
GPU-optimized efficient quad-tree based progressive multiresolution model
for interactive large scale terrain rendering

Egor Yusov, Vadim Turlapov
Department of Computational Mathematics and Cybernetics

Nizhny Novgorod State University, Nizhny Novgorod, Russia
yusov_egor@mail.ru, vadim.turlapov@cs.vmk.unn.ru

Abstract
This paper presents new effective method for real-time terrain
triangulation and visualization. The method utilizes compact pro-
gressive terrain representation which is constructed at preprocess
stage and requires a very low memory expense. This representa-
tion allows easily LOD extraction at runtime. In contrast to previ-
ous works our quadtree-based triangulation is not restricted such
that neighboring regions must differ by at most one level in LOD
hierarchy. This allows constructing more adaptive triangulation.
The method performs LOD selection on per-block basis and thus
it is not CPU-consuming and fully exploits power of modern
graphics hardware. Patch triangulations are constructed only once
the first time the patch is needed and cached in fast video memory
in optimized form in order to achieve highest rendering perform-
ance. The method is driven by the user-defined screen space error
and provides guaranteed surface ε-approximation. The algorithm
supports morphing of both geometry and texture (the last is not
usually discussed) which hides popping artifacts related with
LOD change. We also discuss some system-level aspects such as
multithreaded asynchronous implementation of the proposed algo-
rithm, video-memory allocation control, camera position predic-
tion and speculative data prefetch. The proposed method can be
easily extended to allow terrain compression.
Keywords: interactive terrain visualization, multiresolution mod-
eling, quadtree, level-of-detail control, adaptive triangulation,
geomorphs.

1. INTRODUCTION

High-quality interactive large-scale terrain visualization is an
important aspect of many applications such as geoinformation
systems (GIS), landscape editors, virtual environments, flight or
drive simulators, outdoor computer games, etc. Despite the fact
that performance of modern graphics processors (GPUs) nowa-
days reached 109 triangles per second and continues to increase,
high accuracy data sets still exceed processing capabilities of
even the highest-end graphics platforms. Today satellite land-
scape scans can cover large area with very high resolution (one
meter spacing or less) and contain billions of elevation samples.
The size of digital terrain data will continue to rise and the gap
between rendering capacity of graphics cards and complexity of
complete regular terrain model is unlikely to ever disappear. Fur-
thermore, rendering uniformly dense grid can lead to aliasing
artifacts caused by many-to-one texel to pixel mappings. There-
fore to achieve high image quality at interactive frame rates it is
necessary to reduce model complexity as far as it is possible with-
out leading to inferior visual representation.
Ideally, simplification algorithm adapts terrain tessellation based
on the screen-space geometric error, the deviation in pixels be-

tween the approximated surface and the original terrain. The
screen-space error is defined by the 1) distance to camera, 2) local
surface characteristics, and 3) surface orientation. Constructing of
adaptive triangulation is performed on the CPU. It is quite feasi-
ble to create simplified mesh which provides very accurate ap-
proximation of a particular terrain and consists of a few faces in
order to greatly decrease GPU load. However it will consume too
much CPU time and such method will be CPU-bound. From the
other hand if LOD selection is not used, the triangulation will
consist of huge number of primitives, and the method will become
GPU-bound. The main challenge is to find the trade-off between
these two extreme cases.

2. RELATED WORK

A number of different approaches have been developed during
last years to adaptively control terrain tessellation as the function
of terrain characteristics and view parameters. These methods can
be organized into the following groups:
Triangulated irregular networks (TINs). TIN is an unrestricted
triangulation of arbitrary set of vertices. TIN methods can be used
to simplify any mesh, and they do not take advantages of high
regularity of grid-digital terrain representation. Some such algo-
rithms are based on the principle of 2D Delaunay triangulation
[2], [6]. Others allow arbitrary connectivity [5], [8]. For instance
terrain rendering method based on progressive application of ver-
tex-split and edge-collapse mesh refinement and simplification
operations is presented in [8].
TIN methods provide the best possible surface approximation for
a given polygon count. However such methods are too computa-
tionally expensive since they require tracking of mesh adjacencies
and refinement dependencies. Furthermore, such algorithms con-
sume a lot of memory for internal data structures. While TIN
approaches are very efficient for general mesh simplification they
are hardly suitable for large scale terrain rendering since such
methods are found to be completely CPU-bound.
Quadtree and bintree based methods. Quadtree and bintree
based hierarchical terrain triangulation and visualization ap-
proaches fully take advantages of high regularity of height field
data. In contrast to TIN methods such methods use compact rep-
resentation and allow fast construction and rendering of adaptive
crack-free terrain triangulation. A good survey of different quad-
tree and bintree based algorithms is presented in [14].
One of the first effective quadtree-based terrain simplification
methods is presented in [4]. The method uses screen-space error
metric to adaptively control LOD of different surface regions. To
create a matching triangulation (i.e. triangulation without cracks)
the method implies a restriction on the quadtree such that
neighboring regions must differ by at most one level in the hierar-
chy. This restriction defines hierarchical dependency relations

GraphiCon'2007 Russia, Moscow, June 23-27, 2007

mailto:yusov_egor@mail.ru
mailto:vadim.turlapov@cs.vmk.unn.ru

between vertices which must be kept in order to guarantee match-
ing triangulation. Famous ROAM algorithm which is conceptu-
ally very similar to one proposed in [4] is presented in [7]. ROAM
is based on the notion of a triangle bintree hierarchy. An effective
screen-space distortion error metric as well as fast priority queue
driven terrain triangulation algorithm are presented in [7]. There
were a lot of further improvements on these two fundamental
methods ([9], [10], [16]).
Alternative terrain simplification approaches which are based on
wavelet decomposition are proposed in [3], [23]. In these methods
adaptive mesh is constructed based on the significance of wavelet
coefficients obtained by applying wavelet transform to the source
height field.
All listed here methods were very efficient 5 years ago, but nowa-
days GPUs greatly outperform CPUs, so constructing adaptive
triangulation each frame which involve random memory accesses
and transferring data from main memory to local video memory
consumes most time while GPU stays practically idle.
Hierarchies of pre-computed geometry blocks (clusters,
batches, aggregates etc.). On modern graphics platforms the time
that is saved by rendering fewer triangles due to adaptive retrian-
gulation is completely amortized by the time needed to perform
the retriangulation. To fully exploit power of latest GPUs recent
methods use complex primitives composed of many triangles as
minimal element for mesh construction. This speeds up LOD
selection stage but generates triangulation that is more redundant
than one provided by quadtree or bintree based algorithms listed
above. Nevertheless modern GPUs successfully cope with com-
plex scenes and overall performance of the visualization system
dramatically increases.
The first terrain rendering method fully exploiting power of the
latest GPUs is RUSRiC and is presented in [11]. The main idea of
RUSTiC is to replace single triangles in bintree hierarchy of
ROAM algorithm from [7] with precomputed triangle clusters
composed of many triangles. This idea was further developed in
[15] where it was proposed to cache such clusters (called in [15]
aggregate triangles) in fast video memory for efficient rendering.
Extensions of quadtree-based methods which utilize hyper block
as minimal simplification element are presented in [20] and [25].
The same idea as in [11] and [15] is exploited in [18] where single
triangles from bintree hierarchy are replaced with small TINs
called batches. The batches for all resolution levels are con-
structed off-line and stored on disk in highly optimized for ren-
dering form. In [19] the authors extended their original algorithm
to successfully render planet-size terrains at interactive frame
rates. However precomputed triangulations consume a lot of stor-
age and require frequent disk access at runtime.
View-independent approaches. In [21] it was proposed to fully
refuse view-dependent refinement and instead develop a frame-
work which optimally feeds graphics pipeline. This decision was
inspired by the fact that rendering throughput has reached a level
that allows covering framebuffer with pixel-sized triangles at
video rates. Authors propose the geometry clipmap technique
which caches terrain in a set of regular nested grids centered
about the viewer. Terrain geometry thus depends only on camera
position and does not take into account local surface characteris-
tics. A GPU – based geometry clipmap implementation allowed
by geometry textures and shader model 3.0 is presented in [22].
Proposed framework provides a lot of benefits. The most impor-
tant is terrain data compression considered in literature for the
first time. Among others advantages are optimal rendering

throughput, steady frame rates, terrain details synthesis, simplicity
and others.
However the main strength of the proposed algorithm is its main
weakness. In order to achieve high visual accuracy it is necessary
to render a huge number of polygons. Display resolutions con-
tinue to rise and maintaining acceptable quality on large screens
would require too many triangles to be rendered. This problem
can become more important if advanced terrain shading tech-
niques is used which require a lot of computations and complex
environment objects are also rendered.

3. ALGORITHM DESCRIPTION

3.1 Multiresolution terrain representation
The method proposed in this paper is based on one presented in
[23]. The initial raw data our algorithm works with is the regular
height field, the most commonly used way to define terrain.
At preprocess stage we construct multiresolution representation of
the terrain by filtering it into multi-layer pyramid in a certain
sense similar to [21]. The layers are numbered from 0 (the coars-
est level) to 1−hfD (the finest level) where denotes number
of levels in the pyramid (or depth of the height field quadtree).
The finest level

hfD

1−hfD is exactly original regular height field.

All other layers from 2−hfD to 0 have four times lower resolu-
tion than the underling level and are constructed by filtering it
(figure 1.a). Note that all layers cover the same area but with di-
minishing accuracy. Vertices in each level are identified by triple
index (i,j,k), where }1,...,1,0{ −∈ hfDk denotes resolution level

and denote vertex position in the layer’s grid. }12,...,1,0{, −∈ kji

This pyramid can also be thought of as a vertices quadtree having
 depth where each vertex in level k has four children in finer

level k+1 (figure 1.b).
hfD

level 0 (root) vertex

level 1 vertices

level 2 vertices

(b) (a)
Figure 1: (a) Multiresolution pyramidal representation of 4x4

height field; (b) Corresponding vertices quadtree.
To coarsen each layer we use order 4 Neville interpolating filter
[12] which is used for the same purpose in [24]. Weight coeffi-
cients of the filter are shown in figure 2. To initialize vertices
adjacent to height field borders we extend height field by one
sample outside of each border. Height values of additional verti-
ces are taken from the nearest sample of the original height field.
So the height of the vertex with (i,j,k) indices can be calculated by
the following formula:

∑ ∑
+

−=

+

−=
+=

22

12

22

12
1,,,,,

i

im

j

jn
knmnmkji HCH

GraphiCon'2007 Russia, Moscow, June 23-27, 2007

where is the height of (m,n,k) vertex and weight coeffi-

cients are given by the figure 2.
knmH ,,

nmC ,

Figure 2: Weight coefficients of the interpolating filter.

3.2 Meta quadtree
As it was discussed in section 2 modern GPUs greatly outper-
forms CPUs and algorithms like presented in [3, 4, 7, 9, 10, 16,
23] providing fine approximation are completely CPU-bound.
Recent approaches [15, 20, 18, 25] are based on per-block simpli-
fication. Following these methods we also use terrain patch as
minimal element for LOD selection. At preprocess stage we con-
struct collection of patches with different LODs which are organ-
ized into quadtree of patches; we call it meta quadtree (figure 3).
Finest resolution grid of each patch has fixed dimension of

 vertices. We denote as a patch depth. Note that
patches cover increasing areas of original terrain with diminishing
resolution. If the source height field has dimen-
sion, where is the number of levels in the multiresolution

pyramid, then the meta quadtree has

11 22 −− × pp DD
pD

11 22 −− × hfhf DD

hfD

1+−= phfm DDD levels
(see figure 3). Each patch in the meta quadtree like any vertex in
the vertices quadtree can be identified by the triple index (p,q,t)
where denotes meta level and

 are patch indices in the meta level.

}1,...1,0{ −∈ mDt

}12,...1,0{, −∈ tqp

Triangulation of each patch is built on a subset of vertices from
the vertices quadtree. These subsets can be thought of as sub-
pyramids in the whole multiresolution pyramidal representation
and also can be treated as sub-quadtrees (see figure 3).

Figure 3: Two-level meta quadtree (), patch depth

is 3, vertices quadtree depth is 4. Patches of meta level 1 are
built on level 3 to level 1 vertices; patch of meta level 0 is built on

level 2 to level 0 vertices.

2=mD pD

hfD

3.3 Patch triangulation
Initial maximum resolution grid corresponds to the full balanced
quadtree. Each patch is built on its own sub-quadtree. At patch
construction stage we discard some vertices of patch sub-quadtree
as well as subtrees grown from these rejected vertices based on
surface characteristics. Following the wavelet terminology we
denote such discarded trees as zero-subtrees [1, 17]. Thus adap-
tive patch triangulation is given by unbalanced quadtree. The

remaining set of vertices we denote as active. The density of ac-
tive vertices should be adaptive to surface characteristics – it
should be high in sharp terrain regions and low in smooth areas.
We will discuss later in this paper how to define set of active
vertices. In contrast to all previous adaptive quadtree and bintree
triangulations [4, 7, 9, 10, 16] we does not imply any restriction
on quadtree. To guarantee matching triangulation algorithms pre-
sented in [4, 9, 16] require that neighboring vertices differ by at
most one level in LOD hierarchy. The same restriction is applied
to triangle bintree in [7, 10]. This restriction limits adaptability of
the polygonal approximation. Our triangulation does not have
such drawback. It can be built on any set of active vertices of
arbitrary unbalanced quadtree.
As it was said earlier the triangulation is built on set of active

Figure 4: Construction of quadtree triangulation. Active vertices are

sh h

In [1 ices

Fi s
from

N
created at run time and calculated on the fly, but not stored per-

vertices which are leaves of adaptive unbalanced quadtree. These
vertices are also roots of discarded zero-subtrees. The main trian-
gulation rule is the following [17]: if we imagine that in full reso-
lution uniformly dense triangulation all vertices from discarder
zero-subtrees gravitate to their roots and all degenerate triangles
are then rejected we will get the desired triangulation (this rule is
illustrated in figure 4). You can find more information on triangu-
lation construction scheme as well as effective top-down algo-
rithm outline in [23].

own in black, vertices in discarder zero-subtrees are shown in grey, wit
the same shape as the zero-subtree root vertex they gravitate to.
7] as well as in [23] it was not clarified how border vert

are triangulated. In order to solve this problem we insert some
additional border vertices in the patch’s mesh. Each level of the
patch quadtree is extended with one vertex wide border rectangle.
Heights of additional vertices are calculated as average height of
two (for non-corner vertices) or four (for corner vertices) nearest
vertices from the same level (see figure 5.a). To triangulate patch
border we connect border-adjacent vertices with the same level
nearest border vertex using the same triangulation rule as for the
patch interior (figure 5.b).

gure 5: (a) Extending patch mesh with border vertices (shown in grey). Arrow

 each border vertex show vertices from the original height field which are used
to calculate its height. (b) Patch triangulation with border vertices.

ote that the border vertices are added only when patch mesh is

(a) (b)

Meta level 0

Meta level 1

level 0 vertex
level 1 vertices
level 2 vertices
level 3 vertices

10/32

10/32

10/32

10/32 -1/32

-1/32 -1/32

-1/32

-1/32 -1/32

-1/32 -1/32 0 0

0 0

GraphiCon'2007 Russia, Moscow, June 23-27, 2007

manently. In reality border vertices comprise no more than 15%
percents of total mesh size.
The main challenge related with block-based terrain partitioning
is eliminating cracks between patches. In order to address this

es based on the signifi-
pproach was not able to

discard 4 sibling verti-

Figure 6: Dis-
carded ver esh is

W
a

problem we use vertical flanges around patch boundaries, intro-
duced in [13]. Advantage of this method is that all patches can be
treated absolutely independently one from another and there is no
necessity to imply any restrictions on patch meta quadtree. An-
other useful for us property is that we can calculate for each patch
its world space error. If we did not use border vertices (as in [23])
then patch triangulation as well as this error would depend on
LOD of neighbor patches. The drawback of this approach is
slightly increase of mesh complexity.

3.4 Multiple LOD construction
In our previous work [23] we select vertic
cance of their wavelet coefficients. This a
provide guaranteed ε-approximation. In this method we eliminate
this shortcoming. At preprocess stage we perform adaptive trian-
gulation of the patches and create compact progressive terrain
representation which stores information about LOD changes. The
construction algorithm is described below.
The finest patch approximation is given by the full balanced
quadtree (figure 6.a). To coarsen patch we
ces and replace them with their parent (figure 6.b).

 (a) Full patch triangulation. (b) Coarsened triangulation.
tices are showed by dotted line, changed region of the m

shown by thick black lines, and the unchanged region is shown in grey.
e call vertex mergible if all its 4 children are active vertices and

re already present in partially constructed approximation. All
finest resolution vertices are mergible by definition. At construc-
tion process we identify all mergible vertices from finest to coars-
est level and merge them by discarding 4 children if it does not
introduce intolerable error. For the patches from the finest meta
level we use threshold τ defined by the user in world space (in
meters, inches, etc.). Thus the finest terrain approximation does
not introduce world-space error greater than τ (which can be set
to 0 to preserve smallest geometrical details). LOD hierarchy
construction algorithm can be more specifically defined in the
following manner.

Let)(proj txy be the projection of triangle t on the XY-plane. We

define covering)cov(t of triangle t as the set of all vertices at
finest resolution whose projection lies in the)(proj txy :

)}(proj)(proj:{)cov(1 tvVvt xyxyDhf
∈∈= − wh 1−ere is the set

all

v to triangle’s t surface.

Finally we define err
triangles it consists of:

hfDV

of finest resolution vertices (at level 1−). We define error of
triangle t as the maximum deviation of vertices from the trian-
gle covering to triangle’s plane:

),(max)(
)cov(

vtdtErr
tv∈

= where d(t,v) is the distance from the vertex

hfD

or of triangulation T as maximum error of all

)(max)(tErrTErr
Tt∈

=

Let TV be the set of active vertices of partially constructed ap-
proximation and T be the corresponding triangulation. We are

some mergible vertex v. Discarding 4 its children

' TT

considering
31 ,, www and 4w can change active vertices set and triangula-

tion in the following way:

}{},,/{ 4321 vwwwwVV ∪

2

,= ; 'TT → (see figure 6 as exam-
ple)

τ<)We accept this change if '(T
chang m that border
vertic

Err . Otherwise we reject this
e and move to the next ergible vertex. Note
es are auxiliary and they are not considered to calculate

triangulation error.

To examine inequality τ<)'(TErr there is no need to check all
triangles in 'T . Since τ<)(TErr (due to construction rule), the
intolerable error can be introduced only by new triangles (such
triangles are depicted in black in figure 6.b) in the changed area
of the m h. We these triangles as TΔ :

}:'{ TtTtT
es denote
∉∈=Δ . So to accept merging it is enough to examine

the following inequality: τ<Δ)(TErr .

P process starts from the full resolution mesh
only for the patches at the finest meta level (1

atch construction
−mD). Construc-

tion of patches at meta levels from 2mD to 0 starts from some
initial triangulation which is obtained by copying the sets of ac-
tive vertices of child patches. If child patch contains vertices at
finer resolution, which are unavailab the parent patch, then
all these vertices are discarded and replaced with their parent
vertices which present in parent patch sub quadtree. The threshold
for these patches is defined by the initial approximation given by
child patches and by rejecting finest-level vertices.
The above algorithm can be summarized as follows. All patches
of meta quad tree are processed independently bottom up. Trian-
gulation of patches at finest meta level starts from t

−

le for

he full resolu-

(a) (b)

tion mesh and construction of patches at other levels starts from
triangulation given by copying the sets of active vertices of child
patches. For all mergible vertices equation τ<Δ)(TErr is
checked and if it is satisfied, the mesh is coarsened. Threshold τ
for the finest meta level is defined by the user and for all other
levels it is computed from child triangulations. Computed world
space errors are stored in a quadtree data structure and are used at
run time to select appropriate LODs.
Note that for patches from coarse meta levels calculating

)(TErr Δ as described above can be computationally expensive
because coverings of triangles from ΔT can contain a lot of ver-

the sum

ts of child patches. This allows constructing com-

tices. To simplify calculation this error can be approximated as
of maximum error of child patches and distance from the

removed vertices to the polygonal approximation given by the
child patches.
Key property of the proposed construction algorithm is that the
set of active vertices of parent patch is entirely included into ac-
tive vertices se
pact progressive LOD representation.

GraphiCon'2007 Russia, Moscow, June 23-27, 2007

3.5 Progressive LOD representation
The obvious way to hold pre-computed patches is to store their

e in [11, 20, 18,

 active vertices of parent patch have to be

ation

quadtree having l
2 =

is

11 −− × hfhf DD of the
source regular height field. Thus to store the whole

tex. However more complicated techniques

in special atten-
y of the rendered

es (in our case we apply normal map to each patch).

triangulations. This approach is used for exampl
19, 25] but consumes a lot of memory. Another way is to examine
vertex errors and to build triangulations on the fly as in [15] but
this method requires a lot of computations at run time. We pro-
pose compromise solution: at preprocess stage we construct com-
pact progressive representation which helps to build triangulation
at run time very fast.
Patch triangulation is fully defined by the set of its active vertices.
To refine mesh some
split and emerged child patches have to be triangulated. Mesh
coarsening is an inverse process. Hence to know what vertices in
patch quadtree are active it is enough to know what vertices are
active in parent patch and what vertices have to be split (see fig-
ure 7).

Figure 7: (a) Active vertices of the parent patch quad tree. (b) Vertices

that must be split in the parent patch to refine mesh. (c) Active vertices of
4 child patches. (d) Triangulation of child patches.

Thus to progressively encode all LODs from coarsest to finest
resolution it is enough to store the set of active vertices of the
coarsest patch (the root node of the meta quadtree) and to keep
one bit per vertex for each patch sub quadtree to mark which ver-
tices have to be split. Note that this progressive information has to
be stored for all patches except for the lowest level of the meta
quadtree, because patches at the lowest meta level provide the
best approximation and there is nowhere to refine the mesh.

Sub quadtree of the patch having depth pD has no more than
11 −− ×⋅= pp DDN vertices. Thus progressive inform)22(3/4V

of one patch consumes 8/N bytes. Number of patches in meta
ls excluding finest resolution level is

)22(3/22(3/4 112 −−−− ×⋅×⋅= mmmm DDDD
PN

Hence total amount of memory required to keep progressive data

V

mD eve

1)

18/)22(8/ 22 −+−+ ×== mpmp DDDD
VP NNM

Since 1+−= phfm DDD , M can be calculated as follows:

18/)22(=M where 11 22 −− × hfhf DD is the size
LOD hierar-

chy our method consumes approximately 0.06 bytes per sample of
original height field.
Note that we use a very simple method to encode hierarchy which
requires 1 bit per ver
based on recursive quadtree traversal can significantly reduce this
number.

3.6 Geometry and texture morphing
During interactive fly-over of a large scale terra
tion has to be paid to maintain temporal continuit
adapted mesh. When detail level of a particular terrain region is
switched due to camera motion, geometry and texture of that re-
gion is suddenly changed. This artifact makes annoying impres-
sion and called popping. In order to solve this problem some ap-
proaches propose to use a very little screen-space error threshold
[15, 18, 19, 24] so that popping artifacts become unnoticeable.
However on large screens this can lead to necessity to render a
huge number of primitives. Another approaches use so called
geomorphs [25] to smoothly change LOD. A problem usually left
uncovered is supporting not only geometry, but also texture
morphing.
To shade terrain surface each patch is usually assigned one or
more textur

0

1

1

1

0

1

0

0

1

0

0

1

0

1

1

0

0

(a) (b)

(c) (d)

Resolution of the textures is defined by the patch LOD. The issue
which is usually left untouched is correct connection of textures at
different LOD. If no special actions are taken, texture junctions
are noticeable (figure 8.a). Below we propose a solution to all
mentioned problems.

Figure 8: Left: sharp edge on junction of patches with differen

LOD. Right: eliminating sharp edge by texture blending.
T
sive ing

t

o eliminate popping artifacts we use morphing between succes-
 LODs for both geometry and texture. Geometry morph

(geomorph) is performed for the whole patch and is controlled by
the morph parameter]1,0[∈α . 0 corresponds to the patch own
resolution level and 1 corresponds to next coarser level. When
patch is about to be coarsened, the α value begins to ramp from
0 to 1 and reaches 1 exactly when the patch is coarsened. When
patch is refined, emerged child patches have morph parameters
equal to 1 and therefore they match parent patch geometry and
texture. When camera approaches these patches, morph parameter
smoothly falls to 0 and patches obtain their own LOD.
The geomorph is performed in much the same way as it was pro-
posed in our previous work [23]. The main distinction is that dif-
ference in LOD of the vertex and its parent can be more than one
level. The geomorph is performed in a vertex shader. When
morph value is greater than 0, all vertices of the patch begin to
move to their parents, defined by the parent patch (figure 9). In
our current implementation each vertex stores two additional val-

0 1 0 0

GraphiCon'2007 Russia, Moscow, June 23-27, 2007

ues necessary to perform morphing: the first value is the differ-
ence between detail level of the vertex and its parent. This num-
ber lies in range]1,0[−pD . The second value is the height of the
vertex parent. Note that vertex textures and shader model 3.0
allow vertex heights to be stored in a vertex texture which can be
accessed by the vertex shader. In this case it is enough to store
only LOD change value which together with the vertex indices
can be used to calculate parent indices and retrieve its height from
the texture.

Figure 9: Performing geomorph.

In order to both OD is about to provide texture morphing when L
change and seamlessly connect patches with different resolutions
we store two normal maps for each patch: the fine normal map
and the normal map corresponding to next coarser level (the same
approach can be used in case of any other type of texture, for
instance, photo texture). In order to implement texture blending
we use four values and special four-channel blend weight texture.
For each patch we calculate relative blend factors lα

~ , rα
~ , bα

~ ,
and tα

~ of left, right, bottom and top neighbor patches respec-
tively hich represent LOD of corresponding neighbor patch
relative to LOD of current patch. We store these values as pixel
shader constants. These relative blend factors are determined as
follows: tbrlndnn ,,,),,max(~ =+=

 w

ααα where d is the differ-
ence betw bor patch (d < 0 if the
neighbor patch has finer resolution and d > 0 if the neighbor patch
has coarser resolution); l

een LOD of current and neigh

α , rα , bα , and tα are morph values of
the neighbor patches. W n t p hes with different LOD have
shared border, the patch with the finer resolution is responsible
for correct texture connection. We use special texture which de-
fines which fraction of neighbor patch blend factor should be used
for particular pixel. This texture is depicted on figure 10.

he wo atc

Figure 10: Neighbor patch LOD weights texture. Blue color represents weight of the

left neighbor’s blend value lα
~ , green – weight of the top neighbor’s blend value

tα
~ , red and orange – weights of right and bottom neighbor’s blend values rα

~ and

tα
~ ; grey color represents weight of patch own morph value α .

re assures that texture LOD of the curr ntThis textu e patch

•−+•=

=+++−

tbrltbrltbrl

tbrl

wwwwwwww
wwww

ααααα

where are weights of left, right, bottom and top

exactly matches the LOD of the corresponding neighbor patch. To

smoothly changes and that at patch border it matches texture LOD
of the neighbor patch. To calculate blend value for particular
pixel we use the following equation:

~~~~ ++++= ttbbrrllblend wwwwL ααααα
))1,1,1,1(),,,(1(),,,()~,~,~,~(

))(1(

lw , rw , bw , tw
neighbor blend value correspondingly. These four values are 
stored in red, green, blue and alpha components of the texture. 
The mentioned equation guarantees that on patch border LOD 

calculate resulting color of particular pixel we use the following 
formula: 

blendcblendf LcLcc +−= )1(  where fc  is the color defined by the 

fine texture and cc  is the color giv  by a coarse one. Note that 
this scheme works ell when resolution of adjacent patches differ 
at most by one. However in practice this is the prevalent case. 

3.7 Run time LOD selection 

en
w

For all patches in meta quad tree exce
lowest meta level we store minimum a

pt for the patches from the 
nd maximum height values. 

we u

These values are necessary to compute patch bounding box ex-
tents. Note that there is no need to keep minx , maxx , miny  and 

maxy  values since they can be computed based on patch indices 
and its meta level. To approximate screen space error of the patch 

se the following equation: 

dtg
S

scr
ε

γ
ε

)2/(
=  where S is the screen resolution (maximum of 

horizontal and vertical resolutions), γ  is the field of view angle, 
ε  is the patch geometric world space error calculated at preproc-

 t
bo

screen space errors of the patches. Dur-

n 2 constructing very accurate ap-
 main to video 

ess stage, and d is the distance from he camera to the bounding 
x. This formula does not take into account surface orientation 

because this does not bring significant LOD gain, but substan-
tially complicates computations. Since patch approximations pro-
vide guaranteed world space error bound (due to construction 
scheme), the given formula provides guaranteed screen-space 
error bound of the patch. 
At run time before rendering each frame we recursively traverse 
meta quadtree and check 
ing this process we increase LOD for the regions with screen 
space error greater than user-defined threshold and decrease it 
where it does not introduce intolerable error. This simple top-
down algorithm generates adaptive approximation which satisfies 
user-defines screen space error threshold. At this stage we also 
perform view-frustum culling and calculate morph values. 

4. IMPLEMENTATION 

As it was discussed in Sectio
proximation each frame and transferring data from
memory is not suitable for current graphics platforms. To best 
exploit power of modern GPUs we cache data of terrain patches 
in the fast GPU-accelerated video memory and use it across many 
successive frames. CPU performs meta quad tree traversal and 
selection of appropriate LOD for different areas of the terrain 
based on patch geometric world space error and distance to cam-
era. Since LOD selection is carried out on a per-patch basis this 
operation requires very low time cost. CPU also performs view-
frustum culling and computes morph coefficients. When LOD 
changes CPU builds adaptive triangulation using progressive 
representation. The triangulation is constructed only once first 
time the patch is needed and cached in the fast GPU-accelerated 
memory. Thus slow data transfer between CPU and GPU occurs 
very rarely (once per multiple frames) only at patch creation time. 
Effective parallel multi-threaded asynchronous implementation of 
the algorithm completely hides patch creation delays and smooth 
frame rates. Geometry morphing is performed by the GPU in the 
vertex shader on a per-block basis and provides temporal and 
visual continuity. The shader outline is presented on figure 11. 

GraphiCon'2007 Russia, Moscow, June 23-27, 2007



VS_OUTPUT TerrainVS(in float3 IJLevel : POSITION0, 
                                         in float2 VertAndParentH : TEXCOORD0, 

)                                          in float LODDiff : TEXCOORD1
{ 
    VS_OUTPUT Output; 

float3 Pos;     
    Pos.xy = ComputeVerte

rtAndParen
xWorldXYCoords(IJLevel.xyz); 
tH.x; 

ODDiff; 
evel.xyz); 

; 

tch data is divided into three parts: the first vertex buffer con-
tain ee. 

    Pos.z   = Ve
    float3 ParentIJLevel; 

evel.xy / exp2(LODDiff) );     ParentIJLevel.xy = floor( IJL
vel.z - L    ParentIJLevel.z = IJLe

    ParentPos.xy = ComputeVertexWorldXYCoords(ParentIJL
    ParentPos.z  = VertAndParentH.y; 
    Pos.xyz = lerp(Pos, ParentPos, g_PatchMotphCoeff); 

chExtents.xx + g_TexCoordShift.xx    Output.TexUV.xy = Pos.xy / g_Pat
    Pos.xy += g_PatchLBCornerXY.xy; 
    Output.Pos = mul( float4(Pos, 1), g_mWorldViewProj ); 
    return Output; 
} 

Figure 11: Listing of the HLSL code of the vertex shader. 
Pa

s (i,j) indices of the vertex and its level in the patch quad tr
This data is constant for all patches. The second vertex buffer 
contains height of the vertex and its parent. And the third buffer 
contains the difference between detail level of the vertex and its 
parent. These values are used to calculate world coordinates of the 
vertex as well as coordinates of the vertex parent and morphed 
position. Since our current implementation is based on vertex and 
pixel shader model 2.0 all vertex buffers have the same size 
which is equal to the number of nodes in the patch quad tree. One 
can see that the height data is duplicated in each vertex. In shader 
model 3.0 and 4.0 this overhead can be eliminated by storing 
height data in textures which can be accessed by the vertex shad-
er. This will allow reduce space cost by two times. Since shader 
model 3.0 does not support integer operations we store LOD dif-
ference as float despite the fact that it is far enough to use 8-bit 
integer to store this value. Introducing DX10 and shader model 
4.0 can solve this problem. Besides it is clear that four sibling 
vertices have the same parent, so LOD difference data texture 
should have quarter size of the height data texture. Furthermore in 
DX10 the first vertex buffer can be eliminated at all and vertex 
indices can be calculated based on vertex ID. 

5. RESULTS AND DISCUSSION 

 
Figure 12: View of the Grand Canyon data set rendered by our algorithm. 

Terrain color is calculated based on surface height and slope. 

tion s tudio 

ro-

 we 

Proposed algorithm was implemented in a test terrain visualiza-
ystem. The code is written in C++ in MS Visual S

.NET environment. We use DirectX 9.0 as the graphical API.  
We tested our system on an 8192x8192 elevation data set. Pre-
process stage took a few minutes and produced 3.5 MB of p
gressive information. For comparison precomputed batches for 
the same size height field in [18] consume about 1.5 GB of disk 
space. Of course these batches provide perfect surface approxima-
tion, but this is not essential for the current graphic hardware. 
During our tests the camera was moving at very high speed, its 
trajectory included a lot of sharp turns. For the test purposes
used simple height-based texturing since we wanted to evaluate 
maximum rendering performance. Using more complex coloring 
(as shown on figure 12) increases only GPU load. We used two 
machines to test our system. The first is the laptop IBM T43p 
with the following configuration: Intel Pentium M 1.86GHz CPU, 
2GB of RAM, ATI MOBILITY FireGL V3200 GPU with 128 
MB of video memory. We used patch size of 128x128 vertices, 
and 7-level meta quadtree, we rendered to a 1352x1069 window, 
screen space tolerance was set to 4 pixels. System performance 
graphs are presented on figure 13. 

0
25
50
75

100
125
150
175
200
225
250
275
300
325
350
375

FPS K∆/Frame M∆/Sec  
Figure 13: Performance of the system on the first test machine. 

This figure shows that our system is suitable even for the plat-
form d at 

Hz processor, 2GB of RAM, powered by NVIDIA 

s with low-end graphics processors. The system operate
stable rendering performance and frame rates never dropped be-
low 50 fps. 
Our second test machine is a desktop with dual-core Intel Pen-
tium D 3.4G
GeForce 7950 GT GPU with 512 MB of local video memory. We 
used the same patch size 128x128 vertices and 7-level meta quad-
tree. Window size was 1024x768, screen space tolerance was 1.5 
pixels. Acquired performance graphs are shown on figure 14. 

0
50

100
150
200
250
300
350
400
450
500
550
600
650
700
750
800
850

FPS K∆/Frame M∆/Sec  
Figure 14: Performance of the system on the second test machine. 

The last graphs prove effectiveness of our method and its paralle
asy o 

l 
nchronous implementation. Since second machine has tw

processors, one processor is busy with patch creation while the 
other traverses quadtree and renders the scene. This allows sup-
port practically constant rendering throughput at the level of 100 
millions triangles per second. The frame rate never dropped below 
120 fps which is far enough for real-time terrain visualization. 

GraphiCon'2007 Russia, Moscow, June 23-27, 2007



These tests show that our system is not CPU-limited and highly 
effective on modern GPUs. 

6. CONCLUSION AND FUTURE WORK 

 simplification 
ethod con-

reading 

ded Image Coding Using Zerotrees of Wavelet 
 on Signal Processing. - 1993. - Vol. 41, No. 12. 

3

presentations using constrained delaunay triangulations. In 

tion 95, pages 135-142. 

l of detail rendering of height fields. 

eev-Weinstein. Roaming terrain: Real-time optimally 

zation 98, pages 

19-

We have presented new efficient real-time terrain
and visualization algorithm. At preprocess stage the m
structs hierarchy of patches with increasing accuracy and encodes 
this hierarchy into compact progressive representation. The algo-
rithm uses new approach for building adaptive approximation 
which allows matching triangulation to be constructed based on 
any unbalanced quadtree. The algorithm caches patch geometry in 
fast GPU-accelerated video memory and uses it across many suc-
cessive frames thus eliminating the need to frequently transfer 
data from main to video memory and fully exploiting power of 
modern GPUs. Our system supports morphing of both geometry 
and texture which is performed in vertex and pixel shader respec-
tively and completely hides popping artifacts. This allows the 
system to work well even on low-end graphics platforms. 
Since uploading data on-demand from secondary storage is not 
always convenient and induces huge space costs and long 
latencies a few recent methods [21], [25] chosen to utilize terrain 
compression instead and keep all information in system memory. 
Our approach is designed specially with intention to be extended 
to support compression of geographical data. For instance a wave-
let transformation can be used to effectively compress multireso-
lution pyramid we use in our method. DX10 will allow almost all 
decompression operations to be performed on the GPU. 

7. REFERENCES 

[1] Shapiro J.M. Embed
Coefficients // IEEE Trans.
- P. 45-362. 

[2] Andreas Voigtmann, Ludger Becker, and Klaus Hinrichs. Hierarchi-
cal surface re
Thomas C. Waugh and Richard G. Healey, editors, Proc. 6th Int. Sympo-
sium on Spatial Data Handling, volume 2 of Advances in GIS Research, 
pages 848-867. Taylor & Francis, London, 1994. 

[3] Markus H. Gross, Roger Gatti, and Oliver G. Staadt. Fast multireso-
lution surface meshing. In Proceedings Visualiza
IEEE Computer Society Press, 1995. 

[4] P. Lindstrom, D. Koller, W. Ribarsky, L. F. Hodges, N. Faust, and G. 
A. Turner. Real-time, continuous leve
In Proceedings SIGGRAPH 96, pages 109-118. ACM SIGGRAPH, 1996. 

[5] De Floriani, L, Magillo, P. and Puppo, E. 1997. Building and trav-
ersing a surface at variable resolution. IEEE Visualization 1997, 103-110. 

[6] Cignoni, P., Puppo, E., Scopigno, R. 1997. Representation and visu-
alization of terrain surfaces at variable resolution. The Visual Computer 
13(5), 199-217. 

[7] M. Duchaineau, M. Wolinsky, D. E. Sigeti, M. C. Miller, C. Aldrich, 
and M. B. Min
adapting meshes. In Proceedings Visualization 97, pages 81-88. IEEE, 
Computer Society Press, Los Alamitos, California, 1997. 

[8] Hugues Hoppe. Smooth view-dependent level-ofdetail control and its 
application to terrain rendering. In Proceedings Visuali
35-42. IEEE, Computer Society Press, Los Alamitos, California, 1998. 

[9] Renato Pajarola. Large scale terrain visualization using the re-
stricted quadtree triangulation. In Proceedings Visualization 98, pages 
26 and 515. IEEE Computer Society Press, 1998. 

[10] Thomas Gerstner. Multiresolution visualization and compression of 
global topographic data. Technical Report 29, Institut für Angewandte 
Mathematik, Universität Bonn, 1999. to appear in Geoinformatica. 

[11] Pomeranz A. A. ROAM Using Surface Triangle Clusters (RUSTiC). 
Master's thesis, University of California at Davis, June 2000. 

[12] KOVACEVIC J., SWELDENS W.: Wavelet families of increasing 
order in arbitrary dimensions. IEEE Transactions on Image Processing 9, 
3 (2000), 480-496. 

[13] T. Ulrich. Rendering massive terrains using chunked level of detail. 
ACM SIGGraph Course “Super-size it! Scaling up to Massive Virtual 
Worlds”, 2000. 

[14] Renato Pajarola. Overview of quadtree-based terrain triangulation 
and visualization. Technical Report UCI-ICS-02-01, I&C Science, Uni-
versity of California Irvine, 2002. 

[15] Joshua Levenberg Fast View-Dependent Level-of-Detail Rendering 
Using Cached Geometry. In Proceedings IEEE Visualization'02 (Oct 
2002), IEEE, pp. 259-266. 

[16] Renato Pajarola, Marc Antonijuan, Roberto Lario. QuadTIN: Quad-
tree based Triangulated Irregular Networks. In Proceedings IEEE Visu-
alization 2002, pages 395-402. IEEE Computer Society Press, 2002 

[17] Переберин А.В. Многомасштабные методы синтеза и анализа 
изображений. Диссертация на соискание ученой степени канд. физ.-
мат. наук, Институт прикладной математики им. М.В. Келдыша, 
Москва-2002. 

[18] P. Cignoni, F. Ganovelli, E. Gobbetti, F. Marton, F. Ponchio, R. 
Scopigno 2003 BDAM - Batched Dynamic Adaptive Meshes for High 
Performance Terrain Visualization. Computer Graphics Forum, Volume 
22(Sept. 2003), Number 3, pages 505-514. 

[19] P. Cignoni, F. Ganovelli, E. Gobbetti, F. Marton, F. Ponchio, R. 
Scopigno 2003 Planet-Sized Batched Dynamic Adaptive Meshes (P-
BDAM). In IEEE Visualization (2003), pp. 147-154. 

[20] Roberto Lario, Renato Pajarola, Francisco Tirado 2003 HyperBlock-
QuadTIN: Hyper-Block Quadtree based Triangulated Irregular Networks. 
IASTED International Conference on Visualization, Imaging and Image 
Processing (VIIP 2003), pp. 733-738. 

[21] Frank Losasso, Hugues Hoppe Geometry Clipmaps: Terrain Render-
ing Using Nested Regular Grids. ACM Transactions on Graphics (Pro-
ceedings of SIGGRAPH 2004) 23(3), pp. 769-776. 

[22] Arul Asirvatham, Hugues Hoppe Terrain Rendering Using GPU-
Based Geometry Clipmaps. GPU Gems 2. Addison-Wesley, 2005, ch. 
Terrain Rendering Using GPU-Based Geometry Clipmaps, pp. 27-46. 
http://research.microsoft.com/~hoppe/. 

[23] Egor Yusov, Vadim Turlapov Dynamic terrain simplification based 
on Haar transform and vertices quadtree. In Proc. of Conf. on Comp. 
Graph. and Applications – GraphiCon'2006, Novosibirsk, Russia, June 1 - 
5, 2006. 

[24] E. Gobbetti, F. Marton, P. Cignoni, M. Di Benedetto, and F. 
Ganovelli 2006 C-BDAM - Compressed Batched Dynamic Adaptive 
Meshes for Terrain Rendering. Computer Graphics Forum, Volume 
25(2006), Number 3 

[25] Schneider J, Westermann R 2006 GPU-Friendly High-Quality Ter-
rain Rendering. Journal of WSCG ISSN 1213-6972, Vol.14, 2006, Plzen, 
Czech Republic 

About the authors 

Egor Yusov is a Ph.D. student at Nizhny Novgorod State Univer-
sity, Department of Computational Mathematics and Cybernetics. 
His contact email is yusov_egor@mail.ru. 
Vadim Turlapov is a professor at Nizhny Novgorod State Univer-
sity, Department of Computational Mathematics and Cybernetics. 
His contact email is vadim.turlapov@cs.vmk.unn.ru. 

GraphiCon'2007 Russia, Moscow, June 23-27, 2007

mailto:yusov_egor@mail.ru
mailto:vadim.turlapov@cs.vmk.unn.ru

	1. INTRODUCTION 
	2. RELATED WORK 
	3. ALGORITHM DESCRIPTION 
	3.1 Multiresolution terrain representation 
	3.2 Meta quadtree 
	3.3 Patch triangulation 
	3.4 Multiple LOD construction 
	3.5 Progressive LOD representation 
	3.6 Geometry and texture morphing 
	3.7 Run time LOD selection 
	4. IMPLEMENTATION 
	5. RESULTS AND DISCUSSION 
	6. CONCLUSION AND FUTURE WORK 
	7. REFERENCES 


