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Abstract 
The structure and functionality of postprocessing in PDE 
Performance Toolkit for 3D physical modeling is described. In 
complicated computational domains the computing results are 
presented by node and edge values at the nonuniform grids. 
Algorithms for calculating isolines and isosurfaces, vector fields 
and gradients of scalar fields are described. The obtained graphics 
information is transformed into U3D format and is drawn by 
means of corresponding tools.  Examples of visualization pictures 
are presented.  
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1. INTRODUCTION 
  Partial Differential Equation Performance Toolkit (PDE PTK) 

is the set of numerical methods, technologies and codes for 
scientific computation and physical modeling in various industrial 
applications. The predecessor of this code was the Applied 
Program Package (APP) BASIS, see [1], for complex simulation 
of technological processes in an aluminum electrolizer. It includes 
routines for three-dimensional mathematical modeling of 
electrical fields, heat transfer and diffusion-convection problems, 
thermo-elasticity stress analyses and solving Navier-Stokes 
system of differential non-linear equations which describe the 
flow of a viscous incompressible fluid. 

 A computational domain can have complicated topology and 
consist of any number of subdomains with different material 
properties, i.e. coefficients of PDEs are piece-wise smooth in 
general, constant or variable in each sub-domain, and have jumps 
at the interface between subdomains. On the different segments of  
external boundary various types of boundary conditions can be 
stated. In principle, different systems of PDEs can be solved in 
different subdomains. 

 Discretization of the considered boundary value problems 
(BVPs) is made by adapted regular structured piece-wise uniform 
grids which provide a simple grid data structure (GridDS), with 
full necessary information about grid objects: nodes, edges, faces 
and finite elements (volumes). Approximation of BVPs is 
implemented by mixed finite volume methods (FVMs, [2]) which 
result in an algebraic data structure (ADS) for systems of linear 
algebraic systems (SLAEs) with sparse matrices of very large 
order, symmetric or non-symmetric. Numerical solution of SLAEs 
is realized by a preconditioned iterative algorithm, on the basis of 
incomplete factorization and generalized conjugate direction 
methods, [3].  

 PDE PTK includes also preprocessing which provides control 
and modification of user input data and forms geometrical and 
functional data structures (GeomDS & FDS ) for computational 
modules of the Toolkit. 

 An important component of PDE PTK is a problem-oriented 
post-processor which is responsible for computer graphics in the 
Toolkit. It provides an implementation of numerical algorithms 
for computing the point coordinates for isolines and isosurfaces, 
function graphs and solution vectors as well as formation of 
geometrical data in accordance with U3D specifications [4]. This 
standard defines the syntax and semantics of the U3D file format, 
an extensible format for downstream 3D CAD repurposing and 
visualization, useful for many mainstream business applications. 

 The conception and niche of PDE PTK are the following. In 
the world market of applied software, there are many powerful 
commercial APPs similar to ANSYS [5], which have strong 
computational tools for multi-physics modeling and extended 
graphic user interface (GUI) communicated with CAD/CAE 
systems. Usually, such APPs have been implemented and 
developed during several decades by many people and are largely 
fixed in terms of their data structure as well as adaptation to new 
tasks and computational technologies. In this sense, PDE PTK is a 
light APP which provides fast solving of a wide class of 3D 
mathematical problems, by advanced computational approaches, 
and can be used also for industrial applications. The limitations of 
PDE PTK consist in the absence of curvilinear boundary surfaces 
and non-structured grids. But it helps developers and users to 
apply simple enough and flexible data structures which provide 
high efficiency of algorithms and software product.  

 This paper is organized as the following. In section 2, we 
present the general structure of PDE PTK , computer algorithms 
and technologies for simulation of various physical processes  as 
well as the current issues for postprocessing and visualization of 
mathematical modeling results. Section 3 presents numerical 
methods for definition of the main lines and surfaces, on the basis 
of obtained grid solutions, and principles of interface with existing 
U3D graphic tools. In conclusion, we demonstrate several pictures 
which present the functionality of PDE PTK postprocessing. 

2. THE ARCHITECTURE AND DATA STRUCTURE 
OF PDE PTK 

 The architecture of PDE-PTK is presented by the set of code 
units (tools) unified by the consistent flexible data structures 
which realize input, internal, and output program interfaces. 
 

PTK consists of the following main components: 
• Preprocessor: identifying, controlling, and 

preprocessing initial information, i.e., geometrical and 
functional data structures. These two DSs define 
completely the topology and geometry of a 
computational domain and its subdomains, type of 
PDEs to be solved as well as the problem coefficients, 
boundary conditions on the different parts of 
boundaries, and some necessary data for the algorithms. 
The content of FDS, in general, is different for various 
types of boundary value problems (BVPs) and it is 
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strongly connected with the GeomDS objects; the last 
ones of which are independent of the FDS objects. 

 
• Discretizator (Mesh Generator): construction of an 

adaptive non-uniform grid and generation of grid data 
structure including the full information about mesh 
objects and necessary references to the geometrical and 
functional objects; grid generation stage and content of 
GridDs do not depend, in some sense, on the type of the 
considered BVPs and PDEs. 

 
• Approximator: implementation of the algorithms that 

approximate any given boundary value problem for 
PDEs, and construction of the algebraic data structure 
(ADS) resulted in the system of linear or nonlinear 
algebraic equation (SLAE or SNAE) in some 
conventional sparse matrix format. This computational 
stage is realized by a separate library, i.e., the set of 
independent procedures oriented to the specific type of 
differential equations and boundary conditions. 

 
• Algebraic Solver: realization of iterative algorithms 

defined by used preconditioner, acceleration approach 
((bi)conjugate gradient or (bi)conjugate residual, 
(Bi)CG or (Bi)CR, for example), stopping criteria, 
matrix format, and some optimizing iterative 
parameters;. Each solver presents independent 
procedure implemented for a particular kind of the 
method and program interface. 

 
• Postprocessing: analysis of the resulting grid solution, 

computing of the  coordinates of isolines and vector 
fields in the given cross-sections as well as preparing of 
the information for isosurfaces, 3D pictures of solutions, 
tables, histograms, graphs, and other resulting data  
structures (ResDS) for visualization. 

 

 
Figure 1: Block-chart of Physical Modeling. 

3. The considered tools realize modern computational and 
informational technologies of mathematical modeling for 
complicated physical problems ([6], [7]). 

In general, a block-chart of computational processes for 
physical modeling can be presented in the following way, see 
Fig 1: 

3. POSTPROCESSING 
Postprocessing provides visualization of the results which are 

calculated using PDE-PTK. Users can form isolines of the scalar 
fields in cross-sections, 3D isosurfaces in full computational 
domain, vector gradients of scalar fields and vector fields for data 
on different grid structures. Simultaneously with modeling results, 
users can draw the computational domain. Postprocessing’s 
results are transformed into U3D format and then are visualized in 
a Graphic User Interface. 

In multi-physical modeling, the typical objects for 
visualization are the following: equipotential lines in cross-section 
and space equipotential surfaces in electric field simulation, 
isotherms in calculated temperature distributions, vector stress 
field in elasticity, and vector velocity field for fluid flow. In 
considered FVM, the values of scalar fields (potentials, 
temperature, density) are defined in grid nodes, but in modeling 
the vector field the situations are different: all components of the 
displacement vector are computed at the same points in thermo-
elasticity problem, but in solving Navier-Stokes equation different 
velocity components are defined in the middles of the different 
edges of staggered grids.  

Because of such peculiarities, it is necessary to construct a 
representative set of algorithms for graphic visualization, which 
we describe briefly below. The U3D file format uses conventional 
graphic primitives, i.e. direct line segments and triangles for 
drawing curves and surface. So the goal of the following 
algorithms is to provide the necessary set of points at the isolines 
and isosurface, by means of interpolating grid functions, in order 
to give qualities presentation of computed physical fields. 

3.1 Mathematical algorithms 
Here we describe algorithms for constructing isolines, 

isosurfaces and vector fields. 
We suppose that numerical scalar function { }kjif ,,  are set in grid 

nodes of non-uniform parallelepiped grid 

{ } { } { }( )K
kk

M
jj

L
ii

h zyx 111 ,, ====Ω . For vector fields, numerical 

vector function   },,{ wvup =
r

, zyx eweveup rrrr
++= is 

defined in grid edges: on the middles of x-edges are set u 
components, on the y-edges – v, on the z-edges – w. 

3.1.1 Isolines 

Let N
nnc 1}{ =  be a set of real numbers. Need to construct lines 

N
nnnnn tztytxl 1)}(),(),(({ ==  in some crossection, under 

conditions nnnn ctztytxf =))(),(),((~
. Function f~  is 

some interpolation of f, kjikji fzyxf ,,),,(~
= . To construct 

isolines of scalar function in crossection we interpolate function f 
as the following. Let x-crossection is x=xs, than interpolating 
function u is defined by 2D set of values kju , : 
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To search isoline u=cn for given constant cn, we determinate 

does this isoline belongs or not to each finite element 
{ })(),( 11, ++ ≤≤≤≤= kkjjkj zzzyyyE  (set flag true 

or false). In can be done easy: cn belongs to Ej,k if 
],[ ,, kjkjn uuc )(∈ , where 

),,,min( 1,11,,1,, ++++= kjkjkjkjkj uuuuu( , 

),,,max( 1,11,,1,, ++++= kjkjkjkjkj uuuuu) . 

Then, for elements with flag=true, the function u is interpolated 
in the middle of element. In each  kjE ,  we obtain four triangle, 

in the each of them u are interpolated 
( ),(~ zyu , kjkj uzyu ,),(~ = ). Then search across function 

u~ with 8 different edges, see Fig.2. By means of backward linear 

interpolation, we find the cross-point of isoline ncu =  with the 
edges. There are four variants of isoline behavior in finite 
elements see Fig.2. 

 

 
Figure 2: Four variants of isoline in finite element. 

Each isoline has been stored as set of segments.  
When isolines are visualized, need to fill domain between ln 

and ln+1 isolines in bn colour ( N
nnb 1}{ =  – certain set of colours).   

Let domain between cn-1 and cn  was filled (see Fig.3a). For pain 
in bi color we will do three steps: 

1) If kjn uc ,
(<  and 1, +< nkj cu) , then finite 

elements kjE , , are filled in bi , 

2) If kjn uc ,
(<  and kjnkj ucu ,1,

)( << + , 

then finite elements kjE , , are filled in bi too (fig. 3b) , 

3) If kjnkj ucu ,,
)( << , then finite element kjE ,  divide 

by ln in to parts: 
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  Elements kjE ,

(
are filling in bn colour (Fig. 3c). 

a) 
 

b) c) 
Figure 3: Constrain isolines and fill domains (i on fig. mean n). 

 
When we say “fill in b”, we mean, that corresponding triangles 

are constructed and saved with this color.   
After fill in bn color, we consider bn+1. 

3.1.2 Isosurfaces 
Let we have grid function { }kjiff ,,=  on parallelepiped grid 
hΩ  and constant c, which equal f on isosurface. Need to find 

locus (x,y,z) on which czyxf =),,(~
, where function f~  is 

some interpolation of f, kjikji fzyxf ,,),,(~
= . 

As in the case for isoline, for isosurface, first we determine 
whether any isoline belongs to each finite element 

{ })(),(),( 111,, +++ ≤≤≤≤≤≤= kkjjiikji zzzyyyxxxE
 i.e. set flag true or false. 

If finite element kjiE ,,  intersects with surface, we divide it 

into five tetrahedrons. Function f is interpolated in these and we 
search intersection isosurface and tetrahedron.  There are two 
types of behavior isosurface in tetrahedron see.fig.4.  

 

  
 

Figure 4: Two variants of isosurface in tetrahedron. 

3.1.3 Vector fields 
As in the case of isolines, let us have 2-dimensional function 

{ }jif ,  on non-uniform rectangle grid hΩ . Also we have a set of 

points{ }n
lllll zyxP 1),,( == , in which need to visualize the 

gradient of  f , i.e. vector field pr . For computing fp ∇=
r

f we 
use the following formulas: 
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For visualize gradients, they are scaled to minimum step of 

grid ),min( ji yx . Let us note, what set { }n
llP 1=  are middles of 

finite elements of new, uniform grid 

{ } { } { }( )K
kk

M
jj

L
ii

h zyx 111
~,~,~~

====Ω . The grid hΩ~ cover grid hΩ  

and coincide with it if  hΩ  is uniform one. 
Let us have vector field ),,( wvup =

r
 on non-uniform 

rectangle grid hΩ . There are various data types of pr : 
components u,v,w can be set in grid nodes or in the middles of 
finite elements. Also each component can be set on the edges: u 
on x-edges, v on y and w on z. For all of these data types we use 
simple common algorithm for visualize: each component pr  is 

interpolated to points of set{ }n
llP 1= . 

3.2 Postprocessing  Examples 
In this section we demonstrate the results of postprocessing. 

The standard of U3D presents an extensible format for 
downstream 3D CAD repurposing and visualization. So, the aim 
of postprocessor is to convert the results of the above algorithms 
into necessary form, in order to provide existing GUI tools by 
input data.  

In Fig.5 the geometry of the computational domain (the part of 
aluminum electrolytic cell: anode, blooms) was visualized. In 
Fig.6 we demonstrate isolines of the temperature field for heat-
distribution problem. We have done computation of the problem 
distribution of combined electrostatic and temperature field. 
Figure 7 and Figure 8 illustrate the visualization of the isosurface 
and vector field for other physical examples. 

In order to light a scene we use two point sources of white light. 
Colors of objects are generated automatically. Textures of 
surfaces are set very simply. In conclusion, let us note, that 
visualization by U3D tools may be more presentable, if the scene 
parameters are set correctly. 

In conclusion it is possible to say that U3D format presents the 
reach graphic possibilities and the next work would be oriented 
for extending the usage of these tools for PDE-PTK 

 
Figure 5: Geometry (the part of aluminum electrolytic cell). 

 
Figure 6: Isolines of temperature field in the crossection of 

the part of aluminum electrolytic cell. 

 
Figure 7: Isosurface for spherical symmetric field. 

 
Figure 8: Vectors field. 
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