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Abstract 
We propose a framework for Bayesian unsupervised image 
segmentation with descriptive, learnable models. Our approach is 
based on learning descriptive models for segmentation and 
applying Monte Carlo Markov chain to traverse the solution 
space. Swendsen-Wang cuts are adapted to make meaningful 
jumps in solution space.  
Keywords: Monte-Carlo Markov Chain, Swendsen-Wang Cut, 
Image Segmentation, Machine Learning,  

1. INTRODUCTION 

We consider the task of unsupervised image segmentation, 
meaning we assume no user interaction during the segmentation 
process. Unsupervised segmentation algorithm can be a generic 
one and seek to generate reasonable segmentation results for any 
possible image observed. In practice and especially in computer 
vision one is often working with certain image class and is in 
need of task-oriented segmentation. For this case, algorithms that 
can focus on partitioning the image in the way that would provide 
better representation of image for the task at hand are needed. In 
this paper we consider inferring segmentation rules from human-
labeled collection of images. We do not make any recognition or 
analysis of resulting region. Thus, our task is to partition an image 
into number of segments, inferring knowledge of what “good” 
segmentation is from a manually prepared training set.  
Problem of unsupervised image segmentation can be formulated 
as an optimization problem in graph cuts framework. For this end 
image is represented as a graph and one seeks to find such a graph 
partition (cut) that minimizes some given criterion. There is a 
large body of research dedicated to the problem of unsupervised 
image segmentation in graph cuts framework. First, algorithms 
based on graph spectral analysis [7][8] are proposed to find a 
minimal normalized cut. Also, for supervised segmentation 
mostly, algorithms based on maximum flow algorithm are 
proposed [6]. The main criticism of these approaches [2] is 
narrowness of segmentation models these methods can work with 
and that they do not have any clear statistical interpretation. Other 
approach [1][2][3] is to formulate Bayesian model of 
segmentation, with generative models for image segments and 
perform a stochastic search in space of all possible segmentations 
by Monte Carlo Markov chain. Swendsen-Wang graph cuts 
algorithm can be successfully applied for this purpose. All cited 
methods are generic and try to obtain reasonable results for any 
image class. Learning a descriptive model of segments with help 
of Gestalt features [9] provides more flexible framework, but 
using naïve optimization method makes it very dependant on 
initial segmentation and is very computationally expensive.  

 
Figure 1: Example of proposed method performance on urban 
images. Model was trained to segment sky, road and vertical 

object into different segments. 
 
One specialized approach was proposed for the task of obtaining 
geometric labeling for image segments [4]. Authors propose to 
generate multiple “hypothetical” segmentations and average 
predictions of their geometric labels. To generating those 
hypotheses a classifier is trained to distinguish image elements 
that should belong to the same regions.  
In this work we use some of the recited methods or their parts as 
building blocks for our framework. We perform oversegmentation 
into small segments and use them as low-level image elements to 
reduce the task complexity as in [2][4]. We use descriptive 
models for image segments trained offline as in [9]. We also learn 
similarity of image elements (probability to belong to the same 
segment) and use it to sample the solution space as in [4]. We use 
Bayesian formulation for segmentation as in [1][2], but use 
learned descriptive models for segments. We employ Monte Carlo 
Markov chain to find maximum aposteriory probability solution 
as in [1]. We implement Swendsen-Wang cuts [2] to make chains 
moves in solution space significant, getting faster convergence. 
While we heavily rely on related research we significantly differ 
from described works.  We use far more general and theoretically 
sound optimization procedure then in previous works on 
descriptive models for segmentation.  

2. PREPROCESSING AND FEATURES 

To get better spatial support and to be more computationaly 
efficient we perform oversegmentation by EDISON [10] mean-
shift based algorithm. This algorithm makes a generic 
segmentation of given image into many small sized homogenous 
elements, often called superpixels. The choice of overegmentation 
algorithm is arbitrary. 
In general, it is not relevant what low-level image representation 
we employ. It could be pixels, superpixels, edgelets and anything 
else. Bellow we will use “image element” when referring to them. 
Any union of image elements we will call a segment or a region. 
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Figure 2 Example of oversegmentation by EDISON method. 

 

2.1 Segment features 
Choice of features, describing image elements and segments, is 
arbitrary and should be done according to the task at hand. We 
choose features described in [4], since we were experimenting 
with urban scenes. Probably, features used in [9] would yield 
better results in general case.  
Feature for segments and image elements are the same. They 
consist of color, location, shape and perspective cues estimated 
from an image. One more advantage of this feature set is that it 
can be efficiently recalculated for a given segment if all features 
for segments elements are known (most of features would be 
average of elements features, weighted by their area).  

3. BAYESIAN SEGMENTATION 

We formulate segmentation just the same as in [1]. 

3.1 Graph partition 
Let >=< 0, EVG  be an adjacency graph, where 

{ }1 2, ,..., pV v v v=  is the set vertices for image elements such as 
pixels, superpixels, edgelets or anything else and 0E is a set of 
links connecting adjacent elements. Our goal is to partition initial 
graph into a set of connected subgraphs 

nkEVG kkk ,...,2,1,, =>=< , so that: 

jiVVVVV jik
nk

k ≠=≠=
=

|0,0,
,1

∩∪  

{ } nkVvuEvueE kk ,...,2,1,,|),( 0 =∈∈==  

Generally, the number of desired sub graphs is unknown. We will 
denote segmentation as { }nn GGG ,...,, 21=π .  

The space of all partitions (segmentations) is denoted by 

n

V
n ππ Ω=Ω =1∪  

where 
nπ

Ω is a space of all nπ  (partitions into n segments).  

Each sub graph nkEVG kkk ,...,2,1,, =>=<  represents a 
coherent visual pattern.  Links between any two given sets of 
vertices 

iV  and 
jV  is a cut  

{ }0( , ) , : , , ,i j i jC V V e s t e E s V t V i j= =< > ∈ ∈ ∈ ≠  

 

3.2 Image model 
We will denote observed image as I, image information for an 
image element v as vI  and information for elements set V as VI . 
We use term “image information” to describe observed raw image 
data. Afterwards, special features can be computed from it. A 
segmentation of an image is 

( , , )nW n Cπ= , 

where C is a model for an image segment. We will describe 
construction of C in section 6, now let us just assume it is a 
descriptive model, from which we can estimate ( | )Vp I C .  

If we assume patterns independence, then a Bayesian posterior 
would be 

( ) ( )
1

( | ) |
i

n

V
i

W p W I p I C p W
=

∝ ⋅∏∼ . 

4. BASIC IDEA 

We formulate unsupervised segmentation task as graph 
partitioning problem. We also defined a Bayesian posterior 
distribution in the space of all possible graph partitions, given a 
model for a segment. Since our goal is to find “the best” 
segmentation possible given a concrete image, we want to find 
MAP graph partition that should provide us with such 
segmentation. There are two things we need for solving a given 
task – model for segments and  come up with algorithm to 
traverse the solution space.  
To derive segments model we take learning approach as in [4][9] 
and use boosted decision trees to learn posteriors from human-
labeled collection of images. The learning process is described in 
section 6.  
To traverse solution space we use Monte-Carlo Markov chain 
(MCMC) much like as in [1]. MCMC sampling methods are 
known in statistics [11] as methods of sampling unknown 
distributions, for which only the probability of any given samples 
can be computed. In words, we construct a stochastic process 
(Markov chain) which has graph partitions as its states. Each state 
transition (jump) is first sampled from a special proposal 
distribution and is accepted (jump is made) with some 
probability. Such randomized process explores the solution space 
searching for a MAP solution. While it does not guarantee global 
maxima (if we run the process for a finite number of iterations), 
due to randomness it is resistant to local maxima problem (it is 
able to jump from it). We use discriminative model for image 
elements similarity to derive proposal distribution (section 5), 
from which we can sample. It is also learnt by boosted decision 
trees. We use Swendsen-Wang cuts [2] to propose strong moves 
in the solution space. Markov Chain is run for a given amount of 
iteration and then the solution with maximum posterior is chosen. 

5. SAMPLING THE SOLUTION SPACE 

To effectively traverse solution space we need a reasonable 
distribution in that space which we can sample. We use the same 
idea as in [4]. We estimate probability for two image elements s,t  
to be in the same region (probability of edge e to be present), 
which is learned from ground-truth image collection.  

( )| ( ), ( )eq p e F s F t= , 

where ( ), ( )F s F t  are local features computed from image. This 
probability gives us a distribution in the space of all possible 
segmentations. Any partition of adjacency graph (segmentation) 
is defined by set of graph links E, thus  

0

( ) (1 )e e
e E e E E

q E q q
∈ ∈ −

= −∏ ∏  
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is a distribution in segmentation space. We need this distribution, 
because it is easy to sample from. Indeed, if we turn edges in 0E  
“on” with probability eq , then resulting adjacency graph will be a 
sample form described distribution. We need this distribution to 
“guide” our search. 

To control coarseness of the segmentation we can introduce 
“temperature” parameter T. Making probabilities T

eq we can 

achieve different, but sensible results.  

Figure 3 Sampling with different temperature parameters. From 
left to right T=1,2,3. 

6. MODEL LEARNING 

To obtain segments posteriors and probability of image elements 
to correspond to the same segment we use machine learning. We 
use a collection of human-labeled images to learn from. Each 
image is manually labeled into homogenous regions. So far, we 
have two models to learn – elements similarity and segments 
posteriors. To start learning we need to construct training set, 
consisting of positive and negative examples, for a learner to 
distinguish from one-another. Segments and superpixels are 
represented by features described in section 2.1. 

6.1 Learning elements similarity 
For learning image elements similarity ( )| ( ), ( )eq p e F s F t=  we 
need to learn the probability for image elements to be in the same 
segment. Features of image elements that belong to the same 
segment in human-labeled examples are taken as positive 
examples, and those labeled as belonging to different as negative. 
We use boosted decision trees [12] to learn the probabilities. 
Trained classifier has error 12% measured by cross-validation. 

6.2 Learning posteriors ( | )Vp I C  
Constructing positive examples for segments is easy, since we can 
explicitly use segments from ground truth labeling. To construct 
negative examples [9] proposed to apply labeling from one image 
to another (providing wrong, but sensible segmentation). Such 
approach is not quite adequate from machine learning perspective, 
because those segmentation examples are drawn from a different 
distribution then the segmentation algorithm will observe during 
simulation. Fortunately, we have ability to sample from the 
distribution we will observe, since it is the sampling function 
learnt on previous step. We sample segmentations from the 
proposal distribution and construct negative examples from those 
of them that either have heterogeneous ground truth labeling or 

are significantly smaller then ground truth segment. Trained 
classifier has error 6% measured by cross-validation. 
It is important to use different parts of training set for learning 
segments posteriors and proposal function to avoid overfitting. 

6.3 Obtaining calibrated probabilities 
Boosted decision trees, being logistic regression model, can be 
made to produce the probabilistic output. Authors in [7][4] used 
normalized margins of prediction as probabilities. Recent research 
[5] suggest that such transform yields poorly calibrated 
probabilities. We use Platt scaling [13] to calibrate outputs of 
constructed classifiers. This step is very important since we 
search for MAP solution. Wrong probabilities can yield visually 
inadequate solutions.  We calibrate models for both similarity and 
posterior learning. 

6.4 Segmentation prior ( )p W  
Introduced models for image segments are local in their nature 
(since we assume their independence) and a reasonable 
segmentation prior could contribute much to adequateness of a 
final segmentation. We didn’t use any segmentation prior in this 
work, but any model for image segmentation prior, such as 
Markov random field, could be employed, since method does not 
have any limitations for it.  

7. MARKOV CHAIN DESIGN  

To design a Markov Chain to traverse solution space we need to 
define several dynamics – ways for chain to change its state. For 
Markov chain to sample from correct distribution it should be 
ergodic and observe detailed equation. Markov chain is ergodic if 
it is irreducible and its states are a periodic. In words, that means 
that any state can be reached from any other with non zero 
probability by a finite number of jumps and that there is no such 
state that we will periodically visit with probability one. Detailed 
equation means that for any move probability of making it equals 
the probability of going backward.  
Since we are using descriptive model trained offline, we need 
only to devise jumps in partitions space – split, merge, death, 
birth. Jumps are made according to Metropolis-Hastings 
algorithm [11]. According to it, we must accept the proposed 
jump with probability 

( ) ( | )( ) min(1, )
( ) ( | )

q B A P B IA B
q A B P A I

α →
→ =

→
 

where A and B are states of chain (graph partitions in our case), 
and q is the proposal distribution from which we sample. In 
words, we need a probability of a chain to make a jump to be 
equal to the probability to jump back. This is a sufficient criterion 
for a Markov chain to converge to desired distribution.  

8. SWENDSEN-WANG CUT 

In this section we will briefly describe Swendsen-Wang cuts 
algorithm. Method does not depend on type of posterior, so it is 
generally the same as original method [1] for descriptive models.  
To efficiently explore solution space we use Swendsen-Wang [2] 
graph cuts algorithm. At each step, given a graph partition 

nkEVG kkk ,...,2,1,, =>=<  algorithm turns “on” edges 
kEe∈  

with probability eq and obtains a set of connected components 

CP . Each component belongs to a certain sub graph. One of the 
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components, chosen at random, is proposed, according to some 
distribution, to be reassigned another subgraph or to form new 
subgraph.  
Swendsen-Wang Cuts:  

Input >=< 000 , EVG , discriminative probabilities 

0, Eeqe ∈∀ , and descriptive posterior probability )|( IWP  

Output: Samples ( | )W P W I∼  

1. Initialize a graph partition: ∪n

i iGG
1

:
=

=π  

2. Repeat, for current state A 

3.   Repeat for each subgraph nlEVG lll ,...2,1,, =>=< , 

4.      For lEe∈ , turn edge “on” with probability eq . 

5.      lV  is divided into ln  connected components: 

{ }llilili niEVg ,...,1,, =>=< . 

6.   Collect connected components from all subgraphs  

{ }lli ninlVCP ,...,1,,...,1: === . 

7. Select a component 0V CP∈  at random with probability 

0( | )q V CP  (usually 0( | ) 1/q V CP CP=  ). 

8. Propose to assign 0V  to a subgraph 'lG . 'l  follows a 
probability ( )0 0' | , ,q l V A G  

9. Accept the move with probability ( )A Bα → . 
 
Reassigning a connected component from one subgraph to 
another provides split and merge dynamics, assigning a connected 
component to a new subgraph yield birth operation and assigning 
a connected component containing the hole subgraph make death 
operation.  
Now we have partition space traversing algorithm, we need to 
define jump probabilities to make this random walk effective.  

Theorem 1. [2] Considering the above notation, if a 
candidate 0V CP∈ , proposed to reassign from lG  to 'lG  with 
probability 

0 ' 0

0 0

( , ) 0 0

0 0
( , )

(1 )
( | , , ) ( | )( ) min(1,

(1 ) ( ' | , , ) ( | )
l

l

e
e C V V V

e
e C V V V

q
q l V B G P B IA B

q q l V A G P A I
α ∈ −

∈ −

−
→ =

−

∏
∏

 

then the Markov chain is ergodic and observes detailed equation.  
The proof of the theorem can be found in [2]. Since theorem does 
not put any limitations on posteriors there is no difference if we 
use generative models as in original method, or employ learned 
models. 

To be most effective we must design proposal probability 
( )0 0' | , ,q l V A G , so that ( ) 1A Bα → = . In this case, each 

move is always accepted and our Markov chain becomes a 
generalized Gibbs sampler.  

Consider partition state 1 2( , ,..., )nA V V V=  (each set of nodes 

iV  correspond to respective sugraph i iV G∈ ) and a component 

0 lV V∈  chosen by SWC for reassignment. Then we have 1n +  
possible assignments 

1 1 1 1 0 1{ , ,..., ,..., , }l l n n nS V S V S V V S V S += = = − = =∅ . 

We denote corresponding resulting states 1 2 1{ , ,..., }nB B B +  
respectively. The proposition is to choose the assignment 'lS  
with following probability 

( )
'

0 0 '' | , , (1 ) ( | )
l

e l
e C

q l V A G q p B I
∈

∝ − ⋅∏ . 

It is proved [2] that such choice of probability for assignment 
really makes ( ) 1A Bα → = . Again, there is no difference if we 
use learned discriminative models instead of generative. 

This choice of assignment proposition can be interpreted as 
steering to assign component to the best possible segment, 
modulating the decision by cut weight. 

8.1 Reducing calculations 
Clearly, computational issues arise. Calculating cuts is fast, but 
evaluating posteriors for each possible assignment is exhaustive. 
We will address this issue below. 

Basically, we want to limit moves to reassignment between 
adjacent components. The main issue is preservation of ergodicity 
and detailed balance. If we just limit possible subgraph candidates 
to adjacent ones, then we can possible get a state not directly 
reachable from a previous one. Consider jumps illustrated on 
scheme 1. First jump A B→  reassigns component 0V  from lV  
to 'lV , producing new partition with sugraphs formed by nodes 

0lV V−  and ' 0lV V+ . Notice, that subgraph formed by nodes 

0lV V−  is not connected. If during next step B C→  one of 
connected components from 0lV V−  is reassigned, then there is 
no direct backward jump, because reassigned component and its 
former subgraph are not adjacent any more.  

Scheme 1. Illustration of possible inconsistent state. There is no 
jump from state C to state B, since for smallest component its 

former subgraph is not adjacent. 

To avoid such situations we can simply assume the posterior of 
unconnected subgraphs to be zero. 

( | ) ( | ) ( )V v conp I C p I C I V= ⋅�  

Where ( )conI V  is indicator of nodes in V  to be adjacent 
(clearly, we should have also included adjacency matrix 0E  into 
condition, because it determines connectivity of V, but we didn’t 
do it to simplify notation). 

Indeed, in this case we have a zero probability to make an 
assignment that would lead to undesired situation. This does not 
affect any conditions for detailed balance or ergodicity, since it 
only modifies posterior. 

0V
'lV

' 0lV V+

lV

State A State B State C
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9. RESULTS 

To give a try to our framework we have conducted experiments 
on a set of urban scene images. Areas of image containing only 
sky, road or buildings were labeled as homogenous. Cars, 
pedestrians and other obstacles where treated as part of “building” 
segments if they were obscuring them, or labeled as individual 
segment if otherwise. We used about a hundred images. First 
thirty images where used for learning proposal distribution, sixty 
for learning segments posteriors and others were used for testing. 
All images were obtained by handheld digital camera. Figure 9 
gives segmentation results and can be found on the last page of 
the paper. 

 
Figure 4 Image from the training set and it manual grounf-truth 

segmentation. 
  
9.1 Posterior optimization dynamics 
Figure 4 shows the dynamic of posterior probability for image 
(logarithmic scale). We used linear cooling schedule, starting with 
T=4 and linearly cooling to reach T=1 at the final iteration. For 
initialization we used a random segmentation sampled with help 
of learnt similarity function for image elements.  

 
Figure 5 Logarithm of posterior probability of image 2. 

 
It takes about 500 seconds for process implemented in Matlab 
with no optimization on Athlon 2 GHz processor to converge for 

~0.7 megapixel image. It is much faster then method with naive 
optimization [7] that took from 15 to 40 minutes to converge for 
~0.1 megapixel image. Computational bottleneck is feature 
calculation as it takes about 1-3 seconds to calculate them for all 
image segments. In our current implementation features for all 
segments are recalculated each time the posterior for possible 
state is estimated, while actually only 2 segments features change. 
Also, feature set could be reduced, since boosted decision trees 
use only about 30% of them (although many of them are 
calculated simultaneously in one operation, so removing 70% 
features will not provide respective boost in calculations). For 
further optimization hierarchical Swendsen-Wang cut algorithm 
[3] could be used.  
 

9.2 Other approaches 
It is reasonable to evaluate whether there can be more simple way 
to solve the problem. We tried simplifications – greedy 
optimization and normalized cut for adjacency graph, with links 
weighted by leant similarity function. First experiment should set 
clear if stochastic search for global minima is significant for 
segmentation quality. Second should prove that Bayesian 
approach is relevant and just learning pair wise affinity for image 
elements and applying classical graph cuts is not enough.  
 

 
Figure 6 Results for normalized cut segmentation using learnt 

super pixel’s similarity function. From left to right: original 
image, segmentation into 6 segments, segmentation into 9 

segments. 
 

9.2.1 Normalized cuts 
Figure 5 shows segmentation corresponding to a cut with minimal 
normalized cost for a graph  >=< 0, EVG  with links having 

weights1 eq− . It is clear, that segmentation is not visually 
adequate. This is due to two factors. First, image elements affinity 
is not perfectly learned (and can hardly be learned significantly 
better). Second, minimum normalized cost has no statistical 
interpretation and may not be quite accurate model for visually 
coherent segmentation. 

9.2.2 Greedy optimization 
We have implemented a following greedy optimization procedure 
– at each step, a segment with minimum posterior is chosen for 
reassignment and a move that will guarantee the maximum 
increase in overall posterior of segmentation is chosen and 
accepted with probability one. Such method guarantees an 
increase of posterior probability at each step (exception may be 
when a chosen component cannot be reassigned with any gain in 
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posterior). It is clear, that once segmentation converges to a local 
maximum (no component can be reassigned with increase in 
probability) segmentation will not change. Experiments have 
shown that such algorithm, as anticipated, is very dependant on 
initialization. Original stochastic algorithm also benefits from 
good initialization, but as theory states and experiments justify 
will sooner or later converge to desired distribution independent 
of initial state.  
Nevertheless, greedy algorithm converges quite fast and in case of 
good initial state provides good results. Probably, in tasks where 
good initial segmentation can be provided by heuristic means can 
be effectively used.  

 
Figure 7 Posterior dynamics for greedy and stochastic methods. 

Dashed line and solid lines represent stochastic and greedy 
methods respectively. 

 

9.3 Failure study 
 

 
Figure 8 Example of visually bad segmentation results. 

 
To no surprise, method fails in some cases. Figure 6 presents the 
example of failure. The problem in this case, as in others observed 
during experiments, was always problem of posterior estimation. 
We use learning that yields about 10% error, thus a global 
minimum of such posterior distribution is not necessary visually 

adequate. There is a little chance that features and learning 
methods can reach 100% accuracy any time soon. Ideas that may 
help avoid “overfitting” of learned posterior could be, for 
example, an adequate image prior. Also, as shown in geometric 
labeling [4], marinating multiple hypotheses and producing an 
average result should also provide more robustness. We will 
discuss more ideas for improvement in section 11 dedicated to 
future work. 
 

10. CONCLUSION 

This paper proposed a new framework for unsupervised image 
segmentation with learnable descriptive models for segments. 
Segmentation process is formulated as search for maximum 
posteriory probability of in the space of all possible segmentation 
and Swendsen-Wang cuts algorithm to traverse the solution space 
is employed. Learning pair wise image elements similarity 
provides means for effectively sample solution space and also get 
a well posed machine learning task for estimating segmentation 
posterior. A modification to Swendsen-Wang cuts that improves 
algorithms speed also proposed. 
This work was part by three other works: learning classification 
model for segmentation [9], Swendsen-Wang cuts for image 
segmentation [2] and geometric context from single image [4]. 
We learn “goodness” of segmentation as in the first work, use 
optimization method as in second, and use the idea of sampling 
segmentations by learning pair wise similarity for image elements 
from third. However, we significantly differ from all of them. We 
use far more general and theoretically sound optimization 
procedure then the first work. We use descriptive models rather 
than generative in contrast to second. Also, method for evaluating 
less segmentations by working with only adjacent subgraphs, but 
maintaining detailed equation and ergodicity is proposed. This 
makes computations faster and makes a step towards practical 
applicability of our framework. Comparing to work on geometric 
labeling of single image it is important to note, that we build a 
general descriptive model of probability of any given image 
segment to be homogenous (in words, to be a good segment) and 
do not perform any recognition of segments classes. Extending 
our framework in such way is discussed in future work section 
below.  

11. FUTURE WORK 

Proposed framework is quite general and has lots of possible 
extensions and improvements. We will discuss some of them. 

11.1 Improvements  
Currently, main problem is the imperfectness of learned segments 
model. Some times, a global minimum corresponds to visually 
inadequate segmentation. Clearly, learning requires more 
attention. ROC curves should be studied and optimal metrics for 
optimization should be experimented with. Construction of 
training sets should also be looked at more closely, probably 
active learning should be used to obtain edge cutting results for 
classifiers accuracy.  Feature set should also be improved as in 
terms of descriptiveness and also in computational efficiency.  
Although, classifiers can definitely be improved, there is no way 
to make them perfect. To fight this problem, first of all, 
segmentation prior should be definitely introduced. Using Markov 
random field for it seems to be the most natural decision. Also, 
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there is an interesting idea [4] that rather obtaining one solution 
that seems to be the best, one could obtain many and average 
along them. In some sense, it suggests to look for expectation of 
segmentation rather then MAP segmentation. Since our 
framework is based on procedure that samples segmentation space 
according to a given distribution it is quite adequate for 
experiments in that direction.  

11.2 Extension 
Our framework is quite general and due to a large freedom in 
defining posterior to be sampled from it can be easily extended to 
include segments recognition in the process. Really, if we 
introduce a family of models, rather then just one, we can perform 
recognition of segments class in the process of segmentation. We 
should only introduce model switching jumps [1] to Markov chain 
dynamics. 

11.3 Practical applications 
Image segmentation is a task wieldy used in computer vision, 
image processing and adjacent fields. Proposed framework could 
be successfully applied in medical imaging to automatically 
segment and recognize different tissues and areas of interest. 
Learnable segmentation can also be applied as a first step for 
automatic 3D reconstruction [4] and general scene analysis can 
significantly benefit from it. Image processing could also use this 
framework as first step for smart image enhancement and editing. 
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Figure 9. Segmentation results on test set. 
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