 down

j   foo[j] = foo[
  }   
  //for illustration, we use 
  if (tmp != 0) {   

m 0 to k-1 {    for j fro
    foo[j] = foo[j] + (-q)*tmp; 
   } 
  }     

M[i] = fo  M  o;   
 }   
}  
 
unc  generateNextPoint()  f tion

{ 
 
 for i from 0 to s-1 { //gen

       //rec 
  foo = 
 } 

or  fro  0 to s-2 f i m  { 
  Y[i] = Y[i+1]; 
 } 
 Y[s-1] = foo; // new st

 {  for j from 0 to k–1
rd[j] = 0;    coo

 } 
//calculating the multidimensional po for i from 0 to s-1 { 

   /     
or j from 0     f

   coord[j] = (coord[j] + Y[i]*MM[i][j]) mod q**t; 
  } 
 } 

or  fro f j m 0 to k-1 { //scaling 
[j] = coord[j] / (q**t);    coord

 } 
 //now the point is in the unit cu
 return coord; 
} 

Pseudocode 1. LFSR-CNS generatio

6

Properties of the sequence pro
were tested applying various n
for the coordinate sequences [21], weighted spectral test 
(diaphony) [16], physical tests [15] and real-life tests via 
multidimensional MC integration [20]. Results of the numerical 
experiments verify good random properties of the generated 
multidimensional distribution.  
As many of the modern testing libraries (e.g. Diehard, NIST, 
TestU01 [17], [18], [19]) are d
this is complicated to use these libraries to analyze 
multidimensional properties of the LFSR-CNS generator.  
Also, as the LFSR-CNS generator doesn’t exhibit lattice structure 
of the generated points this is impossible to use the conve
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spectral test [21], which appears to be the most powerful tool to 
assess the generator quality. However, values of the diaphony or 
the weighted spectral test proposed by Niederreiter [16] as an 
option for the generators, which cannot be analyzed using the 
spectral test, may be used instead.  
As an illustration, the Figure 4 displays the results of the 
diaphony testing of the LFSR-CNS generator following the 

ith the base

approach proposed in [16] . 

For the single recurrence of degree 48s = , LFSR-CNS 
generators using the CNS w  

2f
M  of 2D, 3D, 

 poi

 ( 2)q =

4D, 6D were created. The block of 0K = nt sets ( )N
i2 ω , 

1,2,...,i K=  that consist of 2 32 ,2N =  successive points 
produced by the generator were used as the source data for test. 

of the blocks i ..., K  the value 

15,...,2

ω i =For each ( ){ }N , 1,2,
2 ( )€ ( )N

n iE N F ω= ⋅  were measured (see [16]) , where )nF ω(  is 

the set the diaphony of ω . It may be proved [1 hat  
1NE N F  for the set of uniformly distributed independent 

points. The values provided in the Figure 4 shows that the value 
of the estimator €E  (vertical axis) are close to the best value 1  for 
any selected number of dimensions, the value of €E  doesn't grow 
with the growth of 2log

6]  t
2( ( ))ω⋅ =

N (horizontal axis), which may be 
considered as an evidence of good random properties [16] of the 
generated sequence. 
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Figure 4. Diaphony test results. Value of the estimator  for the 
sets of 2D, 3D, 4D and 6D successive points at the output of the 

7. CNS S

fundamental domain of the LFSR-

€E

LFSR-CNS generator. The logarithm at the base 2 of the number 
of sample points is along the horizontal axis.  

CRAMBLING 

Regular (cubic) shape of the 
CNS generator with the base 

1f
M  and complex fractal form of 

fundamental domain for CNS with the base 
2f

M  (see Figure 1) 
enables effective use of the dual LFSR-CNS generators for 
improving random quality of the multidimensional sequences. In 
the Figure 5, the flowchart of this algorithm is provided.  
Step (1): Using the regularity of the cubic fundamental domain, 
given the multidimensional point, the state of the generator #1 is 

or #2.  

SR-CNS scheme.   

Flow hart 

T
dimensions, application of the 

efficiently (in terms of computational complexity) reconstructed 
(this step is the inverse to the Stage 3 and Stage 2 of the LFSR-
CNS scheme). 
Step (2): The state of the generator #1 is interpreted as the state of 
the dual generat
Step (3): The modified multidimensional point is constructed 
using 2nd and 3rd stages of the LF

 

Figure 5. Multidimensional point set modification algorithm. 
c

he proposed method may be used in the arbitrary number of 
proposed scrambling technique 

(without the step 2’) to the 3D Randu sequence removes the 
observed correlation. This result was verified using the numerical 
experiments with the weighted spectral test.  

    

   

 

   

 

Figure 6. Use of dual generators to improve the properties of the 
multi-dimensional sequences. Column #1: Original image. 

I
generator more 

The LFSR-CNS generator produces the naturally 
ce, which is free from drawbacks typical 

cheme 

Column #2: Scrambling without step 2’. Column #3: Scrambling 
with step 2’. Column #4: Owen scrambling. 

f before the ‘Step (2)', the vector, representing the state of the 
1 is inverted, the scrambling result will be even 

noticeable. In the Figure 6, the results of application of this CNS 
scrambling to reordering the pixels of 3 standard images are 
presented. The second column corresponds to the modification 
without the ‘Step (2’)’ and the third column represents the results 
if the ‘Step (2')’ is used. In the first row, the forth column contains 
the Lenna image passed through the Owen scrambling [25] 
scheme. 

8. CONCLUSION  

multidimensional sequen
for the other multi-dimensional sequences obtained as a result of 
‘parallelizing’ the 1D sequence. In contrast to the conventional 
PRNG, existence of the CNS in the lattices of any number of 
dimensions enables generation of sequences perfectly satisfying 
the requirements of a particular application.  
Optimizations with respect to computational efficiency (CPU 
time) of the LFSR-CNS scheme is planned as a next research 
stage. Currently, computations according to the vanilla s

Original point of the 
multidimensi nal o

sequence

inverse unification 
and inverse 2nd stage 

f the LFSR-CNS o
scheme

State of the LFSR-CNS 
generator, associated with 

the  polynomial

≡
no transformation is 

performed ; the state of one 
LFSR-CNS generator is 
interpreted as the state of 

another 

State of the LFSR-CNS 
generator, associated with 

the  polynomial
2nd stage of the LFSR-

CNS scheme, 
unification

Modified point of the 
multidimensional 

sequence

(2, , )x C q t∈

(2, , )x C q t∈

1f
1

inversion of the 
generator state, 

0 1 1

1 2 0

( , ,..., )
( , ,..., )

s

s s

Y Y Y
Y Y Y

−

− −

2'2

f2
3
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(see Pseudocode 1) may be computationally expensive especially 
if the number of dimensions k is high. 

Families of the LFSR-CNS generators, different nature of the 
generator fundamental domains allows to use a pair of LFSR-
CNS generator for scrambling of the multidimensional sequences. 
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