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Abstract

During an Intravascular Ultrasound (IVUS) intervention, a catheter
with an ultrasound transducer is introduced in the body through a
blood vessel and then pulled back to image a sequence of vessel
cross-sections. To position the IVUS images in space, some re-
searchers have proposed to add a single view fluoroscopy image
sequence to recover the 3D positions of the IVUS transducer dur-
ing its pullback. We present here a method that enables the track-
ing of the IVUS transducer and its guidewire in the artery in the
fluoroscopic images. The technique uses both a feature tracking
method based on structure tensor for some marker points along the
guidewire, and a constrained snake approach for the whole catheter.
Our approach copes with the low contrast and noise intensity in the
fluoroscopic image sequences

Keywords: feature points detection, snake algorithm, fluoroscopic
images, intravascular ultrasound system (IVUS)

1 Introduction

Among all pathologies affecting the modern world, cardiovascu-
lar diseases are in the forefront. One of the most common car-
diovascular problems is coronary atherosclerosis, the build up of
plaque (a combination of cholesterol, cellular waste and other ma-
terials) on artery walls. The investigation of the severity of coro-
nary atherosclerosis is therefore very important for the diagnosis
and therapeutic strategy that will be undertaken.

Intravascular ultrasound (IVUS) produces unique echographic im-
ages showing the cross-section of coronary arteries. These images
reveal clearly the lumen, walls and plaque and offer a powerful
tool for diagnostic purposes. During an Intravascular Ultrasound
(IVUS) intervention, a catheter with an ultrasound transducer is in-
troduced in the body through a blood vessel and then pulled back
to image a sequence of vessel cross-sections. Those images are
hard to analyze since they do not provide information about the
3D geometry of the vessels which is crucial for diagnosis. To get
these measurements, one has to first retrieve the 3D trajectory of
the IVUS transducer in the vessel to finally align the IVUS cross-
section frames of the arteries along the trajectory.

Several techniques investigate this last problem. Conventional 3D
IVUS assumes a straight vessel, neglecting curvature and torsion of
coronary arteries [J.Roelandt et al. 1994]. Others combine IVUS
to angiography. This last modality is a radiography of blood ves-
sels after the injection of a radio-opaque substance. In [Laban et al.
1995],[Slager et al. 2000] and [Wahle et al. 1999], the authors cali-
brate a biplane angiography system to retrieve the 3D trajectory of
the IVUS transducer in the vessel. This kind of methods are com-
plicated to operate and are not always available in clinical center.
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Recently, methods based on a single-plane fluoroscopy have been
investigated. This modality provides a smaller amount of X-ray
on the patient to the detriment of the image quality and does not
involve injection of radio-opaque substance in the patient. In the
figure 1, we present an image example of fluoroscopy image. To
eliminate the amibiguity induced in 3D reconstruction when only
one projection is available, they use a priori information such as
the transducer length and its 2D projection [Sherknie et al. 2005]
or its constant pullback speed [Jourdain et al. 2004]. In these cases,
we have to retrieve the 3D position of the transducer in each frame
of the fluoroscopy sequence. This kind of approach is not easy to
apply in clinical cases since the movement of the transducer is not
only influenced by the motorized pullback but also by the breath-
ing and cardiac cycle or other arbitrary movements of the patient
during the examination. In order to obtain reliable results in 3D
reconstruction for single-plane approaches, one has to first perform
registration over the images of the sequences. At the end, the only
remaining movement should be the motorized pullback of the trans-
ducer.

Figure 1: An image example of fluoroscopy.

In [Sherknie et al. 2005], they manually tracked the important com-
ponents in the fluoroscopic images which is a long and non accurate
process. In [Jourdain et al. 2004], they track the features by using
an algorithm based on temporal intensity difference, which can lead
to bad results in case the global intensity changes over time or too
much noise is present in the images. In both cases, they had to ap-
ply a post-filtering process of the obtained tracked coordinates. In
this paper, we present a new method that performs semi-automatic
detection of the whole transducer guide in fluoroscopic sequences
of images, the first step to elaborate a registration method.

It retrieves the position of the guide even with the poor constrast
encounter in fluoroscopic images without needing any post-filtering
of the obtained points positions along the guide, opposite to [Jour-
dain et al. 2004] and [Sherknie et al. 2005]. Our method consists in
using a modified snake algorithm based on a local coherence mea-
sure found in the image, opposite to standard snake methods based
on intensity gradient. It requires approximate positions of different
feature points along the guide for the first frame of the sequence
in order to position the whole guide. For all the other frames in
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the sequence, the guide is positionned automatically. Our method
manages to find the transducer guide even though some part of it
sometimes disappear in the background of the images due to the
low contrast.

We first present a tracking method for different feature points along
the guide, that is used to restrain the position of the tracked trans-
ducer guidewire. We then present a modified snake algorithm con-
strained by several anchor points corresponding to feature points
along the catheter. We also describe a technique that provides an
automatic adjustment of the parameters involved in snake-based
methods.

2 Tracking algorithm for Feature Points of
the IVUS Transducer Guidewire

We first developed a tracking algorithm for the different charac-
teristic points identified in the figure 2. In this section we present
the structure tensor that is involved in the positioning of the feature
points along the transducer guide. We then describe the tracking
method used.

2.1 Structure Tensor

The structure tensor as presented in [Weickert 1998] measures the
behavior of the gradient orientation in a neighborhood of each pixel
in a given image. It provides a reliable method to distinguish fea-
ture areas, such as corners or edges, from constant areas. It also
yields direction and magnitude of the highest and smallest intensity
fluctuations for a given pixel.

To do so, we used the matrix J0 defined as follow:

J0(∇ux,y) = ∇ux,y ⊗∇ux,y = ∇ux,y∇ut
x,y (1)

where:

1. ∇ux,y = (Ix, Iy) corresponds to the intensity gradient for
the pixel (x, y) of the image I .

2. Ix is the gradient in the x-direction.

3. Iy is the gradient in the y-direction.

The matrix J0 has an orthonormal basis formed by its eigenvectors
v1 and v2 such as

1. v1 ‖ ∇ux,y gives the direction with the most important inten-
sity fluctuations in the image

2. v2 ⊥ ∇ux,y gives the coherence direction along which we
find the most constant intensity.

The eigenvalues µ1 and µ2 of the matrix J0 give the image contrast
in the direction of their corresponding eigenvectors (v1 and v2). A
high eigenvalue corresponds to high grey level fluctuations in the
image along the direction of its associated eigenvector ([Weickert
1998].

In order to establish a measure of the coherence in the image for the
pixel (x, y), we compute the difference between the eigenvalues µ1

and µ2 of the matrix J0(∇ux,y). This provides an easy way to
determine if the area that contains a pixel (x, y) is constant or not.
For example, we can have these configurations:

1. µ1 = µ2 = 0 : the area is constant since there is no gray level
fluctuations in both directions v1 and v2.

2. µ1 � µ2 = 0 : the pixel (x, y) is part of a straight edge since
there is intensity variations only along the gradient direction
v1 (figure 3 (a)) .

3. µ1 ≥ µ2 � 0: the pixel (x, y) is on a corner since there is
gray level fluctuations in all directions (figure 3 (b)).

v1

v2

u1 >> 0

u2 = 0

v1

v2

u1 >> 0

u2 >> 0

(a) (b)

Figure 3: In (a) and (b) respectively, an image composed of one
black straight edge and a black square on a white background. The
eigenvalues and eigenvectors of the matrix J0 are presented for a
feature point in both image.

The coherence C that determines whether a pixel is part of a con-
stant area or not, is defined as follow:

C = (µ1 − µ2)
2 (2)

We can classify the pixels of the highest coherence to be feature
points.

In the figure 4(a) and (b), a small window showing a marker on the
IVUS transducer guidewire is presented with its associated coher-
ence surface. The measured coherence is significantly higher on the
contour of the marker.

2.2 Processing of Positions of Feature Points Using
Structure Tensor

We have elaborated a method that tracks the feature points of the
figure 2 throughout a fluoroscopic image sequence. The algorithm
only needs, as input, the approximate positions of the tracked sruc-
tures. For each image, the centroid of each of the feature structures
is tracked. The coherence surface (x, y, C(x, y)) for the window
that corresponds to a certain neighborhood of the approximate posi-
tion for each of the feature points is calculated. (x, y) representing
a pixel and C(x, y), the coherence measured in the neighborhood
of this pixel.

From this coherence surface, one can determine a set of points with
a high probability on the contour of a structure in an image. A point
(x, y) is considered as a feature point if the value of its coherence
C responds to the following criterion:

C ≥ C + n ∗ Cσ (3)

where C and Cσ are respectively the mean and standard deviation
of the coherence surface computed for a window in an image. We
fixed n = 3 to detect points with significantly high coherence. This
last value was set to make sure that only pixels with high enough
coherence would be considered in the process of the feature points
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tip of the guiding transducer 

IVUS transducer 

marker of the guidewire 

end of the guidewire 

Figure 2: Features points used as anchor points to the positioning of the whole transducer guide.

coordinates, since, as in figure 4(b), the characteristic points have a
coherence higher than the other pixels of the subimage.

The centroid of the set of pixels for which the criterion 3 is true
corresponds to the position of the centroid of the searched structure.

For the first image of the sequence, the user gives the approximate
positions of the characteristic points. Those user-supplied points
can be as far as 10 pixels from the tracked feature in our implemen-
tation given that the dimensions of the searching window around
each approximate positions is of 35X35 pixels. That ensured that
the feature points were englobed in those searching areas. For the
other frames, the approximate positions are set to be the previous
computed coordinates. The figure 9 presents the results obtained by
our approach.

With this last method, we compute the positions of the feature
points along the IVUS transducer guidewire. These coordinates
will be used as anchor points and provide an initial position of the
points involved in the snake algorithm described in the next section.

3 Positioning of the Transducer Guide Using
Snake Algorithm

In order to position the whole catheter and not only some of its fea-
ture points, we elaborated a snake algorithm that determines some
other positions along the transducer guide. In this section, we first
present an overview of the standard snake algorithm to further de-
scribe our version of this technique.

3.1 General Presentation of the Snake algorithm

The snake algorithm is an iterative process that minimizes an en-
ergy function associated with a model. Throughout the iterations
of the algorithm, the model is deformed to fit some structures in an
image. It is composed of a set of points vi, i ∈ [0, n] embedded on
pixels in the image. Those points may be attached to each other by
different means of interpolation.

Some displacements are applied to each of the points vi to minimize
an energy (figure 5). A minimum is obtained when the points are
aligned to the searched structure. This kind of approach provides

an easy way to incorporate a priori information to the evolution
of the snake form during the segmentation process ([Mignotte and
Meunier 2001]).

The energy function is composed of two terms: the intern energy
that depends on the geometry of the snake curve, and the extern en-
ergy related to the image itself. The energy is determined as follow:

Esnake =

∫
snake

(αEcurvature + βEimg)ds (4)

where the different variables are defined as follow:

1. Ecurvature is the energy associated with the curvature of the
second derivative of the curve formed by the snake points vi,
i ∈ [0, n]

2. Eimg is the energy term associated with the analyzed image

3. α, β are parameters adjusted by the user depending on the a
priori information of the models. For example, α should be
higher in the case of smooth contour, in order to restrain the
model to have a small curvature.

The extern energy Eimg is often related to the norm of the intensity
gradient in the image. The snake should tend to be close to the
pixels with the highest intensity gradient to ensure that they are part
of an edge ( equation 5).

Eext(vi, I) = −||∇I(vi)|| (5)

where ∇I(vi) is the intensity gradient in the image for the pixel
associated with the control point vi. By subtracting this quantity
to the intern energy, we ensure that the snake tends to follow the
pixels with highest gradient.

This kind of approach is seldom applicable to segmentation of med-
ical images since they are often noisy and they have weak intensity
gradient even on the edges of the different structures observed.
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Figure 4: In (a), a window of dimensions 35X35 pixels shown with the IVUS transducer. In (b), the measured coherence associated with the
window.

Figure 5: Displacement of the snake points to obtain a minimal
energy.

3.2 Constrained snake with anchor points

We have elaborated a modified snake method that ensures the au-
tomatic positioning of the transducer guidewire throughout fluoro-
scopic image sequence. The snake used is composed of a set of
anchor points for which the minimization process will not influ-
ence the position. It is also composed of another set of points that
will be positioned according to the minimization of a certain energy
function. The fixed points will correspond to the feature points,
identified in figure 2, positioned by the tracking method previously
described.

The non-fixed points are initially placed equally distanced along a
straight line between each pairs of adjacent fixed points. They will
be moved to minimize a cost function that depends on the curvature
of the snake and the local coherence in the image. Thus, for a snake
composed of n unfixed point, we have:

Esnake =

n∑
i=1

(
α(i)Ecurvature(i)− β(i)Eimg(i)

)
(6)

Where:

Ecurvature(i) = |vi−1 − 2vi + vi+1|2 (7)

Eimg(i) = C(vi) (8)

We have:

1. vi = (xi, yi) are the different points of the snake.

2. C(vi) is the coherence found in the image for the coordinates
(xi, yi) as defined in equation 2.

3. α(i) and β(i) are the weights automatically adjusted by a
method further described.

We use a greedy strategy to minimize the snake energy. For each vi

unfixed, we compute the energy of each of the pixels contained in
a MXM neighborhood surrounding vi. We move each of the vi to
the position that ensures each of them a minimum energy.

After each vi has been moved, we compute the value Esnake, the
energy function for the whole snake as defined in equation 6. The
minimization process continues until Esnake stops decreasing, in-
dicating that a minimum has been reached.

The algorithm is applied to each of the image of the sequence. For
the first frame, the approximate positions of the different feature
points along the transducer guide are provided by the user, as men-
tioned in the previous section. For the remaining frames of the
sequence, these approximate coordinates are the positions of the
feature points in the previous frame.

3.2.1 Automatic Adjustment of the Parameters of the Snake

In the energy function, the parameters α(i) and β(i) have to be set.
Some parts of the transducer guidewire may seem to disappear due
to a low contrast with the background (figure 6). There are also
points for which we compute a high coherence when they are part
of noisy stain of the background (figure 7).

For a point vi in such a region, we would accord a higher impor-
tance to Ecurvature(i) by setting α(i) smaller than β(i) in the
equation 6. To do so, we have to detect situations for which the
information Eimg(i) is not reliable.

We base our approach on the eigenvectors v1, v2 of the matrices
J0 defined in the equation 1. Considering that the curvature of the
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Figure 6: The part of the IVUS transducer guidewire is almost imperceptible because of its low contrast with the background

(a)

(b) (c)

Figure 7: In (a), a noisy stain is indicated by a black square. In (b), the coherence surface computed for the region marked in (a). In (c), the
vectors v2 associated with high coherence points of (b).

guidewire is small in restrained portions of it, the pixels directly on
its edges should have their gradient directions closed to each other.

We see, in the figure 8 (b) and (c), the coherence surface and the
eigenvectors v2 of high coherence points associated with a small
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window containing a part of the guidewire.

Thus, we determine a pixel (x, y) to be part of the guidewire if :

1. C(x, y) is higher than the mean coherence C in a neighbor-
hood of this pixel

2. (x, y) is surrounded by neighbors with high coherence

3. (x, y) is surrounded by neighbors for which the direction of
the associated vector v2 are in a vicinity of the one related to
(x, y).

We define a set S of points that are part of a neighborhood of vi

and have a coherence C higher than the mean coherence C found
in that neighborhood.

Thus, we determine a set of points S for which coherence is higher
than the mean coherence in the neighborhood of the point vi. For
each of the points si ∈ S, we attribute a value A(i) defined as
follow:

A(i) =
∑
s∈N

a(s) (9)

a(s) =

{
1 if |θs − θi| < T
0 otherwise (10)

Where θs is the direction of the vector v2 for the point s ∈ S.

We can see the results of this accumulation in the figure 8(d). The
brightest points are associated with high value of A(i) meaning that
they have other points in their neighborhood which are part of S and
have slightly the same eigenvectors direction v1 and v2.

This last accumulation function allows us to determine if a region
of the image is only composed of noisy stain as shown in figure 7,
or if it actually contains a part of the guidewire, which would lead to
a higher value of β(i). From the values of A(i), we can determine
a new set S′ ⊂ S of points that are relevant. To do so, we just keep
the points i ∈ S which satisfy the condition:

A(s) ≥ T

Where T is a threshold determined empirically and was set to 10
ensuring that points in S′ are all part of an oriented structure in the
image. We determined this last value by setting T proportional to
the area covered by the neighborhood implied in the processing of
the A(s).

As shown in figure 8(d), the points which have a high value for A(i)
should be highly spatially correlated since they are almost aligned
along a line. To determine if the points s ∈ S′ are just associated
with noise in the image or the guidewire, we compute their covari-
ance which measures the strength of their correlation:

cov(x, y) =

N∑
i=1

(xi − x)(yi − y)

N
(11)

where

- xi,yi are the coordinates of the points in S′

- x, y are respectively the mean for X-coordinates and Y-
coordinates for points in S′

- N is the number of points in S′

The absolute value of equation 11 reaches a maximum of 1 when
the points in S′ are perfectly aligned along a line indicating that
they are highly likely to be part of the transducer guidewire. When

the points in S′ are sparse and not correlated, the absolute value of
their spatial covariance will tend to be 0. Hence, we set:

α(i) = |cov(xS′(i), yS′(i))| (12)
β(i) = 1− α(i) (13)

where xS′(i),yS′(i) are the coordinates of the points contained in
the computed set S′ in a neighborhood of vi.

Finally, we set α = 1− β, which will automatically lead to a high
value of α when β is low, indicating that the information from the
image is not reliable.

4 Results and discussion

The method presented in this paper has been tested on a fluoro-
scopic image sequence of 150 frames, provided by the Montreal
Heart Institute. In this section we present the results for the track-
ing and snake algorithm.

4.1 Feature point tracking

In the figure 9, we show the results obtained for the feature point
tracking. We can see that the algorithm finds a right position for
each of the characteristic points, even if the points clicked are not
directly on the structures we want to track. As long as the searching
window around the given approximate position is big enough to
contain the structures, the algorithm retrieves the centroid of the
tracked elements of the image.

Figure 9: Results of the feature point tracking method. The ”X”
are the clicked points by the user, and the ”O” are the feature points
coordinates computed.
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(a)

(b) (c) (d)
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Figure 8: In (a), a part of the guidewire of the transducer. In (b), the coherence surface computed for the region marked in (a). In (c) and
(d) respectively, the vectors v2 and the function A(i), associated with high coherence points in the region marked in (a).

4.2 Snake Algorithm result

We show, in the figure 10, some frames with snake results illus-
trated in red. To obtain a full curve along the snake, we interpolated
points by a cubic Hermite interpolation. We can see that the snake
fits the transducer guidewire even when this one is at its maximum
curvature for the whole sequence of images.

The part of the transducer which was most likely to have a small
contrast with the background was found between the IVUS trans-
ducer and the marker on the guidewire (figure 10 (a) and (b)). We
can notice that it is well-fitted by the snake curve, demonstrating
the efficiency of our algorithm to recover the low-contrast shapes.

5 Conclusion

This research has investigated the problem of localization of an
IVUS transducer guidewire using a snake-based method. The snake
is constrained by anchor points aligned on some features in the im-
ages. We also provide a method to automatically adjust the weight-
ing parameters of the different parts of the snake-energy function to
minimize. The method works even when there is a low contrast be-
tween some parts of the tracked structure and the background of the
images. Our method is a first step to the elaboration of a full regis-
tration technique of an IVUS guidewire throughout a single-plane
fluoroscopic sequence of images.
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