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Abstract 
This paper considers view-dependent rendering method for 3D 
models represented as binary volumetric octree (BVO) together 
with reference images and corresponding cameras locations. This 
representation was proposed and accepted to MPEG-4 AFX 
(Animated Framework eXtension) as Octree Image Node in the 
Depth-Image Based Representations (DIBR) group. Originally 
DIBR-objects were assumed to be diffuse. In this paper we 
propose the techniques capable to represent and render such 
objects with dynamic lighting, semi-transparency and with image-
based view-dependent effects. The dynamic lighting is achieved 
by reconstruction of normals for each voxels of BVO with 
subsequent object relighting. The information of semi-
transparency is proposed to be stored as alpha channel of images. 
The correct transparency rendering is achieved by using BVO 
format capability to provide fast and correct back-to-front voxels 
traversal. Image-based view-dependence results from the images 
redundancy used in a special way in order to render voxels color. 
Keywords: Octree Image, BVO, TBVO, DIBR, View-dependent 
Octree Image Rendering, MPEG-4 AFX, Implicit Light Field 

1. INTRODUCTION 

Because of increasing requirements to detail level and 
photorealism of 3D object representation and spreading of image-
based and range-based model creation methods, there is a great 
interest in creating representations different from traditional 
textured polygonal ones. Because of their nature, those 
representations are mostly based on real photos and 3D points. 
Let’s review the most important and modern in our view 
representations.   
The group of representations that are closer to point-based than to 
image-based type consists of:  LDI[1], QSplats[2], Surfels[3 and 
RBF(Radial Basis Function) Based 3D Objects[4]. In 
LDI(Layered Depth Image) points are organized in a multi-valued 
depth map. Qsplat is a multiresolution point system based on 
hierarchical structure of spheres of variable size. A more complex 
model is based on Surfels, a hierarchically structured 
representation of 3D object with the aid of local surface elements 
whose attributes include color, normal vectors and depth. A 
spatial cell of the corresponding tree structure contains 
projections of the object surface structured as 3 LDIs. The initial 
point representation is transferred to implicit surface 
representation using RBF [4]. 
Another group contains representations that are closer to image-
based than to point-based type: Plenoptic Modeling [5], 
Lumigraph [6] and Light Fields [7]. The main characteristic of 
this group is that images are the main part of its representations 
and the geometry part is either completely absent or is very 
restricted.  

Depth-image representation falls into the intermediate group 
between the two described above, because it contains a point set 
that is represented as an image. An important example of this 
group is Relief Texture [8]. The more universal representation in 
this group is a DepthImage format [9] that contains a set of depth 
maps and corresponding images. 
Also we should mention Light Fields Mapping representation [10] 
that consists of specially organized images and polygons. This 
representation is different from those discussed in this article but 
also uses view-dependent image-based rendering as in our 
approach. For more details about the similarity of these 
approaches see section 3.2. 
Ordinary voxel-based representations are positioned separately 
from point-based and image-based ones. In most of cases they are 
used to represent 3D volumes or used as auxiliary representations 
for polygonal representation [11] or for 3D reconstruction [12]. 
Also there are articles devoted to creating octrees for effective 
organization of object bounding space, for example [13]. 
We have already proposed a uniform 3D object representation 
that contains image-based and voxel-based representations [14]. 
This representation contains in a separate way color component in 
images and geometry component in binary-volumetric octree 
(BVO) form. At this moment this format is proposed and accepted 
to MPEG-4 AFX as the part of DIBR [9] and is called 
OctreeImage. This format has an effective compact 
representation, where images are compressed using existing lossy 
image compression formats and for BVO a specially developed 
compression scheme is applied with using adaptive arithmetic 
coding and contextual modeling. A more detailed explanation of 
node format can be found in its node specifications [15]. Besides 
compactness, the OctreeImage has advantages inherited mostly 
from volumetric representation, for example a possibility to use 
single data structure for fast, occlusion-compatible hierarchical 
warping, gap-free splatting-based rendering and easy level-of-
detail selection.   
Nevertheless, the separate representation of color and geometry 
also has some disadvantages. The main of them is connected with 
implicit relation between color and geometry components and 
necessity to explicitly determine it at the rendering stage. This 
task is time consuming, so to preserve real-time rendering it can 
be done at the preprocessing stage. But preprocessing can be used 
only for static objects. For streamed objects case there was 
developed another OctreeImage format that uses Textured BVO 
(TBVO) instead of BVO. The textured channel is a hierarchically 
compressed stream with explicit information about what camera 
image corresponds to each voxel [9,15]. 
But if we want to use view-dependent rendering instead of diffuse 
one the TBVO can not help us to render without preprocessing 
because it stores only information about diffuse voxels colors. It 
is view-dependent rendering that is the main topic of this article; 
hence we will discuss only OctreeImage with BVO structure. 
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2. OCTREE IMAGE FRAMEWORK OVERVIEW  

Fig. 1 shows simplified framework for use of OctreeImage. 

 
Figure 1   Framework of OctreeImage Representation 
Such stages as creation of OctreeImage from data obtained from 
synthetic or real world objects and OctreeImage compression are 
described in detail in the previous articles [14,9]. Therefore the 
main attention in this article will be given to view-dependent 
image-based rendering with the use of View-dependent Voxels 
representation. The main distinction compared with the original 
rendering is the generalization of diffuse rendering. Diffuse 
rendering using fix-colored voxels is replaced with rendering 
using view-dependent voxels. View-dependence means that not 
only coordinate projection depends on the point of view of an 
object but also does the color of voxel. 

3. VIEW-DEPENDENT RENDERING 

As has been already mentioned, to render of OctreeImage with 
BVO at real-time it is necessary to construct BVO that contains 
view-dependent voxels for every octree node including leaf 
nodes. For simple diffuse rendering it is enough to assign one 
color to each node but for view-dependent rendering such 
attributes as normal vector, transparency and view-dependent 
voxels can be also used.  
After the viewer position and camera parameters are determined, 
for each voxel color and transparency values are assigned, 
depending on viewing direction and lighting conditions.  

The next stages such as back-to-front octree traversal, splatting 
and subpixel filtering are similar to ordinary diffuse rendering 
[14].  

3.1 View-dependent voxels 
Further we will name voxels, whose projection depends on 
projection direction view-dependent voxels.  
Let's consider three view-dependent rendering types that exist for 
view-dependent voxels: 

• Dynamic lighting rendering 

• Semi-transparency rendering 

• Image-based view-dependent rendering 
The key feature of OctreeImage is that geometry and color 
components are represented essentially separately and in different 
ways. Moreover it is common some voxels can be visible from 
multiple cameras and others can be invisible from all the cameras.  
Let’s discuss all these unclear cases in detail and make clear how 
to use available geometry and color information in the most 
efficient way. We will consider methods of explicit computation 
of colors colors, their normals, semi-transparency and image-
based view-dependent information for each voxel. These methods 
are based on Implicit Light Field function representation 
described below. 

3.2 Implicit Light Field  
It’s logical to start the description with the analysis of Surface 
Light Fields approach [10] dealing with approximation of view-
dependent function on the surface. Surface Light Field is a 4-
dimensional function ),,,( φθsrf  that makes it possible to 
define the outgoing radiance in every viewing direction for every 
point on the surface of an object. The first pair of parameters r,s 
of this function describe the surface location and the second pair 
of parameters describes the viewing direction: 
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In our approach we will approximate view-dependent function not 
only on the surface but also on the whole volumetric space. 
Instead of approximation using a sum of two-dimensional 

functions we will use a sum of samples if (2). These samples are 
not samples of original function but only their approximates. So 
we will approximate 5D view-dependent function 

),,,,( φθzyxf  and it can be called Implicit Light Field: 
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of δ - function. Currently we use the following 

approximation:
caabc bx
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The Implicit Light Field system (2-4) is close to general approach 
of Radial Basis Functions but differs from it because it is 
necessary to normalize procedure (3) and to make interpolation 

requirements much softer: iiiiii fzyxf ≈),,,,( φθ
.  

If function f is determined we can use it for assigning color for 
each voxel by using voxel center and its viewing direction as f 
parameters (2). So, if we determine a set of vectors 

N
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 we will be able to view-
dependently render the OctreeImage. We will denote these 
vectors as oriented points , ik as the significance of an oriented 

point and if as the point value. 

For the purpose of vector determining we will project all non-zero 
voxels on all cameras to obtain depth maps. Let’s stick together 
the obtained depth maps with reference camera images and after 
some additional computations (see in 3.2.3 below) we will obtain 
color, alpha, depth field and normal field at each pixel that is not 
empty on this generalized image. Then we will convert 
generalized images to oriented points by attaching viewing 
direction of corresponding depth maps. Significance coefficients 
should be chosen to satisfy (3). They should be chosen in reverse 
proportion to corresponding depth map pixel magnitude gradient 
(analogous to normal computation, see section 3.4) to increase 
visual rendering quality. Original generalized image pixel values 
are assigned to the oriented point values.   
The following three subsections consider three particular use 
cases of the described view-dependent function approximation. 

3.3 Image-based View-dependent Rendering 
It is possible to achieve any view-dependent effects using image-
based view-dependent rendering, but it has some limitation: 
illumination and other scene conditions relative to OctreeImage 
object are considered static. The more complex view-dependent 
effect we want to produce, the more images we need to store in 
OctreeImage.  
To implement image-based view-dependent rendering it is 
sufficient to use color as value of view-dependent function f.  
By varying parameters of view-dependent function we can vary 
the view-dependence power: 

• If we set dirρ function to constant we get simple diffuse 
rendering without view-dpending effects 

• The larger view-dependence is achieved by making 

coordδ , dirδ functions closer to δ -function. And in the 

limit we can achieve equality: iiiiii fzyxf =),,,,( φθ .  

In practical use high view-dependent power leads to rendering of 
close view point positions that is not fluent enough. Hence, it is 
better to use the golden mean between those two modes. The rule 
can be formulated like this: the more images there are in 
OcreeImage the bigger image-based view-dependence power 

should be used and as a consequence the higher photo-realism 
will be achieved. 

3.4 Rendering with Semi-transparency 
Semi-transparent components can be stored in OctreeImage 
images in alpha-channel and they can represent one more value of 
view-dependent function. 
Using image-based view-dependent rendering it is also possible to 
achieve effects of semi-transparency, but explicit semi-
transparency channel is much more effective.  
The alpha channel is interpolated analogously to color 
components only view-dependent effects are not used: 1≡dirρ . 
So, for each voxel only one semi-transparency value is 
determined. This condition speeds up rendering but in principle it 
is possible to use view-dependent semi-transparency and to 
represent objects with very impressive properties. 
To make correct semi-transparency rendering BVO is traversed in 
back-to-front order with color mixing.  

3.5 Normal Reconstruction and Dynamic Lighting 
Dynamic lighting is achieved by using normals obtained from 
BVO and cameras topology and external to OctreeImage format 
information about light position and material properties. 
So the task is to find normal vectors for each voxel.  
Firstly, all opacity voxels are projected to all reference cameras 
using z-buffer to obtain depth images. Then adaptive blurring of 
depth image is done: the more local depth dispersion the more 
blur is applied. This type of adaptation makes depth images 
smoother and simultaneously preserves places of depth 
discontinuties. 
After smoothing depths normals for each pixel with depth, the 
normals for each voxel are computed:  
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where: 

 
),( yxDi  – depth value at pixel (x,y) for the i-th camera 

iT  – 4-by-4 transform matrix corresponding to i-th camera 

),( yxNi  – normal vector at pixel (x,y) for the i-th camera  

),(* yxNi  – weighted normal at pixel (x,y) for the i-th 
camera.  

),,( zyxN  – normal vector for the voxel (x,y,z), obtained by 
weighted summation of the normals for the cameras that ‘see’ this 
voxel. 
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4. RESULTS 

The rendering results for all three types of the discussed view-
dependent rendering types are shown further. 

 
a.1 

 
a.2 

 
b.1 

 
b.2 

Figure 2: Comparison of point-based (a.1,a.2) and image-based 
view-dependent OctreeImage (b.1,b.2) rendering  
Figure 2 compares point-based rendering and image-based view-
dependent OctreeImage rendering with originally similar 
representation that contains 24 depths images located on the 
surrounding sphere. It is visible that image-based view-depending 
rendering visualizes correctly view-depending surface regions.  
 

  
Figure 3: Semi-transparent rendering  
Figure 3 is a sample of using semi-transparency OctreeImage 
rendering for multiple iso-surface visualization. 

 

 
a                                                     b                                

  
c.1                                                  c.2 
Figure 4: Comparison of smoothed (a) and non-smoothed depth 
normal channel (b) and corresponding to smoothed model Phong 
illumination OctreeImage rendering results (c.1, c.2).   
The OctreeImage rendering can be completely CPU-based or use 
hardware accelerated rendering. There are fast algorithms for 
visualizing BVO structure in software, so the speed for both types 
of rendering is roughly the same. For example, when we use P4-
1700 processor in software mode or GeForce-2 video accelerator 
in hardware-accelerated mode the speed of average objects in 
256x256x256 volumetric space, the frame rates are comparable 
and are more than 30 fps. But the current implementation of the 
described view-dependent rendering exists only in software mode 
and is not optimized. Hence the average frame rate is 3 times 
slower than diffuse rendering. 
In conclusion, we can say that the proposed enhanced rendering 
scheme can significally increase the application domain and 
photo-realistism of MPEG-4 AFX OctreeImage node format. 
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