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gumhold@uni-tuebingen.de

Michael Guthe
University of Bonn

guthe@cs.uni-bonn.de

Reinhard Klein
University of Bonn
rk@cs.uni-bonn.de

ABSTRACT

Because of its simplicity, the vertex pair contraction operation be-
came very popular in mesh simplification. It allows for topological
changes during simplification. In this paper we propose the use of
the additional pair contractions of a vertex onto an edge or onto
a triangle and the connection of two edges. The generalized con-
traction operations have several advantages over simple vertex pair
contraction. They allow to repair cracks and self-intersections and
to sew unconnected components with less error. Due to this prop-
erty a simple high-quality out-of-core simplification is possible.

Keywords: mesh simplification, mesh repair, out-of-core simpli-
fication

1 INTRODUCTION

Because of their simplicity, flexibility and wide support by graphics
accelerators, polygonal meshes have become the most commonly
used surface representation in computer graphics. They are used
for rendering of objects in a broad range of disciplines like medical
imaging, scientific visualization, CAD, movie industry, etc. New
acquisition techniques allow for the generation of highly detailed
objects with permanent increasing polygon count. The handling of
huge scenes composed of these high-resolution models rapidly ap-
proaches the computational capabilities of any graphics accelerator.
Level of detail techniques become inevitable. In order to build such
a level of detail representation a large collection of simplification
algorithms exist, that produce high quality approximations of com-
plex models with a reasonable amount of polygons.

Since the generation of 3D models is application-driven and
mostly automatic, numerous models do not have consistent connec-
tivity information. Typical artifacts in these models are T-vertices,
degenerate triangles, self-intersections, gaps, small holes or very
close but topologically not connected surface parts. During sim-
plification the artifacts can lead to unnecessarily large errors or
even to further self-intersections in the simplified model. The pair
contraction operation introduced independently by Popovic and
Hoppe [18] and Garland and Heckbert [6] allows to contract any
two vertices independent of whether they are topologically adja-
cent or just geometrically close. The vertex pair contraction facil-
itates topological modifications but is not general enough tot con-
nect close or even intersecting surfaces with small error early in the
simplification.

In [2] Borodin et al. generalized the vertex pair contraction op-
eration by contraction of a vertex onto an edge. This improves the
sewing potential of the pair contraction simplification algorithm. In
this paper we completely generalize the pair contraction approach
and allow contraction of a vertex with another vertex, onto an edge
or triangle and connection of two edges. The new operations allow
to connect close and intersecting surface parts that are not topolog-
ically incident on the early stages of simplification.

The paper is structured as follows. First we discuss related work.
Then we introduce the generalized pair contraction operations. Sec-
tion 4 details our use of a spatial grid, which is used to find all

potential contraction pairs. Next we detail the simplification algo-
rithm. Selected applications of our method are listed in section 6.
Finally we present results that demonstrate the advantages of the
generalized pair contraction and conclude with some avenues for
future work.

2 RELATED WORK

Mesh Repair. Due to the differences in the inherent structure
of meshes generated by various modeling tools and 3D acquisition
techniques, the approaches handling the errors and degeneracies
vary depending on the source of the data.

Turk and Levoy [20] generate polygonal models from registered
range data, they remove overlaps by clipping them, utilizing a tech-
nique called mesh zippering. The meshes coming from 3D scan-
ners and volumetric data often contain artifacts of the reconstruc-
tion process: small handles and tunnels. Guskov and Wood [10]
conceptualized these astopological noise, identified and eliminated
them by cutting and sealing the mesh, thus reducing the genus and
topological complexity of the model.

Due to the industrial relevance of the problem, a lot of work has
been devoted to repairing polygonal models generated by modeling
tools, mainly CAD systems. Our algorithm differs from the avail-
able techniques as it employs a well established operation borrowed
from the field of mesh decimation and can adapt to the resolution.
Barequet and Kumar [1] determine corresponding edges within an
error tolerance and stitch them together in one pass. Butlin and
Stops [3] present a method for repairing CAD data for analysis and
exchange purposes. Guéziec et al. [8] generate manifold surfaces
from non-manifold sets of polygons by identifying the topological
singularities and decomposing the model into manifold components
by cutting along these singularities. They also describe a stitch-
ing operation allowing to join the boundaries of the components
while guaranteeing the manifoldness. Murali and Funkhouser [16]
first classify the regions of space as either solid or not, and gener-
ate a consistent set of polygons describing the boundary of solids.
Nooruddin and Turk [17] repair the polygonal models by convert-
ing them into a volumetric representation, they subsequently elim-
inate the topological noise by morphologic open and close opera-
tors, and finally reconstruct the polygonal mesh of the so-defined
implicit function. More recently, Borodin et al. [2] introduced the
vertex-edge contraction to remove T-vertices, degenerate triangles,
gaps and holes progressively.

Simplification. Since simplification is one of the fundamental
operations on polygonal meshes, there is an extensive amount of
literature on this topic. However, we are interested only in meth-
ods allowing topology changes during the process. The family of
vertex clusteringmethods has been introduced by Rossignac and
Borrel [19] and has been refined in numerous more recent works,
see e.g. [15]. The algorithms of this family essentially proceed by
applying a 3D grid to the object and for each cell contracting all the
vertices inside the cell. Although the degenerate faces are subse-
quently removed, it is difficult to influence the fidelity of the result
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due to lack of control over the induced topological changes. The
already mentionedvertex contractionoperator [6, 18] offers more
control over the topological modifications, however, without further
processing it possibly generates non-manifold meshes.

Out-Of-Core Simplification. To simplify models of ever in-
creasing size a number of out-of-core simplification algorithms
have been developed. El-Sana and Chiang [5] sort all edges accord-
ing to their lengths and use this ordering as decimation sequence.
Lindstrom [13] uses vertex clustering to reduce the number of ver-
tices. As the representing position of each vertex cluster is com-
puted from an accumulated quadric error metric, the memory re-
quirement of the algorithm is proportional to the size of the out-
put model. For cases where neither input nor output model fit into
main memory an out-of-core vertex clustering [14] was developed.
The multiphase algorithm [7] uses vertex clustering to reduce the
complexity of the input model followed by a greedy simplification
approach and achieves high quality results.

An other way for out-of-core simplification is to split the model
into smaller blocks, simplify these blocks and stitch them together
for further simplification. In [11] this approach is applied to terrain
and in [4] to arbitrary meshes. The approach has the problem that
special care has to be taken at patch boundaries. However as we
will show in this paper the general pair contractions solve them
very elegantly.

Recently, stream decimation algorithms [21, 12] for out-of-core
simplification have been developed, but the resulting model is not
optimal with respect to mesh size and Hausdorff distance of the
simplified model to the original.

3 GENERALIZED PAIR CONTRACTIONS

As already mentioned above, the vertex pair contraction operation
not always sews together geometrically close but not incident sur-
face parts. In some cases a vertex on one part of a mesh is close
to another part, but too far from any vertex on that part. In this
case any vertex contraction between the two parts would introduce
distortions and often also a large geometrical error. Sometimes it is
more favorable to contract a vertex directly with an edge or triangle,
what allows to connect the nearest parts of a mesh and to close the
most narrow gaps first.

But in some cases even these three operators will be not suffi-
cient. Two unconnected regions of a mesh, which are very close
to each other, not necessary have any vertices close enough to the
other part in order to connect the parts without causing distortions.
To enable sewing in such situations we also introduce a contrac-
tion operation which connects two close edges. In summary, we
extend the vertex pair contraction operator to the generalized pair
contraction operator by introducing the new types of contraction:
vertex-edge, vertex-triangle and edge-edge.

In the vertex-edge and vertex-triangle contraction operations an
intermediate vertex v′ is created on the edge or triangle of the con-
traction pair just in order to contract it with the vertexv of the con-
traction pair. The latter is calledcontraction vertex. See Figures 2
and 3 for an illustration. In case of the edge-edge contraction op-
eration we create twointermediate verticesas shown in Figure 4.
Before describing the new contraction operations in more detail we
explain the use of the quadric error metrics with generalized pair
contractions and describe improvements necessary for the preser-
vation of sharp features.

3.1 Order of Operations
For the ordering of operations and to find the optimal position of
a new vertex after the contraction operation, our simplification al-

gorithm uses the technique of quadric error metrics as presented by
Garland and Heckbert [6]. For each facef of the original mesh
a fundamental error quadric Qf (p) is defined as the symmetric
homogeneous 4× 4-matrix, which measures the squared distance
d2 of a point p ∈ R3 to the plane off as d2 = (p,1)Qf (p,1)t .
Each vertexv in the original mesh is assigned an initial quadric
constructed as the matrix sum of the fundamental quadrics of its
incident faces, divided by the order ofv and optionally weighted by
their areas.

When contracting two verticesv1 andv2, the vertex quadrics are
added yielding the quadricQ = Q1 + Q2. This quadric computes
the sum over the two surface patches incident tov1 andv2 of the
squared distances, divided by the order of the appropriate vertex
and optionally area weighted. The location of the new vertexvnew
is set in a way to minimize the quadric erroreq = vTQv.

In our algorithm we do not accumulate quadric errors, instead the
error quadrics are always calculated on base of the current mesh.
New quadrics are calculated at three locations in the algorithm:

• As mentioned above, in the preprocessing phase for each ver-
tex we calculate the initial error quadric.

• When an intermediate vertex is created on an edge or a trian-
gle, its quadric is calculated the same way: as a matrix sum of
fundamental error quadrics of all faces incident to the newly
created intermediate vertex, divided by the order of the vertex
and optionally weighted by their areas.

• After performing the operation we recalculate the quadrics of
the newly created vertex and all adjacent vertices from the
faces currently incident to the vertices.

To ensure that due to certain special cases, the Hausdorff error
introduced by a contraction operation is not greater than a prede-
fined error thresholddmax, before performing the operation we cal-
culate the one-sided Hausdorff distancedv between all simplices
of the original mesh, whose nearest points on the simplified mesh
lie inside the neighbourhoodNs1

⋃
Ns2 of the contraction simplices

and the neighbourhoodNv of the newly created vertexv. HereNv
consists ofv and its incident faces and edges. Ifsn is a vertex,Nsn

consists of the vertex itself and its incident faces and edges; ifsn is
an edgeNsn consists of the edge and its incident faces; finally ifsn
is a faceNsn consists only of the face itself. Ifdv exceedsdmax, we
reject the operation.

Since the error quadrics are not accumulated, we use an approx-
imation d̃s of the Hausdorff distance to organize the possible con-
traction operations in a priority queue:

d̃s = max(ds1,ds2)+
√

1/2∗eq, (1)

whereds1 and ds2 are the accumulated errors of the simplicess1
and s2. The accumulated error of the simplexs is the one-sided
Hausdorff distance from the neighbourhoodNs of the simplexs to
the original mesh.

The first part of this sum (max(ds1,ds2)) is the Hausdorff dis-
tance of the neighbourhoodNs1

⋃
Ns2 of the contraction simplices

before the operation. The quadric erroreq represents the sum of
the squared distances from the newly created vertex to the incident
faces of two contraction vertices. Therefore, the second part of the
sum in equation 1 (

√
1/2∗eq) is an approximation of the distance

between the meshes before and after the operation. Thus, the value
d̃s is a good estimation of Hausdorff distance between simplified
and original meshes. This makes this error metric compatible with
euclidian distances used to find the nearest simplices, as described
in section 4.
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a) b) c)

Figure 1: Simplification with and without feature preservation: a) original model (1972 vertices); b) reduced to 200 vertices without feature
preservation; c) reduced to 200 vertices with features preserved.

Handling of Boundaries and Features. In order to preserve
boundaries we proceed as proposed by Garland and Heckbert. For
each face incident to a boundary edge we generate a perpendicular
plane running through the edge. Then we compute fundamental
quadric for this constraint plane and add it to the quadric sums of
both vertices incident to the boundary edge, divided by the order of
appropriate vertex and optionally weighted by the squared length of
the edge.

A further enhancement to the error quadrics is necessary to pre-
serve sharp features. Figure 1b shows the simplified helicopter of
Figure 1a using the introduced error quadrics as discussed thus far.
Sharp features as the propeller are destroyed. To handle very sharp
edges properly we process them in the same way as boundaries.

As feature edgesand feature verticeswe define all edges and
vertices, whose incident faces lie inside chosen small angleαmax.
Note, that according to this definition boundary edges are also fea-
ture edges. For each detected feature edgee or feature vertexv we
find the average plane of all its incident faces and compute its fun-
damental quadric. This fundamental quadric is then added to the
quadric sums of both vertices incident to the feature edge or to the
quadric sum of the feature vertex. Figure 1c shows the helicopter
simplified with feature preservation to the same number of vertices
as in 1b.

3.2 Vertex-Edge Contraction
The exterior case of this operation, when both the vertex and the
edge lie on boundaries, was described in [2]. Here we allow pairs
of an arbitrary vertex and an arbitrary edge. We proceed as follows
(see Figure 2):
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Figure 2: Vertex-edge contraction operation performs no reduction,
but increases the connectedness of the model.

• Project the contraction vertexv0 onto the edgee= (v1,v2).

• Insert the intermediate vertexv′0 on the edge at the geomet-
ric position of the projection and interpolate its quadric (see
section 3.1).

• Split each triangleti , incident to the edgee, into two triangles
ti1 = (v1,v′0,vi) andti2 = (v2,v′0,vi).

• Perform a vertex contraction ofv0 andv′0.

This operator perfectly allows to sew borders and close parts of
the mesh. It doesn’t decrease the number of vertices but increases
the connectedness of the model. In the case, when both the ver-
tex and the edge are incident to the same triangle, the vertex-edge
contraction is topologically equivalent to an edge flip.

In the manifold case a second flip of the resulting edge would
re-produce the original configuration. This can easily lead to an
infinite number of successive edge flip operations. To avoid this
problem we allow the edge flip, only if an additional criterion is
fulfilled: the minimum angle among all affected triangles has to in-
crease after the operation by a non-zero constant. As the minimum
angle cannot increase by a constant infinitely, we avoid infinite se-
quences of edge flips. At the same time, triangles with acute angles
can be removed, what improves the overall triangle shape.

3.3 Vertex-Triangle Contraction

Here we generalize the vertex pair contraction further by connect-
ing an arbitrary vertex with an arbitrary non-incident face. While
the vertex-edge contraction operation is chosen by the algorithm
mostly on boundaries, this one connects geometrically close sur-
face parts. The vertex-triangle contraction can be split in four steps
(see Figure 3):
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Figure 3: The vertex-triangle contraction operation performs no re-
duction, but increases the connectedness of the model.

• Project the contraction vertexv0 onto the trianglet =
(v1,v2,v3).

• Insert the intermediate vertexv′0 on t at the projection point
and interpolate its quadric (see subsection 3.1).

• Split the trianglet into three trianglest1 = (v1,v2,v′0), t2 =
(v2,v3,v′0) andt3 = (v3,v1,v′0).

• Contract the verticesv0 andv′0.

The vertex-triangle contraction operator neither performs a re-
duction, but does increase the connectedness of the mesh.
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3.4 Edge-Edge Contraction
The third generalized pair contraction operation is useful only in
cases, when two surface parts are close or intersecting, but the dis-
tance between any vertex from one part to another part is signifi-
cantly larger than the distance between two edges.

We proceed as in the vertex-edge contraction, but insert interme-
diate vertices on both edges (see Figure 4):
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Figure 4: The edge-edge contraction operation increases the con-
nectedness of the model by cost of the insertion of one vertex.

• Find the shortest distance between edgese1 = (v11,v12) and
e2 = (v21,v22).

• Insert the intermediate verticesv10 andv20 at the projection
points and interpolate their quadrics (see section 3.1).

• Split each trianglet1i incident to the edgee1 into two triangles.

• Split each trianglet2i incident to the edgee2 into two triangles.

• Contract the verticesv10 andv20.

We allow edge-edge contraction, only if the projection points lie
inside the edges.

4 SPATIAL SEARCH DATA STRUCTURE

In order to avoid a quadratic algorithm to pair close simplices for
the contraction operations a spatial search data structure supporting
nearest simplex queries is necessary. The data structure must be
able to handle vertices, edges and triangles. Furthermore it must be
dynamic as simplices are eliminated and sheared during the simpli-
fication process. We chose to use a regular grid for the spatial search
because it performs well in static and dynamic environments [22]
and is easy to implement. In each grid cell we stored a list of the
simplices partially or completely contained in the cell.

In the beginning of the simplification process we used a grid with
uniform edge length of twice the average edge length of the model,
such that each simplex was in average contained in one or two cells
allowing for fast insertion and removal. During the simplification
process we kept track of the increasing average edge length and ev-
ery time it exceeded the grid edge length, we destroyed the grid,
created a new one of double grid edge length and inserted all re-
maining simplices to the new grid. In the case of models with low
variance in the simplex size we achieved with this simple strategy,
that in average each simplex had to be entered in a constant number
of grid cells only.

4.1 Simplex Insertion and Removal
To insert a vertex we simply compute the enclosing cell and add
the vertex to its list of contained simplices. Edges and triangles can
penetrate more than one cell into which they had to be entered. In
the case of an edge a simple incremental algorithm could be used
to trace the penetrated cells along the edge. For triangles we im-
plemented a not optimal but simple solution. First we collected

all cells intersected by the bounding box of the triangle. Then we
sorted out the actually penetrated cells by a marching cubes like
strategy. Each of the grid vertices from intersected cells was classi-
fied to beabove, belowor outsideof the triangle in consideration.
Finally, the triangle was inserted in all grid cells with at least one
vertex classified above and one classified below. As each triangle
was in average inserted into a small number of cells the presented
strategy worked reasonably fast.

For fast removal we stored for each vertex a pointer to the list
item in the enclosing cell such that it could be removed in constant
time. Similarly, we kept for each edge and each triangle a list of
pointers to list items such that any simplex could be removed in
time proportional to the number of penetrated cells.

Simplices incident to contraction vertices move in space during
the contraction operation. It turned out that insertion and removal
was so fast that it did not pay off to implement an optimized move
operation for the regular grid. Instead we simply removed the sim-
plex before the contraction operation and inserted it again after-
wards.

4.2 Distance Sorted Nearest Neighbour
Queries

For our simplex pairing strategy as described in the next section it
is necessary to find for each vertex besides the adjacent vertices,
the closest non-incident simplex, and for each edge the closest non-
incident edge. We designed a general algorithmic scheme to find
the closest simplex of a vertex or an edge, i.e. theseed simplex.
The scheme exploits two priority queues, thecell queueto store
the next to be considered grid cells sorted by increasing distance to
the seed and thesimplex queueto store the non-incident simplices
from the considered cells also in increasing distance from the seed.
The crucial idea is that the head of the simplex queue is the closest
simplex to the seed, only if the head of the cell queue, i.e. the
closest not yet considered cell, is further apart from the seed. Now
we can state the closest simplex search algorithm

• given a seed vertex or edge, initialize the simplex and cell
queues to be empty

• lookup theseed cellspenetrated by the seed, add all contained
non-incident simplices to simplex queue and the cells adjacent
to the seed cells to the cell queue

• while the simplex queue is empty or the distance of the closest
not considered cell is smaller than the closest simplex

– extract the head of the cell queue, add all contained non-
incident simplices to the simplex queue and add the not
considered adjacent cells to the cell queue

• return the closest simplex from simplex queue

For the closest simplex algorithm the following distance compu-
tations needed to be implemented: distance from vertex to vertex,
edge, triangle or cell and the distance from edge to edge or cell. To
avoid the square root operation we sorted the cells and simplices
by the squared distance. As we were looking for the closest sim-
plex, the distance computations from a vertex to an edge or triangle
could be discarded if the orthogonal projection of the vertex did not
fall inside the edge or triangle, because in this case there must be a
vertex incident to the edge or an edge incident to the triangle closer
to the seed vertex. The squared distance from a vertex at locationp
to an axis aligned box with lowest coordinates vectorl and highest
coordinates vectorh can be computed by

dist = ∑
α∈{x,y,z}

max{0, lα − pα , pα −hα}2. (2)
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The distance from an edge to a cell is quite complicated to com-
pute. We used the following simple and efficient strategy. We pa-
rameterized the edge overλ ∈ [0,1] as p = o+ λ · v, plugged this
expression into equation 2 and minimizeddist(λ ) over[0,1]. Equa-
tion 2 was only evaluated on values where the selection of the max-
function changed and on the extremes in-between. As the distance
from a point moving on a straight line to a convex object can only
assume one minimum in a connected region, it was sufficient to
follow λ until it increased.

5 SIMPLIFICATION ALGORITHM

Our simplification algorithm can be split into the initial preprocess-
ing phase and the decimation loop itself. The algorithm proceeds
according to an increasing error, that is caused by contracting two
simplices, which we callcorrespondence pair. All correspondence
pairs are ordered in a priority queue.

5.1 Preprocessing
After the acceleration grid (see section 4) has been initialized, we
identify the corresponding pairs for subsequent decimation opera-
tions.

For the priority queue algorithm to work properly, the opera-
tion causing the minimum error needs to be the first element in the
queue. This can either be a manifold operation (edge collapse or
edge flip) or a non-manifold one (vertex contraction or edge-edge
contraction). As the error caused by manifold operations is not re-
lated to the distance by which the contraction vertices move, we
need to consider all possible manifold-operations. In case of non-
manifold operations, the caused error is at least half the distance
between the contracted simplices. Therefore, we search the corre-
sponding simplices of each vertex or edge with a maximum search
distance of 2∗ l and consider only the closest corresponding sim-
plex. In case of the search for the corresponding simplex of a ver-
tex, l is the length of the edge incident to the vertex that causes the
minimum error if contracted. When we search for the correspond-
ing edge of an edge,l is simply the length of the edge itself.

For each vertexv we proceed as follows:

• For all incident edges the error that would be introduced if
the edge was collapsed is computed according to equation 1.
We choose the edge with the minimum errorεm and calculate
its lengthl . Note, that the grid data structure automatically
discards incident edges and triangles.

• Settingv as a seed vertex, we search in the grid with a maxi-
mum search distance 2∗ l for the closest non-incident simplex
(vertex, edge or triangle) using the algorithm described in 4.2.

• If a simplex is found within the 2∗ l distance, we compute the
errorεn, which will be introduced by contracting vertexv with
the found simplex according to 1.

• We compareεm andεn and assign the operation with the min-
imal errormin(εm,εn) to the vertexv.

For edges only non-incident edges have to be considered as can-
didates. For each edgee0 with length l we search the grid with a
maximum search distance of 2∗ l usinge0 as a seed edge for the
algorithm described in 4.2. During this search the algorithm guar-
antees that the points realizing the minimal distance betweene0 and
the found edgee1 are in the (open) interior of the two edges. For
such two edges we compute the introduced error according to 1.
Note, that we find the corresponding edge only for some edges.

After the search is complete, references to the found simplices
are stored for all vertices and some edges. Vice versa, each simplex
stores references to all vertices and edges pointing onto it.

Last but not least, the pairs are inserted into a priority queue
according to their associated errors.

5.2 Decimation Loop
At each step of the decimation loop we first take the pair with the
minimal error from the queue.

Prior to perform the operation determined by this pair, the fol-
lowing tests are performed:

• Normal test.Here we check that the normals of triangles af-
fected by the operation do not change by more thanαmax.

• Minimum angle test.This test is performed only if the oper-
ation is an edge flip. We check if the minimum angle among
all affected triangles increases by at leastβmin. As described
in section 3.2, this avoids endless loops while allowing to im-
prove the shape of triangles.

• Error test. We calculate local Hausdorff distance from orig-
inal to simplified mesh after performing the operation, and
check if it doesn’t exceed the global simplification threshold
dmax, as described in section 3.1.

• Collision test.Finally, the collision detection is done, as de-
scribed by Gumhold et al. in [9]. This test allows to detect
and avoid self-intersections which could occur as a result of
the contraction operation.

When the operation is discarded because one of the above tests
has failed, we put it into the second queue ofdiscarded operations,
otherwise we perform it.

After performing the operation we have to update all affected
pairs. To explain this process, let’s defineVc as the set of vertices
that collapsed to a vertexv, Ec andTc as the sets of edges and tri-
angles changed by the operation,Er andTr as the sets of edges and
triangles which were removed. We proceed as follows:

• For each vertex inVc and each edge inEc∪Er , we remove
previous correspondences.

• We find correspondences forv and each edge inEc as de-
scribed above.

• For each vertex, which corresponds to an edge inEc∪Er or
a triangle inTc∪Tr , we search again for the best correspon-
dence.

• For each edgee, which corresponds to an edge fromEc∪Er ,
we find a new correspondence.

5.3 Double Queue Strategy
As described before, some pairs are discarded if one of the above
tests fail. But it’s not desirable to simply reject the operation. Dur-
ing simplification the neighbourhood of the considered pair might
change and the reason of its rejection vanish. Therefore, we do not
want to loose the operation.

On the other hand we cannot simply insert the discarded opera-
tion back into the priority queue, since its error is the smallest one
and it would be taken from the queue again in the next step causing
an infinite loop.

One strategy to keep invalid operations is to assign the discarded
operation to all simplices that caused the invalidity. If a simplex is
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Figure 5: Simplification with only vertex pair contractions (a - d) and with generalized pair contractions (e - h). While in the first case some
gaps between patches remain even at the coarsest resolution, in the second case they all are closed at the early stage.

removed or changed in a contraction operation, all of the discarded
operations attached to it are reconsidered. Unfortunately, this strat-
egy demands for complex data structures and a large amount of
computations. Therefore, we used a simpler heuristic strategy.

We put each discarded operation into a second queue ofdis-
carded operations. We considered one randomly selected simplex
from this queue once ink simplification steps and after establishing
a new correspondence for it we reinserted it into the first queue. We
did it in the way to ensure that the frequency of reinsertion of dis-
carded elements into the first queue is approximately proportional
to the size of the second queue. When the first element was put
into the second queue we initializedk by the number of elements
in the first queue and decremented it by one in each simplification
step. Each time a further element was put into the second queuek
was updated as follows:k := k∗ N2

N2+1 , whereN2 is the number of

elements in the second queue. Ifk became zero it was set toN1
N2

,
whereN1 is the number of elements in the first queue.

6 APPLICATIONS

In many cases the well-established decimation techniques such as
vertex pair contraction simplification are entirely sufficient. At the
same time, for some classes of models and in some certain applica-
tions the proposed method can deliver much better results.

6.1 Controlled Topology Modifying Sim-
plification and Mesh Repair

Meshes from different sources like remote sensing, medical scan-
ning, CAD and even scientific computing contain degenerate faces,
T-vertices, narrow gaps and cracks. In subsequent processing steps
and applications including finite element analysis, surface smooth-
ing, model simplification, stereo lithography and milling such de-
generacies lead to severe artifacts, often due to lack of consistent
connectivity information. The industrial relevance of this problem

is emphasized by the fact that as an output of most of the com-
mercial CAD/CAM and other modeling tools, the user usually gets
consistent meshes only for separate polygonal patches as opposed
to the whole mesh. Mesh repair aims at creating a similar model
but without its flaws. To achieve this goal the geometry as well as
the topology of the given mesh has to be modified.

An important issue in the repair process is the ability of the user
to specify the exact size of features like holes, gaps and cracks that
should be removed from the model and of course, in an intuitive so-
lution small features should disappear before larger features. Using
our new generalized pair contraction algorithm this can easily be
achieved. During the simplification process features are removed
in the order of increasing Hausdorff distance to the original mesh
and therefore according to the size of the features themselves. In
order to repair a mesh, the user specifies a maximum size of fea-
tures that should be removed and then simplification operations are
subsequently performed until the specified threshold is reached. An
example is given in Figure 5, where gaps and cracks in the triangu-
lation of a steering wheel are successively removed and holes are
closed in the expected manner. Note, that without mesh repair op-
erations a standard simplification technique will fail to simplify the
model adequately.

In addition to its ability to repair meshes in an intuitive and effi-
cient way the new method using generalized pair contractions often
results in much better decimation results than standard simplifica-
tion techniques with vertex-vertex contractions only (see Figure 6).
Furthermore, our algorithm is particularly useful for the simplifi-
cation of the models consisting of a large number of unconnected
parts, such as industrial machines. Such models are generated by
CAD/CAM and other geometric modeling tools.

6.2 Out-of-core Simplification
Since the generalized pair contractions close gaps more efficiently
than vertex pair contractions a simple and fast out-of-core simplifi-
cation is possible by cutting the model into subparts and simplifying
each subpart independently. Gaps are automatically closed when all
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Figure 6: The original model of microscope with 4467 vertices (a),
simplified with only vertex pair contractions (b) and with general-
ized pair contractions (c) to 250 vertices.

subparts are simplified together. To simplify gigabyte models the
partitioning and independent simplification is applied recursively.

The model is partitioned by cutting the geometry of the node into
eight subparts and storing it in its children if it contains more than
Tmax triangles. The partitioning is repeated until no node has to be
cut anymore. If no geometry is contained in a node it is marked and
not partitioned further. In this way a sparse octree is build.

Since the whole geometry of a node does generally not fit into
the main memory, the vertices and normals of the mesh are stored in
blocks and swapped in and out from disk using a last-recently-used
(LRU) algorithm. The indices of the triangles need not to be stored
in memory and therefore, can be streamed from the geometry file of
the node to the files of its children. This is accomplished by loading
the actual triangle from the geometry file of the node, cutting it
and then saving the generated triangles in the child geometry files.
After the triangle is cut it is not needed any more. Therefore, only
the actual triangle and the triangles generated from it are stored in
memory. When first saving all triangles in the root node, the vertex
normals are calculated.

At each partitioning step every triangle is cut with the three
planes dividing the node into its children and the resulting trian-
gles are stored in the appropriate geometry files. When a triangle
edge is cut, the normal of the new point is calculated by linear inter-
polation. Note that new vertices may have the same coordinates as
existing vertices, but this is resolved when the whole tree is build.
After partitioning the triangles of a node and storing it in its chil-
dren, the geometry file of this node is not used any more and is
deleted.

When the partitioning is complete new indices for the leaf node
triangles are calculated and duplicate points are removed.

The total complexity of the partitioning algorithm isO(nlogn),
since on each level of the octree all triangles need to be processed
once.

After the partitioning the geometry contained in the leafs of the
octree is stored on disk. Starting from the geometry of these nodes
the model is simplified recursively from bottom to top with a con-
stant resolutionresdepending on the node size using the following
algorithm:

• At every level of the octree gather the simplified geometry
from all child nodes that are two levels below the current
node (or the original geometry if there is no pre-simplified

geometry at this depth). Its approximation errorεprev is then
the maximum error of the simplified geometry in these child
nodes or zero.

• Simplify the resulting geometry as long as the Hausdorff dis-
tanceεh to the gathered geometry is less thanεs = enode

res −
εprev, whereenode is the edge length of the currents nodes
bounding cube andres is the desired resolution in fractions of
enode.

• Store ε = εh + εprev as approximation error in the current
node.

By using the children at two levels below the current node in-
stead of its direct children the simplified geometry contains less
triangles, since the approximation of the real geometric error is bet-
ter. This is due to the fact that the difference between the estimated
geometric errorε and the real geometric errorεreal is low, since:

εreal ≥ εs =
enode

res
− εprev≥

enode

res
− enode

4· res
=

3
4

enode

res
=

3
4

ε (3)

and thus3
4ε ≤ εreal ≤ ε.

Starting with the combination of already simplified geometry
greatly reduces the computation cost and still leads to high qual-
ity drastic simplifications. This is due to the fact that because of the
constant resolution the number of triangles in the gathered geome-
try remains almost constant independent from the depth of the cur-
rent node and therefore, the number of triangles in the base geome-
try of this part of the object. This means that the total simplification
time depends only linearly on the number of leaf nodes and thus lin-
early on the number of triangles in the base geometry. Therefore,
the total time for this out-of-core simplification algorithm sums up
to O(nlogn).

7 RESULTS

The first example in this section demonstrates the model of a steer-
ing wheel1. A lot of artifacts, resulting from improper tessellation
of a trimmed NURBS surfaces, are present in this model. Figure 5
(a - d) shows several steps of a simplification algorithm which per-
forms only vertex pair contractions. Many gaps between separate
patches, hardly recognizable in the original model, have not been
sewn together. Some of them have been transformed to real holes
and remain even in a coarse model with only 125 vertices. In con-
trary, the new simplification algorithm which performs also gener-
alized pair contractions allows to close such narrow gaps already at
the early stages as shown in Figure 5 (e - h). In a model reduced to
500 vertices all these artifacts have been eliminated, only the large
holes inherent to the model remain.

Figure 6 shows the model of a microscope. The original model
in 6a looks perfect but some triangles in the upper part of the tube
are missing. Figure 6b depicts the model simplified with vertex pair
contractions only. As can be seen, after simplification to 250 ver-
tices the holes in the tube not only remain but have increased. Fur-
thermore, the mirror at the bottom originally consisting of several
independent parts becomes strongly corrupted. The model in 6c
was simplified with generalized pair contractions. As expected, the
holes in the tube were closed and also the mirror is simplified ade-
quately.

Finally we compare our out-of-core simplification (Figure 7b)
with standard quadric error metric simplification (Figure 7a). Both
simplified models have 18338 faces. At the same time, their cor-
responding relative Hausdorff errors (over the bounding box diag-
onal) are 0.26% and 0.79% respectively. It is clearly visible, that

1This model was kindly provided by DaimlerChrysler AG
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Figure 7: Simplification results for the Happy Buddha model: a) QEM simplification; b) out-of-core simplification with generalized pair
contractions. Both models were reduced to 18338 faces. Their corresponding relative Hausdorff maximum errors (over the bounding box
diagonal) are 0.79% and 0.26% respectively.

details (e.g. the necklace and the mouth) and silhouettes are better
preserved by our algorithm. The very small error of our method is a
result of rejection of contraction operations which would introduce
a too large Hausdorff error (see section 3.1).

8 CONCLUSION

In this work we presented an important strategy to generate high
quality simplified models. We introduced the generalized pair con-
traction operations. They not only allow to remove gaps and holes,
but also seamlessly integrate the automatic connection of close sur-
face parts in the most general setting and the resolution of initial
self-intersections during the simplification process.

In future work we want to find out how generalized pair contrac-
tions work in combination with different error metrics.
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