
Fusing Spatial, Pictorial and Photometric Data to Build Photorealistic
Models

Z. Janḱo∗
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Abstract

We are working on several projects related to the automatic fusion
and high-level interpretation of 3D sensor data for building mod-
els of real-world objects and scenes. Our major goal is to create
rich and geometrically correct, scalable photorealistic 3D models
based on multimodal data obtained using a laser scanner, a camera
and illumination sources. In this report, we present a sophisticated
software system that processes and fuses geometric, pictorial and
photometric data using genetic algorithms and efficient methods of
computer vision.
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1 Introduction

Building photorealistic 3D models of real-world objects is a funda-
mental problem in computer vision and computer graphics. Such
models require precise geometry as well as detailed texture on the
surface. Textures allow one to obtain visual effects that are essen-
tial for high-quality rendering. Photorealism is further enhanced by
adding surface roughness in form of the so-called 3D texture repre-
sented by a bump map.

Different techniques exist to reconstruct the object surface and to
build photorealistic 3D models. Although the geometry can be
measured by various methods of computer vision, for precise mea-
surements laser scanners are usually used. However, most of laser
scanners do not provide texture and colour information, or if they
do, the data is not accurate enough. (See [Yemez and Schmitt 2004]
for a detailed discussion.)

Our primary goal is to create a system that only uses a PC, an afford-
able laser scanner and a commercial (although high-quality) uncal-
ibrated digital camera. The camera should be used freely and in-
dependently from the scanner. No other equipment (special illumi-
nation, calibrated setup, etc.) should be used. No specially trained
personnel should be needed to operate the system: After training,
a computer user with minimal engineering skills should be able to
use it. The ambitious projects [Bernardini 2002; Ikeuchi 2003; M.
Levoy 2000] have developed sophisticated technologies for digitis-
ing statues and even buildings, but these technologies are extremely
expensive and time-consuming due to the size of the objects to be
measured. They require specially designed equipment and trained
personnel. Creation of a model takes weeks [Bernardini 2002] or
even months.

Our modelling system receives as input two datasets of diverse ori-
gin: a number of partial measurements (3D point sets) of the object
surface made by a hand-held laser scanner, and a collection of high
quality images of the object acquired independently by a digital
camera using a number of illumination sources. The partial surface
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measurements overlap and cover the entire surface of the object;
however, their relative orientations are unknown since they are ob-
tained in different, unregistered coordinate systems. A specially de-
signed genetic algorithm (GA) automatically pre-aligns the surfaces
and estimates their overlap. Then a precise and robust iterative al-
gorithm (Trimmed Iterative Closest Point, TrICP [Chetverikov et al.
2005]) developed in our lab is applied to the roughly aligned sur-
faces to obtain a precise registration. Finally, a complete geometric
model is created by triangulating the integrated point set.

The geometric model is precise, but it lacks texture and colour in-
formation. The latter is provided by the other dataset, the collec-
tion of digital images. The task of precise fusion of the geometric
and the visual data is not trivial, since the pictures are taken freely
from different viewpoints and with varying zoom. The data fusion
problem is formulated as photo-consistency optimisation, which
amounts to minimising a cost function with numerous variables
which are the internal and the external parameters of the camera.
Another dedicated genetic algorithm is used to minimise this cost
function.

When the image-to-surface registration problem is solved, we still
face the problem of seamless blending of multiple textures, that is,
images of a surface patch appearing in different views. This prob-
lem is solved by a surface flattening surface algorithm that gives
a 2D parametrisation of the model. Using a measure of visibility
as weight, we blend the textures providing a seamless and detail-
preserving solution. Finally, photometric data is added to provide a
bump map reflecting the surface roughness.

All major components of the described system are original, devel-
oped in our laboratory. Below, we present the main algorithms and
give examples of photorealistic model building using GA-based
registration and fusion of spatial, pictorial data and photometric
data. Most of this report is a short version of the book chap-
ter [Chetverikov et al. 2006] that describes our system in full de-
tail and provides numerous test data. The section that presents our
initial results with the photometric data is new.

2 Pre-registration of surfaces using a ge-
netic algorithm

This section deals with genetic pre-alignment of two arbitrarily ori-
ented datasets, which are partial surface measurements of the ob-
ject whose model we wish to build. (See figure 1 for an illus-
tration of such measurements.) The task is to quickly obtain a
rough pre-alignment suitable for subsequent application of the ro-
bust Trimmed Iterative Closest Point algorithm [Chetverikov et al.
2005] developed in our lab earlier.

Consider two partially overlapping 3D point sets, thedatasetP =
{pi}

Np

1 and themodelsetM = {mi}Nm
1 . Denote the overlap byξ .

Then the number of points inP that have a corresponding point
in M is Npo = bξNpc. The standard ICP [Besl and McKay 1992]
assumes thatP is a subset ofM . ICP iteratively movesP onto
M while pairing each point ofP with the closest point ofM . The
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Frog data GA GA+TrICP

Figure 1: The Frog dataset, GA alignment and final alignment.

cost function of ICP is the mean square error (MSE), that is, the
mean of all residuals (distances between paired points).

In contrast to ICP, our TrICP [Chetverikov et al. 2005] only assumes
a partial overlap of the two sets, which is more realistic. TrICP finds
the Euclidean motion that brings anNpo-point subset ofP into the
best possible alignment withM . The algorithm uses another cost
function. At each iteration,Npo points with the least residuals are
selected, and the optimal motion is calculated for this subset so as
to minimise the trimmed MSE

e=
1

Npo

Npo

∑
i=1

d2
i:Np

, (1)

where{d2
i:Np
}Np

1 are the sorted residuals. The subset of theNpo

paired points is iteratively updated after each motion.

In practice, the overlapξ is usually unknown. It can be set auto-
matically [Chetverikov et al. 2005] by running TrICP for different
values ofξ and finding the minimum of the objective function

Ψ(ξ ,R, t) =
e(ξ ,R, t)

ξ 2 , (2)

which minimises the trimmed MSE while trying to use as many
points as possible.

When an object is scanned by a 3D scanner,P andM are often ob-
tained in different coordinate systems. As a result, their orientations
may be very different. TrICP provides an efficient and robust solu-
tion when the two sets are roughly pre-registered. This is typical for
all iterative algorithms, for which the pre-alignment is usually done
manually. Our genetic pre-registration procedure [Lomonosov et al.
2006] complements TrICP yielding a robust and completely auto-
matic solution.

The genetic pre-registration algorithm minimises the same objec-
tive functionΨ(ξ ,R, t) as TrICP, but this time as a function of all
the seven parameters, namely, the overlapξ , the three components
of the translation vectort, and the three Euler angles of the rota-
tion matrixR. The difference between the genetic solution and the
overlap selection procedure [Chetverikov et al. 2005] is essential.
The former means evaluatingΨ(ξ ,R, t) for different values ofξ ,
R, andt, while the latter means running TrICP for different values
of ξ . Our genetic solution provides an elegant way to estimate the
overlapand the optimal motion simultaneously, by treating all pa-
rameters in a uniform way. The solution [Chetverikov et al. 2005]
only works for pre-registered sets. If desired, it can be used to refine
the overlap estimate obtained by the GA.

To minimise the objective functionΨ(ξ ,R, t), we applied a genetic
algorithm tuned to the problem. The objective function was eval-
uated by mapping each integer parameter onto a real-valued range
using normalisation. Simple one-point crossover was employed.
Different population sizes were tested and an optimal value was
selected for the final experiments. Two mutation operators were in-
troduced. Shift mutation shifts one parameter randomly by a value

not exceeding 10% of the parameter range, while replacement mu-
tation replaces a parameter with a random value. The corresponding
probabilities were also set after preliminary experimentation. Tour-
nament selection was applied, as it is easy to implement and helps
avoid premature convergence. An elitist genetic algorithm was em-
ployed, where one copy of the best individual was transferred with-
out change from each generation to the next one. The method is
presented in detail in our paper [Lomonosov et al. 2006].

We have tested the genetic pre-alignment and the combined method
(GA followed by TrICP) on different data. To test the method under
arbitrary initial orientations, setP was randomly rotated prior to
alignment in each of the 100 tests. Results of all tests were visually
checked. No erroneous registration was observed. Typical results
of alignment are displayed in figures 1, 3 and 2. In each figure,
the first two pictures show the two datasets to be registered. The
datasets result from two separate measurements of the same object
obtained from different angles.

Bird data GA GA+TrICP

Figure 2: The Bird dataset, GA alignment and final alignment.

The third picture of each figure (GA) displays the result of our ge-
netic pre-registration algorithm. Here, the two datasets are shown
in different colours. One can see that the datasets are roughly reg-
istered, but the registration quality is not high: the surfaces are dis-
placed, and they occlude each other in large continuous areas in-
stead of ‘interweaving’. Finally, the rightmost picture is the result
of the fine registration obtained by TrICP using the result of the
genetic pre-registration. Here, the surfaces match much better, and
they are interwoven, which is an indication of the good quality of
the final registration.

Angel data GA GA+TrICP

Figure 3: The Angel dataset, GA alignment and final alignment.

3 Fusion of surface and image data

In this section, we address the problem of combining geometric and
textural information of the object. As already mentioned, the two
sources are independent in our system: the 3D geometric model is
obtained by 3D scanner, then covered by high quality optical im-
ages. After a brief survey of relevant previous work, we discuss
our photo-consistency based registration method with genetic algo-
rithm based optimisation. Then we deal with the task of blending
multiple texture mappings and present a novel method which com-
bines the techniques of surface flattening and texture merging. Fi-
nally, initial results on using the photometric data to add surface
roughness are shown.
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Images 3D model Textured model

Figure 4: The Bear Dataset and result of registration of images to
surface.

3.1 Registering images to a surface model

Several 2D-to-3D (image-to-surface) registration methods were
proposed in computer vision and its medical applications. Most
of them are based on feature correspondence: Feature points are
extracted both on the 3D surface and in the images, and correspon-
dences are searched for. (See, for example, [David 2002; Haral-
ick 1989; Leventon et al. 1997].) However, the features are often
difficult to localise precisely in 3D models. In addition, defining
similarity between 2D and 3D features is not easy.

Intensity based registration is another approach to the problem. The
algorithm of Clarkson et al. [Clarkson 2001] applies the photo-
consistency to find the precise registration of 2D optical images of
a human face to a 3D surface model. They use calibrated images,
thus the problem is reduced to estimating the pose of the cameras.
We do not use calibrated camera, so the number of parameters is
much higher. The size of the parameter space and the behaviour
of the cost function motivated the use of genetic algorithm-based
optimisation.

The input data consists of two colour images,I1 and I2, and a 3D
surface model. They represent the same object. (See figure 4 for an
example.) The images are acquired under fixed lighting conditions
and with the same camera sensitivity. All other camera parameters
may differ and are unknown. The raw 3D data is processed by
the efficient and robust triangulator [Kós 2001] developed in our
lab. The 3D model obtained consists of a triangulated 3D point set
(mesh)P with normal vectors assigned.

The finite projective camera model is used to project the object sur-
face to the image plane:u ' PX, whereu is an image point,P the
3×4 projection matrix andX a surface point. (' means that the
projection is defined up to an unknown scale.) The task of registra-
tion is to determine the precise projection matrices,P1 andP2, for
both images. Since the projection matrix is up to a scale factor, it
has only 11 degrees of freedom in spite of having 12 elements. The
collection of the 11 unknown parameters is denoted byp, which
represents the projection matrixP as an 11-dimensional parameter
vector.

Values ofp1 andp2 are sought such that the images areconsistentin
the sense that the corresponding points – different projections of the
same 3D point – have the same colour value. Assuming Lambertian
surfaces, the formal definition is the following: We say that images
I1 and I2 are consistent byP1 and P2 (or p1 and p2) if for each
X ∈P: u1 = P1X, u2 = P2X andI1(u1) = I2(u2). (HereIi(ui) is
the colour value in pointui of imageIi .) This type of consistency
is calledphoto-consistency[Clarkson 2001; Kutulakos and Seitz
1993].

Manual Genetic

Figure 5: Difference between manual pre-registration and genetic
registration.

The photo-consistency holds for accurate estimates forp1 and p2.
Inversely, misregistered projection matrices mean much less photo-
consistent images. The cost function is the following:

Cφ (p1, p2) =
1
|P| ∑

X∈P
‖I1(P1X)− I2(P2X)‖2 . (3)

Here φ stands forphoto-inconsistencywhile |P| is the number
of points in P. Difference of the colour values‖I1− I2‖ can
be defined by a number of different colour models. (For details
see [Janḱo and Chetverikov 2004].) Finding the minimum of the
cost function (3) overp1 andp2 yields estimates for the projection
matrices.

We pre-register the images and the 3D model manually. This yields
a good initial state for the search, which narrows the search domain
and accelerates the method. Manual pre-registration is reasonable
since this operation is simple and fast compared to the 3D scan-
ning, which is also done manually. The photo-consistency based
registration makes the result more accurate.

The genetic algorithm starts by creating the initial population. The
individuals of the population are chosen from the neighbourhood
of the parameter vector obtained by the manual pre-registration.
The values of the genes are from the intervals defined by the pre-
registered values plus a margin of±ε. In our experimentsε was
set to values between 1% and 3%, depending on the meaning and
the importance of the corresponding parameter. The individual that
encodes the pre-registered parameter vector is also inserted in the
initial population to avoid losing it.

We applied the method to different real data. One of them, the Bear
Dataset, is shown in figure 4. The precision of the registration can
be best judged at the mouth, the eyes, the hand and the feet of the
Bear. Figure 5 visualises the difference between the manual pre-
registration and the photo-consistency based registration. The areas
of the mouth, the eyes and the ears show the improvement of the
quality.

3.2 Merging multiple textures

When the image-to-surface registration problem is solved, we still
face the problem of seamless merging (blending) of multiple tex-
tures, that is, images of a surface patch appearing in different views.
There are several ways to paste texture to the surface of an object.
Graphics systems usually have the requirement of two pieces of in-
formation: atexture mapand thetexture coordinates. The texture
map is the image we paste, while the texture coordinates specify
where it is mapped to. Texture maps are usually two-dimensional,
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although during the last years the application of 3D textures has
also become general.

It is straightforward to choose a photo of an object to be a texture
map. An optical image of an object contains the colour information
we need to paste to the surface. Projection of a 3D surface point
X can be described in matrix form:̃v ' PX̃, whereP is the 3×4
projection matrix and̃ means homogenous coordinates [Hartley
and Zisserman 2000]. In this way the texture mapping function is a
simple projective transformation.

The difficulty of image-based texturing originates from the problem
of occlusion, which yields uncovered areas on the surface. An op-
tical image shows the object from only a single view. Therefore, it
contains textural information only about the visible parts of the sur-
face; the occluded areas are hidden from that view. (See example
in figure 6b.) This insufficiency can be reduced – in optimal cases
eliminated – by combining several images.

(a) Input images (b) Partially textured models

Figure 6: Textures cover only parts of the model.

Using the efficient flattening algorithm [Ḱos and V́arady 2003] de-
veloped in our lab, we designed a flattening-based method to create
a texture map based on optical images. Flattening the surface mesh
of an object provides an alternative two-dimensional parametrisa-
tion. The advantage is that this parametrisation preserves the topol-
ogy of the three-dimensional mesh. A texture that covers entirely
the flattened 2D surface covers also the original 3D surface. Trans-
forming optical images to flattened surfaces provides partial texture
maps. (See figure 7.) But since flattening preserves the structure of
the 3D mesh, these texture maps can be merged, in contrast to the
original optical images.

Partial textures Merged texture

Figure 7: Partial and merged texture maps.

Usually, complex meshes cannot be flattened at once, they need to
be cut before flattening. We have chosen to cut by plane, since
the cutting plane can be easily determined manually: three points
selected on the surface define a plane. The 3D mesh is cut in half
by this plane, then the halves are flattened and textured separately.
The problem of re-merging the textured halves will be discussed
later. Figure 8 shows an example of using the algorithm in our
experiments.

After flattening the 3D surface, we convert optical images to flat-
tened texture maps. In contrast to the projection matrix, this map-
ping is complicated, since neither the transformation of flattening
nor the relation between the optical image and the texture map can
be represented by a matrix. We use the mesh representation of the
3D surface for conversion: Given a triangle of the mesh, the vertices
of the corresponding triangles are known both in the optical image
and on the flattened surface. Let us denote these triangles byTi in

(a) (b)

Figure 8: Mesh of Frog and its parametrisation.

the optical image and byTf on the flattened surface, as illustrated
in figure 9.

Image

3D Model

T

F
P

A

Tf
Ti

Flattened Surface

Figure 9: Relation between 3D model, optical image and flattened
surface.T is a triangle,F flattening,P projective mapping,A affine
mapping.

One can readily determine the affine transformation betweenTi and
Tf , which gives the correspondence between the points of the trian-
gles. (Note that the affine transformation is unique for each triangle
pair.) The algorithm of the conversion is the following:

For each triangleT of 3D mesh
If T completely visible

Projection:Ti ← P·T.
Flattening:Tf ← FLAT(T).
Affine transformation:A← AFFINE(Tf ,Ti).
For each pointuf ∈ Tf :

Colourf (uf)← Colouri(A·uf).
End for.

End if.
End for.

Conversion of optical images provides partial texture maps. To ob-
tain the entire textured surface, one needs to merge these texture
maps. Since flattening preserves the topology of the mesh, the tex-
ture coordinates of the partial texture maps are consistent. The only
problem is that of the overlapping areas, where texture maps must
be smoothly interpolated.

We have tested three methods for handling the overlapping areas.
The essence of the first method is to decide for each triangle which
view it is mostly visible from. The second method tries to improve
the first one by blending the views. Finally, the third method ap-
plies the multiresolution spline technique [Burt and Adelson 1983]
for blending the images. Using the blending methods the border
between the neighbouring texture maps becomes nice and smooth,
as one can see in figure 10. The difference between the results of
the second and the third method is insignificant.

As already mentioned, complex meshes need to be cut into pieces
before flattening. The pieces are textured separately; however, re-
merging them yields seams between the borders. These artefacts
can be eliminated by the alpha blending technique. This technique
guarantees the continuity of the texture in the re-merged model, as
illustrated in figure 11.
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Method 1 Method 2 Method 3

Figure 10: Differences between the three merging methods.

4 Using photometric data to obtain bump
maps

The final step of building a photorealistic 3D model by fusing mul-
timodal data is adding the surface roughness in the form of a bump
map that locally perturbs the normal vector of the measured smooth
surface. We are currently working on this problem using the photo-
metric stereo approach [Forsyth and Ponce 2003]. Since this work
is in progress and the development of the method has not yet been
finished, in this section we show just a few initial results demon-
strating the feasibility of the idea.

Figure 12: Two of Frog images for photometric stereo.

The traditional photometric stereo assumes a fixed camera setup
with a certain number of pointwise lighting sources whose orienta-
tions with respect to the object are known. A collection of images
is taken by successfuly switching on each source separately. Two
images of the Frog collection for the photometric stereo are shown
in figure 12. The variation of the pixel values under the varying
illumination can be used to obtain the bump map of the surface, or
the surface normal in the global co-ordinates.

Figure 13: Two of synthetic Globe images for photometric stereo.

Modern methods for the photometric stereo [Forsyth and Ponce
2003] do not assume that the orientations of the lighting sources are
known. To provide additional constraints, more images are taken,
an overdetermined system is received, and a solution for the sur-
face normal is obtained in the least squares sense. The normal is
then integrated to obtain the surface, while taking into account the

bas-relief ambiguity. We use a modified photometric algorithm to
obtain the normal map on the flattened surface.

Figure 14: Normal map on the flattened Globe surface.

Figures 13 and 14 demonstrate the feasibility of our approach. Fig-
ure 13 shows two of synthetic Globe images we use to test the pho-
tometric algorithm. A synthetic globe was created and a relief in-
scription, IPAN, was put onto the surface. (IPAN is the abbreviation
for Image and Pattern Analysis group of our lab.) A part of the word
is visible in figure 13. The images simulate the intensity variation
as the position of the illumination sourse changes. Figure 14 shows
the obtained normal map on the flattened surface of the Globe. Most
of the relief inscription has been successfully recovered.

5 Tests

Our photorealistic modelling system has been tested both on syn-
thetic and real data. The synthetic data provides the ground truth
necessary for assessing the performance of the system in terms of
precision and computational efficiency. In this section, we give fur-
ther examples of processing real measured data and creating high-
quality models using the algorithms described above.

The already mentioned Bear dataset, as well as the Frog, the Shell,
and the Cat datasets were acquired by a 3D laser scanner and a high-
resolution digital camera. In each case, the complete textureless 3D
model (triangular mesh) was obtained by the surface registration
algorithm presented in section 2 and the triangulator [Kós 2001].
Then, some 5–6 images of each object were taken. The images were
registered to the 3D model and blended by the methods presented
in section 3. For the blending, the 3D models were interactively cut
in half. The halves were handled separately and merged only at the
end of the process. The results can be seen in figures 11, 15, 16,
and 17.

6 Conclusion

We have presented a software system for building photorealistic 3D
models. It operates with accurate 3D model measured by laser scan-
ner and high quality images of the object acquired separately by a
digital camera. The complete 3D model is obtained from partial
surface measurements using a genetic based pre-registration algo-
rithm followed by a precise iterative registration procedure. The
images are registered to the 3D model by minimising a photo-
consistency based cost function using a genetic algorithm. Since
textures extracted from images can only cover parts of the 3D
model, they should be merged to a complete texture map. A novel
method is used to combine partial texture mappings using surface
flattening. Test results with real data demonstrate the efficiency of
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the proposed methods. A high-quality model of a relatively small
object can be obtained within two hours, including the processes
of 3D scanning and photography. We are currently working on im-
proving our method that adds surface roughness by measuring the
bump maps with photometric stereo.
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CHETVERIKOV, D., JANK Ó, Z., LOMONOSOV, E., AND EKÁRT,
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Figure 11: Result of texturing the 3D model of Bear.

Two of the images Textureless 3D model

Views of textured 3D model

Figure 15: Building photorealistic model of Frog.
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Two of the images Textureless 3D model

Views of textured 3D model

Figure 16: Building photorealistic model of Shell.

Two of the images Textureless 3D model

Views of textured 3D model

Figure 17: Building photorealistic model of Cat.
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