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Abstract

The Free From Deformations are the most spread methods to mod-
ify the shape of geometrical objects, described with vertices and
faces. Many applications have been developed to extend this ap-
proach, allowing different constraint specifications or actions. It has
also been adapted to deform subdivision or implicit surfaces. This
paper introduces an improvement for NURBS surfaces, allowing a
point picked on the surface to follow a curvilinear path. The prin-
ciple of the method is to let the user choose a point on the NURBS
surface and its destination location in space. Then, the deformation
range and the curvilinear path from the constraint point to the dis-
placement goal must be specified. The proposed process computes
the deformation of the initial object to match a displacement con-
straint. In order to be applied on NURBS surfaces, the process uses
the (u,v) parameters of the initial chosen point, but this computa-
tional step is hidden for the user.

CR Categories: I.3.5 [COMPUTER GRAPHICS]: Computational
Geometry and Object Modeling—Curve, surface, solid, and object
representations;

Keywords: Free Form Deformation, NURBS Surface, Con-
strained Deformation.

1 Introduction

Friendly deformation of parametric surfaces is still hard to obtain.
Our work is focused on NURBS surfaces, and tends to insure the
satisfaction of displacement constraint of points on the surface.
These surfaces are widely used in CAD/CAM systems, because of
their mathematic and geometric properties (weight usage, local ba-
sis and representation of the Bézier and B-Splines surfaces).

We can group the deformation methods of parametric surfaces
into two parts: the soft constraints, generally interactively defined,
which do not specify location or orientation constraints; the strict
constraints imply the satisfaction of user, geometrical or mathemat-
ical constraints. This last part is complex and time-consuming for
a design process but it insures the final object measures (size, ori-
entation, tangency, ...). The “soft” methods permit to manipulate
the parametric surface, moving control points or surface points (as
in [Bartels and Beatty 1989], [Hsu et al. 1992]). They follow the
user interaction but do not satisfy location constraint. For exam-
ple, the user request can be a “rounded” surface but nothing defines
precisely the final object characteristics.

In another branch of geometric modelling, some methods of defor-
mation allow the user to fix constraints on a BREP mesh ([Borrel
and Rappoport 1994] for instance). The user picks some points
on the surface (it could be a mesh vertex or not), specifies a star-
shaped range of influence, describes a path of deformation to each
constraint and runs the deformation process which satisfies the user
constraints. The influence hull is a restriction of the deformation
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toward the surface. Our goal is to combine a punctual deformation
of NURBS surface with a path of deformation like in [Raffin 2000].
It will be interesting to model more complex forms.

In the first part of this paper, the principles of design scheme are
recalled, the deformation methods are broached, first with FFD pro-
cess and in the following part with the parametric surface model. In
a fourth section, our model of deformation is described. Finally, af-
ter a conclusion on this work, some futures works will be proposed.

2 Design Scheme

The classical method used to design a complex surface in
CAD/CAM is to define a surface (or a set of surfaces) only with
equations, or to pick a simple surface and then deform it to obtain
the desired one. The surface is often described by quadrics or para-
metric patchs. As an example, the Figure 1 shows a car bonnet,
defined as a parametric surface composed of a set of zones.

(a) initial object (b) parametric space
and its zones

(c) resulting surface

Figure 1: Example of successive definitions of a complex paramet-
ric surface.

The parametric surface is managed by a set of control points, the
order of the polynomial basis used to link the resulting surface
with these control points and the control points weight. The cur-
rent methods to deform a parametric surface use multiresolution,
physical or geometrical approaches.

The first one implies a wavelet description of the set of control
points. Each level of resolution has an impact on the resulting sur-
face, from a global range with a low resolution to some details ad-
dition for a full resolution [Kazinnik and Elber 1997]. The physical
approaches are the most used to obtain intuitive reaction of the para-
metric surface. The first method has been due to [Terzopoulos et al.
1987]. It uses elasticity to model the reaction of the control points
network. [Terzopoulos and Qin 1994] extend the NURBS model
to D-NURBS (Dynamic) including mass and energy in the stan-
dard formulation of NURBS. This deformation model is based on
Lagrangian dynamic. These two methods are time-consuming be-
cause they wish to reach a stable state for the complete network at
each energy modification. On the same principle (but without mod-
ifying the NURBS definition), [Thingvold and Cohen 1990] pro-
pose a mechanical spring mass model matching the control points
grid. [Léon and Trompette 1995] modify [Schek 1974] to imple-
ment a bars network linked with the control points. For a given
set of intern or extern forces, the authors compute a stable solu-
tion satisfying various constraints (position, displacement, area, ...)
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minimizing a choosen criterion (shape variation, area, ...) [Pernot
2004].

Even if these methods permit the deformation of a parametric sur-
face, they are quite complex to be manipulated by a end user. We
tend to base our work on geometrical methods, which can be more
easily understood. The geometrical methods are other ways to de-
form parametric surfaces. Even if this deformation scheme is non
exact, it can lead to intuitive tools for a end user ([Hsu et al. 1992]
for instance). We propose to study a particular kind of method
called Free Form Deformation which are developped in the next
section.

3 Brief recall of Free Form Deformation
methods

The Free Form Deformation method (FFD) has been designed to
modify an object, whatever its representation: it acts on points (like
in [Parent 1977]) and can be used to deform a surface or a volume.
Primary works on Free Form Deformation were done by Sederberg
and Parry [Sederberg and Parry 1986]. The principle of this model
is quite simple. The object to be deformed is embedded in a paral-
lelipipedical mesh (see Figure 2), deforming this mesh allows the
deformation of the initial object.

Figure 2: Example of a FFD applied on a teapot. Middle image,
the teapot is embedded in a parallelipipedical mesh. Right, deform-
ing the embedding volume implies the deformation of the teapot.

Coquillard modified this model and proposed the extended
FFD [Coquillart 1990] to use general prismatic meshes. De-
spite several extensions (proposed by [Moccozet and Magnenat-
Thalmann 1997] and [Hsu et al. 1992]), the manipulation and
the specification of the deformation range are not intuitive. The
main drawback of FFD methods is that the user has to deform the
mesh, without a direct control of the object surface. [Borrel and
Bechmann 1991] implement a n dimensional deformation model
(DOGME) which permits the satisfaction of constraints in the de-
formation. Using this, [Borrel and Rappoport 1994] create the
SCODEF model which allows the user more interactivity with the
deformation, adding a radius of influence to each constraint.

These two methods propose a deformation model which uses a
punctual constraint with a given displacement (vector). An influ-
ence sphere (which radius can be modified) is linked to the punctual
constraint. The method insures the satisfaction of the displacement
constraint. [Raffin 2000] improves the SCODEF model with vari-
ous hulls of influence, curve-constraint and deformation path. We
will use this deformation model for the work which is described in
this paper. In the following part, the definition of this model will be
described.

As a Free Form Deformation model, SCODEF deforms the whole
space an object is embedded in. The displacement of a point P
submitted to N constraints in space is expressed as follows:

d(P) = M. f (P) (1)

with:

• M is the self-influence matrix, constructed with eq. 1 and all
constraints,

• f is the deformation function linked to each constraint. The
expression of fi for the constraint i is:

fi = Bi

(‖Ci −P‖
Ri

)

Bi is a B-Spline basis function, Ci is the constraint point and
Ri its associated radius of influence.

• d(Ci) is the displacement defined for each constraint point Ci.

A radius of influence Ri is linked to each constraint and allows the
control of the locality of the deformation. The simple image in
two dimensions of Figure 3 shows an object (an horizontal line) de-
formed by a SCODEF constraint. A constraint point is fixed and a
displacement is given. The deformation acts only in the radius of
influence. The deformation function used by the SCODEF model
is a B-Spline basis function: the influence decreases when the dis-
tance between the constained point Ci and a given point P increases.
When the distance is greater than the radius Ri, the influence of this
constraint vanishes. The deformation function is centered at the
constraint point (with the maximum value 1), it implies the dis-
placement satisfaction. The resulting curve looks like a cubic B-
Spline interpolation.

d(C)

d(P)

PCR

resulting curve

initial line

constraint of
displacement

constraint

Figure 3: SCODEF deformation sample of a line. Influence is cir-
cular.

The SCODEF model provides an isotropic influence for a con-
straint. Influence area can be extended, keeping in mind that it is
necessary to compute the distance between all points in the hull of
influence and the constraint point. A solution is to use a star-shaped
hull of influence, thus the influence hull can be non-convex but star-
shaped and a distance between a point in the hull and the constraint
point can always be computed.

As the SCODEF model provides straight vectors of displacement,
the deformation cannot create bows or handles. Curvilinear dis-
placements have been defined to allow this ([Raffin et al. 1999]). It
implies to propose an other deformation function f (P). For exam-
ple, the deformation path can be represented by a Bézier curve, the
parameter of this curve is the distance between the constraint point
Ci and the point P in space, inducing that the constraints are not
only punctuals but also curvilinear (see Figure 4 for various exam-
ples).
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Figure 4: Deformations obtained with an extended
SCODEF method.

4 Extension of surface deformation

Surface models are used in CAD. It would be important to bring
tools to deform interactively this kind of surfaces. For example,
Figure 5 shows some deformations of parametric surfaces, with
various goals: to make a hole or to bulge, to extrude or to fold
the surface. These deformations are defined to modify the control
points or to use the parametric space (restriction of a hole for in-
stance). These deformations are defined on NURBS surfaces that
are introduced in the following section.

(a) (b) (c) (d)

(e) (f) (g)

(h) (i) (j)

Figure 5: Example of parametric surface deformations, acting on
control points or parametric space (case of restriction).

4.1 Notation

Giving S, a NURBS surface [Piegl and Tiller 1997] of degree p in
the direction of u and degree q in the direction of v (cf Figure 6). A
point of S with parameters (u,v) ∈ D is computed with:

S(u,v) =
n−1

∑
i=0

m−1

∑
j=0

Ri, jPi, j

with:

Ri, j(u,v) =
Ni,p(u)Nj,q(v)wi, j

n−1

∑
k=0

m−1

∑
l=0

Nk,p(u)Nl,q(v)wk,l

Where:

• D is the definition domain of the parameters u and v. It is a
parametric space given by [0,1]2 ;

• {n} and {m} represent the number of control points in the u
and v directions ;

• {Pi, j} is the control point (i, j) ;

• {wi, j} is the weight of the control point Pi, j with {wi, j} > 0 ;

• {Ni,p(u)} and {Nj,q(v)} are the B-Spline basis of degree p
and q defined on non decreasing sequences of knots U and V :
{

U = {U0, . . . ,Up+n} with ∀i ∈ [0, p+n−1] Ui � Ui+1
V = {V0, . . . ,Vq+m} with ∀ j ∈ [0,q+m−1] Vj � Vj+1

Control pointControl network

NURBS surface

v

u
0

1

0
1

v0

u0

(a) (b)

S(u0, v0)

Figure 6: (a) Parametric space D. (b) NURBS surface defined on
D.

4.2 Satisfaction of a linear punctual constraint

The surface deformation presented in previous section will be ap-
plied on NURBS surface. We present now a new deformation tool
on NURBS. We wish to satisfy linear punctual constraints. Let M̂
be a point in space and M a point of the parametric surface S, with
M = S(u,v), the goal of the method is to deform S to obtain a surface
Ŝ verifying Ŝ(u,v) = M̂ (see Figure 7). A deformation constraint is
denoted G ([MM̂] segment in the figure) and defined by:

1. a spatial constraint: the resulting surface Ŝ must go through
M̂ ;

2. a parametric constraint: the point of Ŝ matching with M̂ must
have parameters pair (u,v) ;

3. a localization constraint: each constraint has an influence on
S, defined by the function f (i, j):{

f : [0,n−1]× [0,m−1] �→ R
+

∃(i, j) ∈ [0,n−1]× [0,m−1] / Ri, j(u,v) f (i, j) 	= 0

When f (i, j) = Ri, j(u,v), G has a ”natural” influence on the
surface.

The solving method [La Greca 2005] is geometrically based. It
consists in the modification of the control point Pi, j , defining the
surface S, with a displacement computed according to eq. (2).

GraphiCon'2007 Russia, Moscow, June 23-27, 2007



M M M=M

S
G

S

(a) (b)

Figure 7: (a) A surface S of degree 3×3, defined by 15×10 con-
trol points. G is the constraint to satisfy (natural influence). (b)
Resulting surface Ŝ.

−−−→
m(i, j) =

f (i, j)
n−1

∑
k=0

m−1

∑
l=0

[Rk,l(u,v) f (k, l)]

−→e with −→e =
−−→
MM̂ (2)

The Figure 8 shows the influence impact of G when the natural
influence is enlarged by gaussian convolution of radius n̂. We can
select some points in the parametric space to modify their locations.
The influence zone remains isotropic (disc on intial surface).

M=M

S

M=M

S
(a) (b)

Figure 8: Resulting surface satisfying G with n̂ = 10 (a) and n̂ =
20. (b) as filter size of the gaussian convolution.

The f (i, j) function can directly be given by the designer as a zone
on the surface. This method of description is more intuitive for
the user who does not have to know the underlying mathematical
model. Indeed, he or she has just to ”draw” on the surface the
zone to deform. The zone can also be represented in the parametric
space. In this case it is called the parametric zone or the parametric
image of the zone, as illustrated in Figure 9. In addition, it is im-
portant to note that a parametric zone must include the parametric
constraint (u,v) of the G constraint to satisfy.

u

v

0

1

1

0

(a) (b)

Figure 9: (a) Representation of a zone in the parametric space
(parametric image of the zone), (b) corresponding shape drawn on
the surface.

If the deformation needs more control points, in case of a small
zone for instance, the control grid has to be refined by adding lines
and columns of control points inside the zones which have to be
deformed. This operation can be done using the knots insertion

algorithm developed by Boehm [Boehm and Prautzsch 1985] for
example.

The influence f (i, j) of the constraint linked to the zone has now
to be determined according to the needed deformation. To do this,
we introduce the notion of parametric image of a control point Pi, j
[La Greca 2005] which is the (ui,v j) pair such as Pi, j is the control
point with the biggest influence on S(ui,v j). The method to find all
these parametric images uses a flat surface S̃ defined by the same
features (degrees, knots vectors) than the surface S to be deformed.
The (ui,v j) pairs are the parameters of the points of S̃ matching
with the control points P̃i, j of S̃ such as: S̃(ui,v j) = P̃i, j .

The influence f (i, j) is then found by the following: the con-
trol points of the surface which parametric images are outside the
parametric zone are considered as fixed during the deformation
( f (i, j) = 0). The other control points are related to an influence
value equal to f (i, j). A good way to initialize f (i, j) is to choose a
high value when the parametric image of Pi, j is close, in the para-
metric space, to the parametric constraint (u,v) to satisfy. A low
value is chosen when the parametric image of Pi, j is close, in the
parametric space, to the border of the parametric zone. The Fig-
ure 10 illustrates this step showing two zones with different levels
of refinement.

(a) (b)

Figure 10: Definition of the influence of a constraint from a zone
of the surface. Two levels of refinement (a) and (b) of the control
grid are illustrated using two different shapes of zone. The dark
control points outside the zone are fixed, the mobile ones are inside
the zone and colored according to their influence f (i, j) from light
for a low influence to dark for a high one.

As in the previous work in BREP mesh of [Raffin et al. 1999], it
would be interesting to replace the direct line path by a 3D curve to
deform the surface from the constraint point to the goal one. The
next section explains this new deformation process.

4.3 Satisfaction of a path constraint

We propose to add to the previous definition of a constraint G
(Cf. 4), a fourth sub-constraint which is a curve path the surface
has to follow during its deformation. Thus, a punctual constraint
G is now defined by a spatial constraint, a parametric constraint, a
localization constraint and a path constraint as illustrated in Fig-
ure 11. This path is given by a NURBS curve C(t) with t ∈ [0;1]. It
must have a clamped knots vector in order to ensure M = C(0) and
M̂ = C(1). These two equalities define the relationship between the
path constraint and the surface before and after its deformation.
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Localization constraint

Path constraint C(t)
Control polygon of
the path constraint

(a) (b)

M = C(0)

M̂ = C(1)

Figure 11: Definition of a path constraint (a) and its satisfaction
(b).

This kind of constraint can be used to allow the user to satisfy a
punctual constraint avoiding a place or a volume in space for in-
stance. The process we introduce to satisfy it, is an iterative de-
formation of the surface following the parametric curve C(t). This
curve is steadily sampled and viewed as a set of N segments. We
choose N as ten times the product of the degree of C(t) per its num-
ber of control points, this sampling technique gives good visual re-
sults but produces many steps. One future work is to find an opti-
mal sampling method taking into consideration the curvature of C
for example.

One step k ∈ [0,N − 1] of our method consists in viewing
the k-segment as a linear punctual constraint defined by −→ek =−−−−−−−−→
C( k

N )C( k+1
N ). The satisfaction of this constraint is done at each

step applying the equation (2) where the error vector −→e is equal to−→ek .

However, if the localization constraint used is the same throughout
the process, the resulting surface is the same as the surface satisfy-

ing the linear punctual constraint defined by
−−→
MM̂. Indeed, in this

case, the sum of all the segments is equal to
−−→
MM̂ by the parallel-

ogram relation, that is why we choose to reduce the localization
constraint at each step of the method: the more the step is close to
N −1, the more the localization constraint is reduced.

In practice, we consider that the localization constraint f (i, j) of
G is normalized in order to use f (i, j) ∈ [0,1] ∀(i, j) ∈ [0,n −
1]× [0,m− 1]. The control points Pi, j involved in the deformation
( f (i, j) > 0) make a set written L. Then, our idea is to define a new
influence f̃k(i, j) at each step of the process according to the f (i, j)
localization and a threshold s(k) ∈ [0,1] which is linearly defined
as s(k) = k

N−1 . This new influence is computed such as:

f̃k(i, j) =

⎧⎪⎪⎨
⎪⎪⎩

0 if f (i, j) < s(k){
f (i, j) if k = N −1

1 otherwise otherwise (3)

For each f̃k(i, j) > 0, it can be associated a set Lk of control points
involved in the deformation during the step k. This new influ-
ence (3) used with equation (2) is equivalent to translate by −→ek all
the control points Pi, j where f (i, j) � s(k) and k < N − 1. This
technique could be viewed as to spread the surface along the curved
path. Finally the last step (k = N − 1) really satisfies the punctual
constraint using (2) with a small localization constraint defined by
a few set of control points LN−1. Figure 12 shows the impact of

the evolution of the threshold s(k) on the sets of control points (Lk)
involved in this deformation process.

New localization
constraints

Localization constraint L = L0

L1 L2 L3 L4

Figure 12: Example of evolution of the shape of a localization con-
straint during a process of 5 steps (N = 5).

One implication of the evolution of the shape of the localization
constraint during the process is the need of many control points.
Indeed, the more the number of segments N is large, the more the
number of steps increases and the more the need of control points
in the zone is important. That is why the refinement of the control
network of S depends on N and on the shape of the localization
constraint. We currently add a sufficient number of control points
which is most of the time very large. One very important future
work is to develop a precise refinement technique to minimize this
number of control points.

In order to follow the path constraint, the more natural way is to
drive the deformation with the tangent of C. In our case, each
segment −→ek of the sampled path can be considered as the direction
to follow (see Figure 13). That is why in addition to the translation
ek, a rotation is applied to each Pi, j ∈ Lk in order to satisfy the
direction of deformation. This rotation is defined by two data:

• The angle αk made by the two consecutive segments −→ek and−−→ek+1.
• The axe going through C( k

N ) and carried by −→ek ∧−−→ek+1, that is
orthogonal to the plane defined by −→ek and −−→ek+1.

Surface to deform Localization constraint

Sampled path constraint

−→e0

αk

−→ek

−−→ek+1

Axe of rotation

Figure 13: Set of segments illustrating the sampled path constraint
and angle α defined by two successive segments.

Figure 14 illustrated two different steps of the process and its re-
sult on a B-Spline surface with a star-shaped localization constraint.
Figure 15 presents an other result of a curve path deformation ap-
plied on a B-Spline surface with an influence defined by a circular-
shaped zone.
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(a) (b)

(c) (d)

Figure 14: Two steps in (a) and (b) of the satisfaction of a path
constraint illustrated in (c) and (d) (80 steps, 240 ms - PowerPC
1.33 Ghz - 768 Mo RAM).

5 Conclusion and futures works

As in the previous work in BREP mesh of [Raffin et al. 1999], we
implement a 3D path of deformation to pull the surface from the
constraint point to a goal point. The principle resides in the step
by step deformation of the surface, following a parametric curve
defined from the constraint point. We have shown that a direct dis-
placement can be easily satisfied, an we can subsequently sample a
3D curve in segments that can be satisfied and provide a path of de-
formation to constrained surface deformation. This method permits
new deformation types on NURBS surfaces, according to the user
needs.

We proposed many improvements: first the generic deformation
function which allows the modification of the object shape interac-
tively ; the hull of influence which rules the locality and the shape

(a) (b)

Figure 15: Example of a constrained path with a circular-shaped
localization constraint in (a) and its satisfaction in (b) (100 steps,
420 ms - PowerPC 1.33 Ghz - 768 Mo RAM).

of the deformation; and the curvilinear displacement or constraint
path that allows a wide range of deformations. All these contribu-
tions are independents from each other and do not change the basis
of the deformation or the NURBS expression. Thus, we can com-
bine any functions of deformation with any hull of influence and
any curvilinear displacement.

The futures works we plan are the extension of the path constraint
to curvilinear constraints and a better management of local differ-
ential parameters in order to create profilers of the deformation. We
also need to manage efficiently the knots insertion in order to avoid
unused control points and the important growth memory it carries.
As a constraint is linked to an influence zone, we must only refine
the control grid in this area. Another part of reflexion is the adap-
tation of this model to deform a surface with constraints made of
curve or surface.
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