
View-Dependent Octree Image Rendering

Alexander Zhirkov
MSU Graphics&Media Lab

Moscow, Russia

Abstract
This paper considers view-dependent rendering method for 3D
models represented as binary volumetric octree (BVO) together
with reference images and corresponding cameras locations. This
representation was proposed and accepted to MPEG-4 AFX
(Animated Framework eXtension) as Octree Image Node in the
Depth-Image Based Representations (DIBR) group. Originally
DIBR-objects were assumed to be diffuse. In this paper we
propose the techniques capable to represent and render such
objects with dynamic lighting, semi-transparency and with image-
based view-dependent effects. The dynamic lighting is achieved
by reconstruction of normals for each voxels of BVO with
subsequent object relighting. The information of semi-
transparency is proposed to be stored as alpha channel of images.
The correct transparency rendering is achieved by using BVO
format capability to provide fast and correct back-to-front voxels
traversal. Image-based view-dependence results from the images
redundancy used in a special way in order to render voxels color.
Keywords: Octree Image, BVO, TBVO, DIBR, View-dependent
Octree Image Rendering, MPEG-4 AFX, Implicit Light Field

1. INTRODUCTION

Because of increasing requirements to detail level and
photorealism of 3D object representation and spreading of image-
based and range-based model creation methods, there is a great
interest in creating representations different from traditional
textured polygonal ones. Because of their nature, those
representations are mostly based on real photos and 3D points.
Let’s review the most important and modern in our view
representations.
The group of representations that are closer to point-based than to
image-based type consists of: LDI[1], QSplats[2], Surfels[3 and
RBF(Radial Basis Function) Based 3D Objects[4]. In
LDI(Layered Depth Image) points are organized in a multi-valued
depth map. Qsplat is a multiresolution point system based on
hierarchical structure of spheres of variable size. A more complex
model is based on Surfels, a hierarchically structured
representation of 3D object with the aid of local surface elements
whose attributes include color, normal vectors and depth. A
spatial cell of the corresponding tree structure contains
projections of the object surface structured as 3 LDIs. The initial
point representation is transferred to implicit surface
representation using RBF [4].
Another group contains representations that are closer to image-
based than to point-based type: Plenoptic Modeling [5],
Lumigraph [6] and Light Fields [7]. The main characteristic of
this group is that images are the main part of its representations
and the geometry part is either completely absent or is very
restricted.

Depth-image representation falls into the intermediate group
between the two described above, because it contains a point set
that is represented as an image. An important example of this
group is Relief Texture [8]. The more universal representation in
this group is a DepthImage format [9] that contains a set of depth
maps and corresponding images.
Also we should mention Light Fields Mapping representation [10]
that consists of specially organized images and polygons. This
representation is different from those discussed in this article but
also uses view-dependent image-based rendering as in our
approach. For more details about the similarity of these
approaches see section 3.2.
Ordinary voxel-based representations are positioned separately
from point-based and image-based ones. In most of cases they are
used to represent 3D volumes or used as auxiliary representations
for polygonal representation [11] or for 3D reconstruction [12].
Also there are articles devoted to creating octrees for effective
organization of object bounding space, for example [13].
We have already proposed a uniform 3D object representation
that contains image-based and voxel-based representations [14].
This representation contains in a separate way color component in
images and geometry component in binary-volumetric octree
(BVO) form. At this moment this format is proposed and accepted
to MPEG-4 AFX as the part of DIBR [9] and is called
OctreeImage. This format has an effective compact
representation, where images are compressed using existing lossy
image compression formats and for BVO a specially developed
compression scheme is applied with using adaptive arithmetic
coding and contextual modeling. A more detailed explanation of
node format can be found in its node specifications [15]. Besides
compactness, the OctreeImage has advantages inherited mostly
from volumetric representation, for example a possibility to use
single data structure for fast, occlusion-compatible hierarchical
warping, gap-free splatting-based rendering and easy level-of-
detail selection.
Nevertheless, the separate representation of color and geometry
also has some disadvantages. The main of them is connected with
implicit relation between color and geometry components and
necessity to explicitly determine it at the rendering stage. This
task is time consuming, so to preserve real-time rendering it can
be done at the preprocessing stage. But preprocessing can be used
only for static objects. For streamed objects case there was
developed another OctreeImage format that uses Textured BVO
(TBVO) instead of BVO. The textured channel is a hierarchically
compressed stream with explicit information about what camera
image corresponds to each voxel [9,15].
But if we want to use view-dependent rendering instead of diffuse
one the TBVO can not help us to render without preprocessing
because it stores only information about diffuse voxels colors. It
is view-dependent rendering that is the main topic of this article;
hence we will discuss only OctreeImage with BVO structure.

International Conference Graphicon 2003, Moscow, Russia, http://www.graphicon.ru/

2. OCTREE IMAGE FRAMEWORK OVERVIEW

Fig. 1 shows simplified framework for use of OctreeImage.

Figure 1 Framework of OctreeImage Representation
Such stages as creation of OctreeImage from data obtained from
synthetic or real world objects and OctreeImage compression are
described in detail in the previous articles [14,9]. Therefore the
main attention in this article will be given to view-dependent
image-based rendering with the use of View-dependent Voxels
representation. The main distinction compared with the original
rendering is the generalization of diffuse rendering. Diffuse
rendering using fix-colored voxels is replaced with rendering
using view-dependent voxels. View-dependence means that not
only coordinate projection depends on the point of view of an
object but also does the color of voxel.

3. VIEW-DEPENDENT RENDERING

As has been already mentioned, to render of OctreeImage with
BVO at real-time it is necessary to construct BVO that contains
view-dependent voxels for every octree node including leaf
nodes. For simple diffuse rendering it is enough to assign one
color to each node but for view-dependent rendering such
attributes as normal vector, transparency and view-dependent
voxels can be also used.
After the viewer position and camera parameters are determined,
for each voxel color and transparency values are assigned,
depending on viewing direction and lighting conditions.

The next stages such as back-to-front octree traversal, splatting
and subpixel filtering are similar to ordinary diffuse rendering
[14].

3.1 View-dependent voxels
Further we will name voxels, whose projection depends on
projection direction view-dependent voxels.
Let's consider three view-dependent rendering types that exist for
view-dependent voxels:

• Dynamic lighting rendering

• Semi-transparency rendering

• Image-based view-dependent rendering
The key feature of OctreeImage is that geometry and color
components are represented essentially separately and in different
ways. Moreover it is common some voxels can be visible from
multiple cameras and others can be invisible from all the cameras.
Let’s discuss all these unclear cases in detail and make clear how
to use available geometry and color information in the most
efficient way. We will consider methods of explicit computation
of colors colors, their normals, semi-transparency and image-
based view-dependent information for each voxel. These methods
are based on Implicit Light Field function representation
described below.

3.2 Implicit Light Field
It’s logical to start the description with the analysis of Surface
Light Fields approach [10] dealing with approximation of view-
dependent function on the surface. Surface Light Field is a 4-
dimensional function),,,(φθsrf that makes it possible to
define the outgoing radiance in every viewing direction for every
point on the surface of an object. The first pair of parameters r,s
of this function describe the surface location and the second pair
of parameters describes the viewing direction:

∑
=

=
K

k
kk hsrgsrf

1
),(),(),,,(φθφθ (1)

In our approach we will approximate view-dependent function not
only on the surface but also on the whole volumetric space.
Instead of approximation using a sum of two-dimensional

functions we will use a sum of samples if (2). These samples are
not samples of original function but only their approximates. So
we will approximate 5D view-dependent function

),,,,(φθzyxf and it can be called Implicit Light Field:

∑
=

=
N

i
ii fzyxKzyxf

1
),,,,(),,,,(φθφθ (2)

∑
=

=
N

i
i zyxK

1
1),,,,(φθ (3)

)4())),(),,((())),,(),,,(((),,,,(iidirdiriiicoordcoordii zyxzyxkzyxK φθφθρδρδφθ =

Functions coordρ
, dirρ

are distance functions in coordinate and

viewing direction space. Functions coordδ
, dirδ

are approximates

International Conference Graphicon 2003, Moscow, Russia, http://www.graphicon.ru/

of δ - function. Currently we use the following

approximation:
caabc bx

x
)(

1)(
+

=δ
.

The Implicit Light Field system (2-4) is close to general approach
of Radial Basis Functions but differs from it because it is
necessary to normalize procedure (3) and to make interpolation

requirements much softer: iiiiii fzyxf ≈),,,,(φθ
.

If function f is determined we can use it for assigning color for
each voxel by using voxel center and its viewing direction as f
parameters (2). So, if we determine a set of vectors

N
iiiiiiii fkzyx 1},,,,,,{ =φθ

 we will be able to view-
dependently render the OctreeImage. We will denote these
vectors as oriented points , ik as the significance of an oriented

point and if as the point value.

For the purpose of vector determining we will project all non-zero
voxels on all cameras to obtain depth maps. Let’s stick together
the obtained depth maps with reference camera images and after
some additional computations (see in 3.2.3 below) we will obtain
color, alpha, depth field and normal field at each pixel that is not
empty on this generalized image. Then we will convert
generalized images to oriented points by attaching viewing
direction of corresponding depth maps. Significance coefficients
should be chosen to satisfy (3). They should be chosen in reverse
proportion to corresponding depth map pixel magnitude gradient
(analogous to normal computation, see section 3.4) to increase
visual rendering quality. Original generalized image pixel values
are assigned to the oriented point values.
The following three subsections consider three particular use
cases of the described view-dependent function approximation.

3.3 Image-based View-dependent Rendering
It is possible to achieve any view-dependent effects using image-
based view-dependent rendering, but it has some limitation:
illumination and other scene conditions relative to OctreeImage
object are considered static. The more complex view-dependent
effect we want to produce, the more images we need to store in
OctreeImage.
To implement image-based view-dependent rendering it is
sufficient to use color as value of view-dependent function f.
By varying parameters of view-dependent function we can vary
the view-dependence power:

• If we set dirρ function to constant we get simple diffuse
rendering without view-dpending effects

• The larger view-dependence is achieved by making

coordδ , dirδ functions closer to δ -function. And in the

limit we can achieve equality: iiiiii fzyxf =),,,,(φθ .

In practical use high view-dependent power leads to rendering of
close view point positions that is not fluent enough. Hence, it is
better to use the golden mean between those two modes. The rule
can be formulated like this: the more images there are in
OcreeImage the bigger image-based view-dependence power

should be used and as a consequence the higher photo-realism
will be achieved.

3.4 Rendering with Semi-transparency
Semi-transparent components can be stored in OctreeImage
images in alpha-channel and they can represent one more value of
view-dependent function.
Using image-based view-dependent rendering it is also possible to
achieve effects of semi-transparency, but explicit semi-
transparency channel is much more effective.
The alpha channel is interpolated analogously to color
components only view-dependent effects are not used: 1≡dirρ .
So, for each voxel only one semi-transparency value is
determined. This condition speeds up rendering but in principle it
is possible to use view-dependent semi-transparency and to
represent objects with very impressive properties.
To make correct semi-transparency rendering BVO is traversed in
back-to-front order with color mixing.

3.5 Normal Reconstruction and Dynamic Lighting
Dynamic lighting is achieved by using normals obtained from
BVO and cameras topology and external to OctreeImage format
information about light position and material properties.
So the task is to find normal vectors for each voxel.
Firstly, all opacity voxels are projected to all reference cameras
using z-buffer to obtain depth images. Then adaptive blurring of
depth image is done: the more local depth dispersion the more
blur is applied. This type of adaptation makes depth images
smoother and simultaneously preserves places of depth
discontinuties.
After smoothing depths normals for each pixel with depth, the
normals for each voxel are computed:

() ()
,))0,0,0((])1)[,,(],0)[,,((*(),,(

)),,((
]1)[,(]0)[,(2

1),(

,1,
2

)1,()1,(
,

2
),1(),1(

),(

11*

22

*

∑ −=

++
=

 −−+

−
−−+

−=

−−

i
iii

i

ii

i

iiii
i

TzyxTzyxTNTzyxN

yxNNorm
yxNyxN

yxN

yxDyxDyxDyxD
yxN

where:

),(yxDi – depth value at pixel (x,y) for the i-th camera

iT – 4-by-4 transform matrix corresponding to i-th camera

),(yxNi – normal vector at pixel (x,y) for the i-th camera

),(* yxNi – weighted normal at pixel (x,y) for the i-th
camera.

),,(zyxN – normal vector for the voxel (x,y,z), obtained by
weighted summation of the normals for the cameras that ‘see’ this
voxel.

International Conference Graphicon 2003, Moscow, Russia, http://www.graphicon.ru/

4. RESULTS

The rendering results for all three types of the discussed view-
dependent rendering types are shown further.

a.1

a.2

b.1

b.2

Figure 2: Comparison of point-based (a.1,a.2) and image-based
view-dependent OctreeImage (b.1,b.2) rendering
Figure 2 compares point-based rendering and image-based view-
dependent OctreeImage rendering with originally similar
representation that contains 24 depths images located on the
surrounding sphere. It is visible that image-based view-depending
rendering visualizes correctly view-depending surface regions.

Figure 3: Semi-transparent rendering
Figure 3 is a sample of using semi-transparency OctreeImage
rendering for multiple iso-surface visualization.

a b

c.1 c.2
Figure 4: Comparison of smoothed (a) and non-smoothed depth
normal channel (b) and corresponding to smoothed model Phong
illumination OctreeImage rendering results (c.1, c.2).
The OctreeImage rendering can be completely CPU-based or use
hardware accelerated rendering. There are fast algorithms for
visualizing BVO structure in software, so the speed for both types
of rendering is roughly the same. For example, when we use P4-
1700 processor in software mode or GeForce-2 video accelerator
in hardware-accelerated mode the speed of average objects in
256x256x256 volumetric space, the frame rates are comparable
and are more than 30 fps. But the current implementation of the
described view-dependent rendering exists only in software mode
and is not optimized. Hence the average frame rate is 3 times
slower than diffuse rendering.
In conclusion, we can say that the proposed enhanced rendering
scheme can significally increase the application domain and
photo-realistism of MPEG-4 AFX OctreeImage node format.

Acknowledgments
Samsung Advanced Institute of Technology (SAIT) supported
this research. I wish to express my gratitude to Leonid Levkovich-
Maslyuk for his comments and suggestions. I would like to thank
Boris Mihailovich and Anton Konushin who helped me to
construct the models.

5. REFERENCES
[1] Steven Gortler, Li-wei He, Richard Szeliski. Layered Depth

Images. SIGGRAPH ‘98.
[2] S. Rusinkiewicz and M. Levoy. “QSplat: A multiresolution

point rendering system for large meshes”. Proc. of
SIGGRAPH’00, pp. 343-352, July 2000.

[3] H. Pfister, M. Zwicker, J. Baar, and M. Gross, “Surfels:
Surface elements as rendering primitives”, Proc. of
SIGGRAPH’00, pp. 335-342, July 2000.

[4] Carr et al. “Reconstruction and Representation of 3D
Objects With Radial Basis Functions”, Siggraph 2001

[5] L. McMillan and G. Bishop, “Plenoptic modeling: An
image-based rendering system”, Proc. of SIGGRAPH’95,
pp. 39–46, August 1995.

International Conference Graphicon 2003, Moscow, Russia, http://www.graphicon.ru/

[6] S. Gortler, R. Grzeszczuk, R. Szeliski, and M. Cohen. “The
Lumigraph”, Proc. of SIGGRAPH’96, pp. 43–54, August
1996.

[7] M. Levoy and P. Hanrahan. “Light field rendering, Proc. Of
SIGGRAPH’96”, pp. 31-42, August 1996.

[8] Manuel M. Oliveira, Gary Bishop, McAllister. “Relief
Textures Mapping”. SIGGRAPH 2000.

[9] Yuri Bayakovski, Leonid Levkovich-Maslyuk, Alexey
Ignatenko, Anton Konushin, Dmitri Timasov, Alexander
Zhirkov, Mahnjin Han, In Kyu Park. “Depth Image-Based
Representation for Static and Animated 3D Objects”, IEEE
International Conference on Image Processing, USA, New-
York, 2002.

[10] Wei-Chao Chen, Jean-Yves Bouguet, Michael H. Chu,
Radek Grzeszczuk. “Light Field Mapping: Efficient
Representation and Hardware Rendering of Surface Light”
Fields. Proc. of SIGGRAPH’01, pp. 43–54, August 1996.

[11] Rocchini, P. Cignoni, C. Montani, and R. Scopigno, “The
Marching Intersections algorithm for merging range
images”. Technical Report B4-61-00, I.E.I. -C.N.R., Pisa,
Italy, June 2000

[12] S. M. Seitz and C. R. Dyer. “Photorealistic scene
reconstruction by voxel coloring”. Int. J. of Computer
Vision, 35(2):151–173, 1999.

[13] C.H. Chien, J.K. Aggarwal, "Computation of
Volume/Surface Octrees from Contours and Silhouettes of
Multiple Views", IEEE Computer, 1986, pages 250-255

[14] A.Zhirkov. “Binary Volumetric Octree Representation for
Image Based Rendering”. Graphicon’01. September of
2001.

[15] ISO/IEC JTC1/SC29/WG11 N5397: FDAM of
ISO/IEC 14496-16, Awaji Island, Japan, December 2002.

About the author
Alexander Zhirkov is a Ph.D. student of the Keldysh Institute of
Applied Mathematics, Russian Academy of Sciences. His
research interests are in real time photorealistic image-based
rendering, video and sound compression, fractal and multiscale
analysis, object and speech recognition, artificial neural networks,
human-centered interfaces, chaos and synergetic.

International Conference Graphicon 2003, Moscow, Russia, http://www.graphicon.ru/

