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Abstract 
In this paper new approach to reconstruct images, removing 
unwanted objects from it, is described. The main idea of the 
introduced approach is to generate texture over unwanted object 
using graph cut based texture synthesis algorithm. Different 
texture synthesis techniques are briefly covered, while used 
technique is described in detail. After that, migration from the 
texture synthesis problem to the image reconstruction problem is 
explained, and some experimental results are shown. 
Keywords: Image reconstruction, Texture synthesis, Graph cut. 

1. INTRODUCTION 

Let’s consider the following problem. We have some photo, 
where some kind of landscape is shown. Though there are some 
unwanted objects on the picture. For example, we have blooming 
field with some junk on it or stony beach with people resting, but 
our goal is to get the field without junk or unmanned beach. It’s 
impossible sometimes to take the proper photo, so digital 
processing is required to get what we want. 
We’ll consider only those cases, where surrounding landscape has 
similar structure like that covered by unwanted object. So the 
easiest solution is to open our image in the favorite graphics 
editor package, copy similar image fragment (pattern) and place it 
over the object we want to remove. After feathering the borders 
we may get something like we wanted. Being simple this 
approach has many disadvantages. Here are some of them: 

• Even after feathering the edges of copied fragment are often 
visible. Increasing feather radius may strike viewer’s eye, 
because some features will become translucent; 

• In case if unwanted object is rather big, we may not found 
similar image fragment large enough to cover the object 
completely. We can copy smaller fragment several times, 
but periodic structure of landscape will be striking; 

• Rather often brightness is not constant across unwanted area 
and pattern as well, resulting in significant color difference 
on the edges of copied fragment. In this case feathering will 
not help at all. 

In this paper we introduce rather new approach to solve this 
problem and describe how it was implemented in our software 
package, called RestoCut. The main idea was taken from texture 
synthesis techniques. In fact we can synthesize texture over object 
we want to remove and them seamlessly combine it with existing 
image. 
Texture synthesis technique we are using was already introduced 
in [1]. Our method is based mainly on paper by V. Kwatra et al 
[2], where using of graph-cuts was suggested to generate textures. 
We have developed and modified their approach to fit our 
objective. 

In the following section we’ll cover the approach used to create 
textures using graph-cuts, pointing out the differences between 
methods described in [2] and our realization. After that we’ll 
center on using texture synthesis to solve the considered problem. 
Then we’ll describe RestoCut and show some experimental 
results. 

2. TEXTURE SYNTHESIS 

Currently there are many techniques exist to generate textures 
from sample image. Most of them doesn’t take into account that 
sample image may contain non-periodical objects of real world 
(like flowers, stones, birds and so on). For example, Heeger and 
Bergen [3] used sample image to generate color-frequency 
distribution, and synthesize texture using this information. This 
algorithm was already implemented by Igehy and Pereira [4] in 
the work similar to this one. This is good enough to generate 
textures like wool, plastic, bitumen, etc., but such features as 
flowers will not be preserved. Image quilting technique, described 
by Efros and Freeman [5] is more oriented to keep the features 
from original sample, but still not good enough. In this approach 
the sample is divided into blocks which are copied into newly 
generated texture. 

 
Figure 1: Patch placement. 

In the method proposed in [2] whole patches from input are 
copied to synthesized texture, and then algorithm finds the best 
seam between newly copied patch, and patches copied before. We 
are using similar technique. However, in contrast to this work, all 
patches put to the new texture so far are merged together and 
considered as underlayer. This makes patch placement procedure 
more complicated, but simplifies seam finding and generalizes 
problem: in our solution underlayer may not consist of patches 
copied before only, but contain some other image fragments. Such 
generalization is much desired to solve the problem, discussed in 
introduction. 
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Figure 2: Finding the optimal seam. 

 
Figure 1 shows an example of how new patch is merged with 
existing underlayer. New patch is placed so that it overlays 
underlayer. Patch placement strategy is discussed in section 2.2. 
 

 
Figure 3: New patch and underlay after merge. 

 
Figure 2 shows the optimal seam found in overlapping area; this 
procedure is described in section 2.1. Finally after slight 
feathering we’ll get underlayer which consists of merged patches 
as shown on Figure 3. Applying these steps repeatedly will 
produce whole given area filled with sample image. An example 
of resulting texture is shown on Figure 4. 
 

 
Figure 4: Synthesized texture. 

 
Let’s consider these steps in detail. We’ll begin from finding the 
optimal seam rather than patch placement, because knowing how 
the seam is searched will help to see the problems of patch 
placement. 

2.1 Using graph cuts to find the optimal seam 
To find the optimal seam, which divides new patch and underlay, 
we should cut through overlapping area, so that pixels around the 
cutting line have the closest colors possible. This procedure is 
quite similar to one proposed in [2]. 

S

T

New patch

Underlayer 
 

Figure 5: Representing of overlapping area as graph. 
 
First we have to build weighted graph, which fits the following 
conditions. Each node corresponds to single pixel in overlapping 
area (Figure 5), edges connect neighbor pixels. Also two special 
nodes are added: S (source) and T (sink), which are connected to 
all boundary pixels from the patch side and underlay side 
respectively. 
Now we should assign weights to the edges. If the edge connects 
two regular nodes corresponding to pixels A and B, then edge 
weight will be 

 *

1AB A A B BW C C C C= − + − *

1
, (1) 
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where  are color vectors of pixel A, corresponding to 

patch and underlayer respectively (

*,A AC C
*,B BC C  are the same for 

pixel B). In other case, when the edge connects regular node with 
source or sink, weight assigned to it is some constant, which is 
bigger than maximal value of (1). 
Finally we can split this graph into two sub-graphs, so that one of 
them contains source node, other contains sink node, and weight 
sum of edges connecting nodes from different sub-graphs has the 
minimal possible value. This problem is well-known in graph 
theory as min-cut problem, and can be reduced to network flow 
problem, which is solved by Ford-Fulkerson algorithm [6]. To 
perform this step we have used C++ code developed by Boykov 
and Kolmogorov (it was introduced in [7] and freely available on 
the authors’ website). This code is well-optimized and perfectly 
suits for such tasks. 
Note that underlayer may already contain several patches or some 
other fragments, so the overlapping area is not necessarily 
rectangular. It may be in any form, have holes or even consist of 
several unconnected areas. These cases are handled in the same 
way like described above. In [8] underlying patches are handled 
separately, and additional nodes are created along the old seam to 
refine it when new patch is placed. We’ve simplified this step to 
make possible generalization mentioned above. 

2.2 Patch placement strategy 
The simplest way of patch placement is to place them randomly. 
This approach works in some rare cases, when sample image fits 
strict requirements. Of course, graph-cut algorithm, described 
above, finds the best possible seam for specified patch position, 
but in many cases even the best seam is not good enough. So we 
should place patches using special strategy to lighten the graph-
cut work. Each patch placement is characterized by offset of its 
left-top angle. We can assign some weight function to patch 
position and minimize it. To speed up minimization we are using 
genetic algorithm [8] where new patch position (x and y 
coordinates) is considered as chromosome. 
Now we should define that weight function to distinct between 
good and bad patch placement. Here are some constraints which 
should be reflected in weight function: 
1. Overlapping area should be thick enough everywhere, 

otherwise graph-cut algorithm have too small space to select 
from; 

2. Position where new patch touches underlayer, should be 
considered as very bad; 

3. New patch placement shouldn’t disrupt large-scale structure 
if any; 

4. New placement should cover enough uncovered pixels, 
otherwise algorithm may work quite long (or even infinite) 
time. 

 

 
Figure 6: Thin overlapping area 

 
Figure 6 illustrates first constraint. New patch (on top) intersects 
underlayer, but right side of overlapping area is only two pixels 
thick. This means that graph-cut have no choice but to draw seam 
between these two pixels, even if it’s not good enough (in shown 
example it’s really not good; the stones above and below thin area 
are quite different). So it’s evident, that this case should be 
considered bad and have rather big weight. 
 

 
Figure 7: New patch touches underlayer 

 
Second constraint is rather similar to the first one. It’s shown on 
Figure 7. New patch was placed so that it touches underlayer in 
the area, highlighted by ellipse. In this case graph-cut cannot do 
anything, because contact area is outside of the overlay. 
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Figure 8: Large-scale structure 

 
Figure 8 illustrates the large-scale of sample image (bricks). In the 
given case offset between patches is not the integral number of 
brick periods, thus graph-cut cannot merge patches seamlessly, so 
it’s impossible to synthesize good texture if we allow such patch 
positioning. 
Fourth constraint was introduced to reduce processing time. 
Sometimes best weight according to three other constraints is 
assigned to placement, when patch entirely lies on underlayer or 
adds only several pixels to it, so it will take too many steps to fill 
in whole given area. 
According to all these constraints, we empirically have created 
penalty functions. ( )L x  is responsible for touches and thin 
overlapping areas, and ( )B x  is responsible for constraint 4. Third 
constraint makes the base of weight function, for which penalties 
are applied. So the weight function looks like this: 

 
2*

2

1
p p

p S

N B L C C
S D ∈

⎛ ⎞⎛ ⎞
= ⎜ ⎜⎜⎜ ⎝ ⎠⎝ ⎠

∑ − ⎟⎟⎟⎟ , (2) 

where S is set of overlapping area pixels and D is color deviation 
of sample image pixels: 

 

2

2

1

p
p T

C C
D

T
∈

−
=

−

∑
, (3) 

where T is the set of pixels in sample image (patch), thus T  is 

the patch size. pC , *
pC  are color vectors of pixel p corresponding 

to patch and underlayer respectively. 
Argument of L is penalty value without taking into account 
constraints 1, 2, 4. Functions L and B can enlarge penalty value if 
selected patch position is unsatisfactory from the point of these 
constraints. Value of L depends on minimal thickness of 
overlapping area. When overlapping area is thick enough, ( )L x  
returns x, otherwise it rapidly grows and returns maximal value 
when constraint 2 takes place. ( )B x  is constructed similarly: it 
returns x, when new patch placement adds to underlayer |  
pixels or more, and comes to its maximal value, when new 
placement doesn’t add to underlayer even a single pixel. 

| / 2T

2.3 Seam feathering 
Though graph-cut finds best seam possible, sometimes seam is 
still visible. In such cases feathering of nearby pixels will help to 
hide it. We are using simple linear feathering. New color for the 
pixel A near seam is calculated using the following formulae: 

 ( ) ( )( )*
Re

1
2A s A AC C l d C l
l

= ⋅ − + ⋅ + d , (4) 

where d is the distance between pixel A and seam, and l is 
feathering radius (usually it’s about 5 pixels). Distance between 
seam and current pixel is calculated in rather simple way. Two 
subgraphs found by min-cut algorithm are considered separately, 
source and sink are removed, but special seam-node is added 
instead. The seam-node is connected to all the nodes which were 
bound with other subgraph. After that distance between each node 
and the seam-node (if it doesn’t exceed l) is calculated using 
breadth-first algorithm. 

3. RECONSTRUCTION OF IMAGES 

Now we can apply texture synthesis approach to reconstruct 
image fragments. Consider the sample image “Meadow” 
(Figure 9). Our goal will be to remove a man from the picture, 
leaving meadow and forest as it is. 
As you can see, the man in the “Meadow” image covers some 
flowers. So it is good idea to synthesize flower field texture over 
the man. First we should define the patch for the texture synthesis 
algorithm. We can select any rectangular area nearby, which 
contains flowers. However it is not preferred to select flowers 
above (or below) unwanted object because or perspective. Also 
we shouldn’t select too small patch, in order to generate non-
monotonous texture. Example of patch selection is shown by 
dotted line on Figure 10. 
 

 
Figure 9: Source image “Meadow”. Image is courtesy of 

Vladimir Logutenko 
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Figure 10: Mask and sample selection 

 
Second we should mark the area which should be filled with new 
texture. Actually we select two areas: texture area, which will be 
replaced fully by newly synthesized texture, and buffer area, 
which can be replaced partially. Typically texture area should be 
inside buffer area (see Figure 10). In the most of cases buffer area 
can be selected automatically, by expanding texture area to the 
fixed number of pixels (this function presents in most of modern 
graphic editors). The “Meadow” image has resolution of 800×600 
pixels, and buffer area was selected by expanding texture area by 
40 pixels. Also user can select texture area rather roughly, high 
accuracy is unnecessary here, so defining areas is quite fast 
procedure. 
 

 
Figure 11: Processed “Meadow” image. 

 
Finally we can launch texture generation algorithm. It considers 
buffer area as area, which was already filled by generated texture. 
Though some its pixels may be replaced, if graph-cut algorithm 
decides to draw seam over them. 
Pixels outside of selected areas are not modified at all. If patch 
placed so that it juts out of buffer area, it’s cropped before graph-

cut applying. Figure 11 shows the result of processing the 
“Meadow” image. 

4. BRIGHTNESS COMPENSATION 

An improvement of introduced algorithm is described below. 
Sometimes though image has regular structure, image brightness 
is not constant. Typically it’s applied to sky images (e.g. birds in 
the sky), indoor photos (especially when flash bulb was used) and 
so on. In these cases brightness of patch opposite sides is quite 
different, so graph-cut algorithm will unable to produce good 
result. 
 

 
Figure 12: Sample image “Wall”. 

 
In this case brightness compensation may be performed in the 
initial and final stages. On initial stage brightness of patch is 
equalized as well as brightness of buffer area. On the final stage 
brightness of filled area is reversed to original. 
Here we should define brightness compensation function, namely 
the function of coordinates which we can subtract from source 
image brightness to get brightness-equalized image. Light 
intensity is inversely proportional to the square of distance 
between light source and observer, so we assume that brightness 
function looks like the polynomial of degree two: 

 ( ) 2 2,f x y Ax By Cxy Dx Ey F= + + + + +  (5) 

  
Figure 13: Selected patch before and after brightness 

compensation. 
Coefficients A–F in (5) are defined by minimizing sum of squares 
of differences between the ( , )f x y  value and the actual pixel 
brightness for the whole area: 

  (6) ( ) ( )( )2
, ,

S
Y x y f x y− →∑ min
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Minimization problem is solved by using least squares method 
and Gauss-Jordan elimination function as it is described in [9]. 
We calculate coefficients A–F for patch and for buffer area 
separately. Then we equalize buffer area and patch, subtracting 

( , )f x y  value from pixel brightness using obtained coefficients, 
and generate texture. After that we restore original brightness, 
adding ( , )f x y  value to all of the buffer area and texture area 
pixels, using coefficients for buffer area. Equalization is 
performed in YUV color space. Only luma is modified, while 
chroma components remain unchanged. 
 

 
Figure 14: Processed “Wall” image. 

 
Brightness compensation is illustrated on the sample image 
“Wall” (Figure 12). Our goal is to remove the picture on the right 
side of the “Wall” image. Figure 13 shows patch (actually it was 
selected below the picture) and the same patch after brightness 
equalization. Figure 14 shows the processed image. 

5. COMPARISON WITH OTHER WORKS 

Recently using graph-cut approach to generate textures became 
quite popular so several implementations of it can be found 
through the Internet. Optimal seam search described in 2.1 above 
is quite similar in these works. Edge weight is calculated using 
formulae similar or exactly the same as (1). Also to solve min-cut 
problem most of developers use the same Boykov and 
Kolmogorov’s code. The main difference between the approaches 
is patch placement strategy. This step can be performed in many 
different ways. 
We have compared our implementations with two others which 
are available in the Internet: 

• Texture Synthesis project of the National University of 
Singapore (authors are: Guo Dong and Zhuo Shaojie); available 
from: http://www.comp.nus.edu.sg/~guodong/syntxt/ 

• The Texturize plugin for GIMP; available from: 
http://www.manucornet.net/Informatique/Texturize.php 
Both of these works are based on [2]. Though they don’t allow to 
replace fragments of image by generated texture like RestoCut, 
they can be compared with RestoCut texture synthesis module. 
Also these products don’t have brightness compensation 

implemented, so comparison was performed for patches without 
notable brightness gradients. 
The Texturize plugin for GIMP uses patch placement strategy 
which is rather similar to the one described in [2]. Texture 
Synthesis places patches in slightly different manner. It places to 
the output area not patches, but samples, rectangular subpictures 
of patch with fixed width and height, but offset of sample inside 
patch may differ. User may specify parameters x and y which 
define ratio between sample and patch size (for width and height 
respectively). By default w and h both equal 0.5. Places for new 
samples are fixed; coordinates (a, b) of new sample left-top 
corner are defined as: 

 , (7) 
( )
( )
1
1

a Wx l i
b Hy l j

= −
= −

where l is overlapping area size, W and H are patch width and 
height respectively. Values of i and j are changed from 0 to w and 
h in the loop (w and h are also specified by user indirectly 
defining output picture size). For each pair (i, j) the best offset of 
sample in the patch is selected and chosen sample is combined 
with generated so far picture using min-cut. 
 

  
Figure 15: Patches “Nuts” and “Flowers”.  

“Nuts” is courtesy of VisTex. 
 
This approach is easier to implement, but results not always look 
well. Also there are many parameters and sometimes it’s 
necessary to tune them in order to get satisfactory results. 
Texturize gives the best results for patches with regular structure. 
Consider an example patch “Nuts” shown on Figure 15. 
Synthesized result (Figure 16, left) is almost perfect, only slight 
artifacts are visible. Result of RestoCut (Figure 16, right) is not so 
good. Result generated by Texture Synthesis (Figure 17) has no 
artifacts, but turned nuts are not spread all over the texture which 
makes result the worst. 
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Figure 16: Texture “Nuts” generated by Texturize (left)  
and RestoCut (right) 

 
The second example is “Flowers” (Figure 15). Generated restuls 
are shown on Figure 18. Result of Texturize (in the middle) have 
somewhat regular structure, thus looks unnatural. Images 
generated by RestoCut and Texture Synthesis look good, though 
image generated by Texture Synthesis with default parameter set 
was really bad, so parameter tuning was necessary. 
 

 
Figure 17: Texture “Nuts” generated by Texture Synthesis. 

 
On some textures generated by Texturize and Texture Synthesis 
seams similar to one shown on Figure 7 can be noticed. In total 
seven images were involved in comparison, though we cannot 
observe all the generated textures here. More detailed results are 
available from http://skypiece.iis.nsk.su/~lan/restocut/ 
Table 1 shows time spent to generate textures by different 
realizations. All times are in seconds and were measured on PC 
with AMD Athlon XP 2500+ CPU and 512 Mb RAM. For 
RestoCut also time spent to graph-cut and patch placement steps 
is calculated separately. Total time is higher than sum of them 
because it includes also file loading and storing, feathering and 
other steps. 
 

 

 

 
Figure 18: Texture “Flowers” generated by RestoCut (top), 

Texturize (middle) and Texture Synthesis (bottom). 
Table 1: Texture synthesis speed. 

RestoCut 
Source 
pattern 

Source 
size 

Target 
size Placement  Graph-

cut Total Te
xt

ur
iz

e 

Te
xt

ur
e 

Sy
nt

he
si

s 
brickwall 256×256 578×578 25.8 1.7 29.2 27.9 30.8

daisy 176×234 646×855 52.5 1.3 57.4 135.3 81.8

icystraw 200×150 450×340 14.3 0.8 15.9 15.8 23.4

input 256×256 578×578 32.0 1.0 34.7 42.9 78.8

flowers 145×161 327×360 11.3 0.7 12.6 32.6 25.9

Nuts 293×217 661×488 30.9 0.6 31.2 49.6 26.6

field 566×585 880×907 67.9 3.2 74.1 35.0 234.8

 
Table 2 below shows which additional features are supported by 
these implementations. Tiling texture is the texture which can be 
seamlessly stitched to itself (useful for webpage or desktop 
wallpapers and so on). Rotation means that software has an option 
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to generate more diversified textures by rotating original patch by 
90°, 180° or 270°. Rotation and mirroring was also introduced in 
[2]. 
 

Table 2: Features supported by different implementations. 

Feature RestoCut Texture Synthesis Texturize 

Brightness 
compensation 

+ – – 

Tilable textures + – + 

Rotation – + – 

 
As for texture synthesizers which are not graphcut-based, we have 
considered that results are much worse visually, thus not so 
interesting. In [2] you can find comparison of graphcut-based 
algorithm with image quilting based. 

6. CONCLUSION AND FUTURE WORK 

The method, proposed in this paper, is suitable for solving the 
problem of reconstructing image fragments, which are somewhat 
regular by its nature. 
Future improvements of this idea may include modifications of 
current placement procedure and adding new features. In some 
special cases placement may be improved so result will look more 
natural. New features may include using patch modifications (e. 
g. rotations or mirroring) as well as several patches to synthesize 
more varied texture. Also some algorithms to take the perspective 
into account may be analyzed and included into this work. 
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