
International Conference Graphicon 2006, Novosibirsk Akademgorodok, Russia, http://www.graphicon.ru/ 1

Coherent Ray Tracing of Complex BRDF Objects
A.V. Adinetz1, B.H. Barladian2, L.S. Shapiro2, A.G. Voloboy2

1Moscow State University, Faculty of Computational Mathematics and Cybernetics
2Keldysh Institute of Applied Mathematics, Russian Academy of Sciences

Abstract
An approach for providing BRDF support for coherent ray
tracing is described. Unlike earlier approaches, this approach
is able to handle real-world measured BRDF represented as
3D or 4D grid of samples. The presented SSE
implementation speedups BRDF support in 3-4 times
comparing with traditional ray tracing BRDF computations.

Keywords: SSE, interactive ray tracing, BRDF,
photorealistic rendering.

1. Introduction

The amount of computations involved, and

consequently, the amount of time required for the algorithm
to run is one of the main problems of realistic image
synthesis. In order to compute the pixel color using backward
ray tracing several rays have to be traced: the ray from the
camera to the scene, the rays from the hit point to the light
source, reflected and refracted rays etc. Given the image size
of 1280 by 1024 pixels, the number of rays can be in the
range of 10 to 20 millions. When a single ray is traced, it is
tested against all scene objects, and the nearest intersection
point is selected, as it is the visible point. In our estimate a
rendering system (without global illumination computations)
spends 65 – 75% amount of time performing ray tracing.
According to T. Whitted, this amount may even reach 95%
[1].

Almost all existing realistic ray tracing-based rendering
systems employ some kind of spatial hierarchical structure
for acceleration of ray tracing. The entire scene is subdivided
into subregions, and the list of objects belonging to each of
the subregions is constructed. The goal of the subdivision is
to accelerate the process of ray tracing. When a ray intersects
a subregion, it is tested against all of the objects in that
subregion. If one of them is intersected, the algorithm
terminates for this particular ray and the intersection is
reported. If there are no intersections, the ray proceeds to the
next subregions, and so on. Spatial subdivision methods
decrease the ray tracing time substantially (often by several
orders of magnitude).

Coherent ray tracing is a complement to spatial
subdivision structures. In this approach, several rays are
traced together in a bundle. The rays being traced are usually
chosen in such a way that they require the same (or located
near to one another) data in order maximize the acceleration
provided by the use of SIMD instructions. This “similarity”
among the rays traced simultaneously is called “ray
coherency”, or just “coherency”, for short, hence the term
“coherent ray tracing”. In order to achieve coherence for
primary rays, we place rays from nearby pixels in the same
bundle. Reflection or shadow rays spawned by these primary
rays are also traced together, providing coherency for these
rays too. If properly implemented, coherent ray tracing gives
a significant speed-up compared with classical single-ray
approach [2]. The speed-up factor is usually equal to the
number of SIMD data elements processed simultaneously.

Coherent ray tracing has been developing since the
SIMD support in commodity processors became available,
namely SSE (Streaming SIMD extensions) in Pentium III

and Pentium 4. This extension is now supported also by
AMD processors, and it makes SSE a kind of de-facto
standard for implementing coherent ray tracing. Coherent ray
tracing is often called SSE ray tracing, as is sometimes done
in this very paper. Since SSE operates with 4 single-precision
floating-point values simultaneously, its use in ray tracing
typically gives acceleration by a factor of 4 compared to
optimized C++ implementation.

BRDF (Bidirectional reflection distribution function) is
the most general way to represent material properties for
physically accurate rendering. BRDF is a very useful feature
for realistic rendering. BRDF describes the energy transfer
between arbitrary incoming and outgoing directions. The
transfer factor may actually depend on wavelength and
polarization of incoming light. But for simple cases,
however, RGB color model with no polarization is sufficient.
There are multiple ways to represent BRDFs (Phong and
Blinn models [3-4]). More complex BRDFs may be
represented by the set of samples for the pairs of incoming
and outgoing directions.

BRDF has already been used in our work ([5-6]).
BRDF’s we use come from real-world data. They are
obtained by either measuring the BRDF samples ([7]) or by
deriving BRDF from the microstructure of the material.
BRDF obtained in such ways exhibits complex structure
which is hard to approximate by a particular BRDF model.
Therefore, the only way to represent BRDFs suiting our
purposes is tabular representation of BRDF.

Tabular BRDF computations may become a bottleneck
when other components are rather fast due to SSE ray
tracing. Therefore, BRDF computations using SSE
instructions would provide significant speedup.

2. General overview

The angles of BRDF parameterization are σ, ψ, θ and φ

(see fig. 1). Based on the number of angles the BRDF really
depends on, the BRDFs may be classified as anisotropic
(depends on 3 angles) and isotropic (depends on 4 angles).

Fig. 1. BRDF parameterization.

The actual BRDF value is computed by n-linear

interpolation. One should notice that although there may be
uniform sampling along certain directions, some directions
do not allow this kind of sampling. This is true for θ

International Conference Graphicon 2006, Novosibirsk Akademgorodok, Russia, http://www.graphicon.ru/ 2

direction. Typical BRDF has a maximum at θ = 0 and rapidly
decreases with the increase of θ. Therefore, one needs to
place more samples near θ = 0 and few samples near θ = π.
The BRDF table grid thus becomes non-uniform, which
requires performing binary search in order to define proper
interpolation cell.

It should be noticed that the BRDF values are stored
with the angle grid, not the cosine or sine grid. This is done
in order to perform n-linear interpolation with these values.
Therefore, for each incoming and outgoing ray angles are to
be computed. This requires using inverse trigonometric
functions which usually take some 250-300 processor cycles
to compute [8].

When trying to implement all this on SSE for 4 rays in
parallel, the complexity of the task increases. Things so
familiar for non-SSE (indexing, binary search) become not so
simple when trying to implement them in SSE. Therefore,
following problems arise for SSE BRDF support:

• Calculation of inverse trigonometric functions
• Performing SSE binary search
• Indexing and interpolation in SSE case

3. Calculation of inverse
trigonometric functions in SSE

For non-SSE case, computing inverse trigonometric

functions is very slow. Evaluating inverse trigonometric
function must be performing once per dimension, slowing
down the entire process. So, this is the first thing to
accelerate.

Notice that the angles need not be computed exactly
since they are used only for interpolation. Therefore, it is
feasible to use an approximation for inverse trigonometric
functions.

After considering various approximations, we have
finally decided to use one from [9]. It requires only moderate
amount of computation. The actual approximation has the
form

)
2

(1
2

arcsin 3
3

2
21 xaxaxaxx +++−−≈

ππ

It computes approximations for positive x only. For negative
x, we compute arcsin(x) = -arcsin(-x) since arcsine is an odd
function. Having computed arcsin, we can compute arccosine
as

xx arcsinarccos 2 −= π

The precision of this approach is enough for our purposes.
The precision plot is given in fig. 2 and the performance
measurements are given in table one.

Fig. 2. Precision plot for acos(x) approximation

calls, millions 10 20 40
non-SSE(sec.) 1.479 2.954 5.908
SSE (sec.) 0.084 0.156 0.319
Speedup 17.6 18.93 18.52

Table 1. Computational performance of inverse

trigonometric functions (using SSE and without SSE).

We have obtained significant performance gain by
computing inverse trigonometric functions approximately in
SSE. For the same number of values to compute, SSE
approximation gives more than 17 times acceleration over
original approach.

4. SSE binary search

Another item to be done in SSE is binary search. Binary

search in non-SSE is a classical algorithm. However, it is not
so for SSE case.

The main issue in implementing SSE binary search is
how to deal with branching, i.e. when different elements of
the quadruple give different comparison results. In order to
deal with it, a constant-size stack is introduced. Whenever
the comparison gives different results, we select some of
them as the current search value and push current search state
to stack. When search for the current value is finished, the
indices obtained are written to the output and we check
whether the stack is empty. If the stack is empty, we finish
the search. Otherwise, we pop the state from the stack and
continue. The state stored in the stack consists of the current
mask and current limit. The mask is used to select the values
which are currently active. The initial value of the mask is
passed to the procedure as a parameter. Here is the
pseudocode of the SSE binary search algorithm:

sse_int sse_binarysearch(array<float> arr, sse_float val,
int mask) {

i = 0, j = arr.length();
sse_int res;
while(true) {
 if(i == j) {
 res.set(i, mask);
 if(stack is empty)
 return res;
 st.pop(i, j, mask);
 continue;
 }
 k = (i + j) >> 1;
 cmp = val < sse_float(arr[k]);
 if(all_true(cmp, mask))
 j = k;
 else if(all_false(cmp, mask))
 i = k;
 else {
 push(false_mask(cmp, mask), i, k);
 j = k;
 mask = true_mask(cmp, mask);
 }

 }
}

For the sake of performance, we use several specialized

versions of SSE binary search algorithm. Namely, there is a
version which computes interpolation weights and evaluates
1d grid functions. This allows avoiding some extra SSE
indexing operations.

International Conference Graphicon 2006, Novosibirsk Akademgorodok, Russia, http://www.graphicon.ru/ 3

calls, millions 10 20 40
non-SSE(s) 0.9 1.78 3.55
SSE (s) 0.41 0.79 1.61
Speedup 2.23 2.25 2.20

Table 2. Performance measurements for binary search using

SSE and without SSE.

The results of the performance measurements are given
in table 2. The achieved speedup is 2.5. This is quite enough
for the purposes of the fast BRDF interpolation.

5. SSE indexing and
interpolation

Having retrieved the indices for BRDF computations,

now we need to linearly interpolate between them in order to
get the BRDF value for the specified incoming and outgoing
directions. Prior to interpolation, we need to extract the
BRDF values between which to interpolate. And that
assumes using indexing operators.

Indexing in SSE case is not so simple because one
needs to extract 4 values from different memory locations
simultaneously. The naive way is to read 4 different values
from memory and place them in the respective elements of
an SSE register. However, this approach is inefficient for the
case of coherent rays since we would often read the same
value several times which would incur additional penalties in
creating SSE values. This is further aggravated by the fact
that we need to do this 8 (for 3D BRDF) or 16 (for 4D
BRDF) times per BRDF computation for a single ray. This
may become a real bottleneck.

In order to accelerate the process, we modify the
indexing algorithm a little. We take the 0-th element of the
SSE quadruple and check whether it equals to the other
components (taking the current mask into account). If all the
active elements equal to the 0-th element, we perform
indexing and interpolation only once, thus considerably
reducing the number of operations required and avoiding
setting operations. In case of incoherency, we successively
check the elements beginning from 0-th. For each element,
we define those elements of the quadruple which are equal to
it, and then perform indexing and interpolation for these
elements. Then we exclude these elements from the active
mask and do the same thing for the elements which have not
yet been processed.

In order to accelerate index comparison, we store them
as floating-point values. This also accelerates computation of
single array index from 3 or 4 BRDF indices since
multiplication operations are performed simultaneously.

Due to performing 4 operations simultaneously, the
acceleration must be near to 4 for coherent cases, but will
drop down significantly (almost by the number of the groups
of coherent rays in the quadruple) for the case when rays are
incoherent. So, the average acceleration is about 2.5. It must
be also kept in mind that 3D or 4D interpolation for non-SSE
case involves significant number of operations and the
compiler may optimize even the code for the single ray to
take benefit from using SSE instructions which will
accelerate non-SSE case.

6. Results

We have implemented SSE BRDF computations for

backward ray tracing rendering. SSE BRDF support was

implemented in C++, under Microsoft Visual Studio 2003.
Microsoft compiler has been used with all optimization
options turned on. We have not used any assembler code or
inline assembly at all and we have used SSE intrinsic
functions only in basic classes which support operations with
quadruples of integers and single-precision floating-point
values.

We have measured the time of BRDF computations
separately. The timings were performed for both 3D and 4D
BRDFs separately. The results are given below (Tables 3 and
4).

calls, x 105 1 2 4

non-SSE(sec.) 0.085 0.177 0.350

SSE (sec.) 0.024 0.050 0.101

Speedup 3.54 3.54 3.46

Table 3. The results for 4D BRDF performance test.

calls, x 105 1 2 4
non-SSE(sec.) 0.137 0.248 0.495
SSE (sec.) 0.040 0.078 0.156
Speedup 3.43 3.17 3.17

Table 4. The results for 4D BRDF performance test.

The actual results depend on the characteristics of the

PC and the dimensionality of the BRDF. For performance
measurements, the BRDFs with the following
dimensionalities have been used: (7 along sigma, 8 along phi,
13 along theta) for 3D BRDF and (17 along psi, 7 along
sigma, 17 along phi, 13 along theta) for 4D BRDF. All
timings were performed on a Mobile Pentium-IV 1800 MHz
Intel Centrino notebook with 512 MB of 433 MHz RAM.

Fig. 3. An example of 4D BRDF rendering using SSE BRDF
support.

International Conference Graphicon 2006, Novosibirsk Akademgorodok, Russia, http://www.graphicon.ru/ 4

Fig. 4. Another example of 4D BRDF rendering using SSE
BRDF support.

7. Conclusion

We have implemented SSE BRDF support for ray

tracing and have achieved speedup by a factor of 3 – 3.5. The
performance increase may be even higher if we use Intel C++
compiler. It would be interesting to consider the use of
integer instructions available in SSE 2 and some new
instructions provided by SSE 3.

We have already implemented BRDF support for RGB
color model only for the case of backward ray tracing. But
our framework supports complex global illumination
algorithms and spectral color models. All this is based on ray
tracing, and additional performance may be achieved if these
algorithms are implemented on the top of coherent ray
tracing. The speedup for forward ray tracing, however, would
be not as big as for backward ray tracing since ray coherence
is lower. New structures and techniques are to be used in
order to provide greater speedup for global illumination
algorithms. Spectral color model, on the contrary, will
benefit more since it uses much more color components
(about 30) and allows using SSE instructions not only for
working with color quadruples, but also for working with
single color.

The work was supported by RFBR, grant № 05-01-
00345-a, and Integra Inc. (Tokyo, Japan). The version of the
paper with color illustrations can be found at
http://www.keldysh.ru/pages/cgraph/publications/cgd_publ.h
tm

REFERENCES

[1] Turner Whitted, An Improved Illumination Model

for Shaded Display. Communication of ACM, Vol. 23, № 6,
June 1980, pp. 343-349.

[2] I. Wald, C. Benthin, M. Wagner, Ph. Slusallek.
Interactive Rendering with Coherent Ray Tracing. Computer
Graphics Forum (Proceedings of EUROGRAPHICS 2001)
Vol. 20, № 3, pp. 153-164.

[3] B. Phong, “Illumination for Computer Generated
Pictures”, Communications of the ACM, Vol. 18, № 6, pp.
311-317, 1975.

[4] J. F. Blinn. Models of light reflections for computer
synthetized pictures. In Computer Graphics (SIGGRAPH’77
Proceedings), pp. 192–198, 1977.

[5] A.Khodulev, E.Kopylov, Physically accurate
lighting simulation in computer graphics software. Proc.

GraphiCon’96 - The 6-th International Conference on
Computer Graphics and Visualization, St.Petersburg, 1996.

[6] А.Г. Волобой, В.А. Галактионов, К.А. Дмитриев,
Э.А. Копылов. Двунаправленная трассировка лучей для
интегрирования освещенности методом квази- Монте
Карло. "Программирование", № 5, 2004, с. 25-34.

[7] Letunov A.A., Barladian B.H., Zueva E.Yu.,
Veshnevetc V.P., Soldatov S.A. CCD-based device for BDF
measurements in computer graphics. The 9-th International
Conference on Computer Graphics and Vision, Moscow,
Russia, Aug 26 - Sep 1, 1999.

[8] IA-32 Intel Architecture Optimization Reference
Manual, p. 440.
ftp://download.intel.com/design/Pentium4/manuals/2489661
1.pdf

[9] Mathematical Handbook for Scientists and
Engineers, Second Edition. McGraw-Hill Book Company,
1968.

Authors:

Andrew V. Adinetz, five course student of the Moscow State
University. E-mail: adi_@mail.ru.

Boris H. Barladyan, PhD, senior researcher of the Keldysh
Institute for Applied Mathematics RAS.
E-mail: obb@gin.keldysh.ru

Lev Z. Shapiro, PhD, senior researcher of the Keldysh
Institute for Applied Mathematics RAS.

Alexey G. Voloboy, PhD, senior researcher of the Keldysh
Institute for Applied Mathematics RAS.
E-mail: voloboy@gin.keldysh.ru

