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Abstract 
The paper is devoted to efficient algorithms for computer 
simulation of water surface with waves. The water surface is a 
usual component of virtual environment in trainers/simulators and 
games and often should look as highly realistic as possible, which 
leads to sophisticated algorithms. On the other hand, these 
algorithms are aimed at real time mode, and their high speed is 
crucial. This paper embraces a number of techniques covering all 
three steps of water simulation: the surface generation, optical 
effects imitation and building a polygon mesh. Some of the used 
techniques are well known; we have adapted them to real time 
requirements. Some new algorithms were developed. There are 
presented results of implementation of these three steps 
altogether:  on up-to-date personal computers we can calculate 
and render the surface 30 times per sec and spend at most 8 ms for 
each frame. 

Keywords: real-time rendering, water surface simulation. 

1. INTRODUCTION 

Today there are a lot of non real-time tools for creating different 
types of wavy water surface and even more tools for rendering 
this surface. At the same time there are not many techniques to 
provide real-time applications with simulated water of realistic 
looking visual quality. Of course, major problem is performance 
restrictions. For example, we had to spend for the simulation 
calculations not more than 25% of overall processor time and to 
reach rendering speed 30 frames per second and higher. So our 
goal was to develop fast enough simulation that gives us realistic 
visual results and fits into performance restrictions. Our target 
platform is PIII-733, with GeForce 3 Ti. 
 
Logic of water surface simulation brings us to the idea of three 
main blocks that form entire simulation task: 
• simulation of the water surface itself (getting height field on 

each frame),  

• optic effects (such as reflection, refraction) simulation,  

• rendering technique, i.e. the way of forming triangle mesh 
for visualization of the surface. 

 
In this paper we are discussing methods for simulating wavy, but 
not stormy water surface in areas away from the shore with 
reflection and refraction only.  

2. PREVIOUS WORK 

Water surface simulation itself (here we mean the surface 
simulation only, i.e. without rendering) is actually very popular 
direction of research. There are many approaches to the problem. 
Some of them are based on solving Navier-Stokes equations in 2D 
[2] and 3D [4]. Some of them employ simplified water models: 
small amplitude waves [4] and shallow water waves [7, 10]. For 
example, in the paper [8] a shallow water waves model is used to 
create waves near the shore. There is a method based on the idea 
of approximating water volume with columns connected by pipes 
[1]. It is used to produce animation of splashing fluids. Fournier 
and Reeves developed a simple method of representing water 
surface using Gerstner model [5]. The mentioned methods are 
either highly performance consuming or give (when using too 
coarse grid) unrealistic results. One of the latest methods is based 
on using fast Fourier transformation (FFT) to produce tilable 
height map [11]. This method is rather scalable and so can be used 
not only for high-quality water animation for video, but in real-
time applications also. This is why we have chosen it as a core of 
our water surface simulation method. 
 
Common approach for the optic effects simulation is ray-tracing 
or reverse ray-tracing [13]. These methods are widely used in 
commercial products like Blue Moon Rendering Tools™1 or 3DS 
MAX™. One of the models of light scattering in water volume 
and water color dependence on different parameters is described 
in [9]. Some real-time methods of realistic simulation are 
described in [6]. It seems that nowadays it is the most advanced 
work on real-time optic effects simulation, so we used and 
evolved some ideas from it. 
 
Actually, in the current papers there is not much information 
about way of creating triangle mesh for water surface rendering. 
This is obviously because realistic water surface simulation is still 
rarely used in realtime applications where highly optimized 
geometry is really needed. Most realtime applications with the 
live water are actually only demos like NVidia TLWater demo2 or 
Chen’s demo3, in which water surface is bounded by walls of the 
pool. These demo applications always use uniform grid, which is 
inapplicable for large water surfaces. Standard continuous LODs 

                                                                 
1 http://www.exluna.com/products/bmrt/ 
2 http://developer.nvidia.com/view.asp?IO=demo_pool 
3 http://www.unet.univie.ac.at/~a9104678/ChengineOrg/ 
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techniques like ROAM [3, 12] or adaptive quad-tree [14] are too 
complex and performance consuming to be used as method of 
water surface tessellation in real-time.  
 

3. BUILDING WATER SURFACE 

As it was said earlier the core of our water simulation is based on 
Tessendorf’s method described in [11]. In short, this method is 
based on water surface representation given by the following 
expression: 
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spectrum that defines surface configuration. 
This representation is derived from model of small amplitude 
waves in the case of absence of waves with  cylindrical symmetry 
[10]. Following Tessendorf, we transform this representation for 
2q x 2q (2q = N) grid and get 
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Using this equation and changing indices limits we can rewrite (1) 
as  
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So, if we know H(u,v,t) – the waves spectrum, we can use FFT to 
get h values in all grid points at once. Note that according (4) 
resulting height map is repeatable (tilable).  
 
Oceanographic researches show that (4) describes wind-driven 
waves in the open ocean close enough. They also show that 
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r

coefficients are Gaussian distributed random numbers with 

zero mean value and standard deviation depending on k
r

. 
Deviation spectrum is well known for different waves kinds. 
There are several analytical semi-empirical models for this 
spectrum. Tessendorf used Phillips spectrum for wind-driven 
waves:  
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where g
wL

2r
= is the largest possible wave arising from 

continuous wind with the speed w and A is just a scale coefficient 
defining waves height. 
We modified this spectrum for better control under waves shape: 
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Parameters k* and l allow us to cut too long and too short waves, 
parameters γ+, γ- along with w allow us to control oblongness of 
waves. Making γ+ and γ- different leads to water with waves 
moving in a certain direction.  

Knowing Ph we can write down )(
~ kh
r
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where ξr and ξi are ordinary independent draws from a Gaussian 
random number generator, with zero mean value and the standard 
deviation equal to 1. 

According to the model of small amplitude waves gk=ω (in 

the case of constant depth d, )tanh(kdgk=ω  (see [10] for 
details). Now we have everything to calculate H matrix for FFT. 
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Actually, the height map is not all that we need. We also need a 
normal to the surface at each grid point. In [11] and [6] it is 
proposed to use another FFT to get normals matrix. But it is still 
needed to fit into performance restrictions so we just used finite 
difference method to get the normals. The result of such 
optimization is visually acceptable. 
 
Since resulting surface is the sum of the number of sine waves, 
which  tops can not be sharp as it is in a real life (see Fig. 1), we 
need to modify the grid to sharp them. The corresponding method 
is described in [11] and [6]. In short, every grid point is displaced 
according to the formula: 

                  ),( 00 txDxx rrrr λ+= ,                          (9) 

where λ is a parameter that controls degree of grid modification. 
Offset D is given by the formula: 
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But this method has great disadvantage: it needs one more FFT. 
Instead of it we use simpler way for calculation of the offset:  
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where M is the height map. 
This simplified method produces a bit worse result, but it is still 
acceptable visually. Parameter λ should be chosen carefully to 
avoid self-intersection of water surface. 

It is important to note that normals in the grid points should be 
recalculated after this modification. For a grid quad with the 
height hij at ij-th point, point offsets δxij and δzij and grid step s 
(using expansion in Taylor series) we can write down a simple 
system of linear equations from which we can get: 
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So, the new normal is:  
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4. OPTICS EFFECTS IMITATION 

In this work we present two “models” for imitating optics effects. 
They can be called “reflection and 
refraction” and “sky reflection”. 

4.1. “Reflection and 
refraction” 

The first model is briefly described in [6]. The base idea is clear: 
the whole scene (except water) is rendered into main camera 
forming “refraction” texture. Then camera is reflected as shown 
on Fig. 2. Rendering into this camera produces “reflection” 
texture. Then using projection mapping, the textures are mapped 
onto the water surface and mixed, using Fresnel coefficient. This 
technique works fine for a plane water. For oscillating water we 
need to take into account the normal change to get the correct 
result. It can be done in such way: in every grid point we calculate 
the reflection ray and intersect it in with the plane raised on hr 
above the water plane; intersection point is then projected into 
camera to form texture coordinate for the grid point. This method 
is illustrated by Figure 3. Reflection vector is given by the 
formula: 
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where p
r

- grid point position, nr  - grid point normal, c
r

- camera 
position.  

This method actually is nothing more than good imitation of 
reflection.  
Texture coordinates for “refraction” are calculated in the same 
way except for three things: plane is lowered, refraction vector is 
used and intersection point is projected to main camera. 
Refraction vector formula is more complex than reflection one: 
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Figure 1.  Photo picture of Neva river waves. 

Figure 2. "Reflected" 
camera 

Figure 3. The way of "reflection" texture mapping 
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To mix “reflection” and “refraction” textures we need to calculate 
Fresnel coefficient at every grid point. Its formula is also complex 
enough: 
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(We have to notice that formula for Fresnel coefficient given in 
[6] is wrong. A mistake is in expression for value g.) Since this 
formula is very expensive to compute per vertex we use its 
approximation proposed in [6]. We approximate it by the function: 

                     ( ) α−+= kkG 1)( ,                              (17) 

where α is coefficient corresponding to relative refraction index. 
Examples of correspondence are 
given in Table 1. 
 
To implement this method we 
need to code two additional 
renders of the whole scene, code 
one vertex shader (containing 
reflection and refraction vectors 
calculation, code for finding 
intersection points, projection to 
cameras and Fresnel coefficient 
evaluation) and one pixel shader 
(mixing 2 textures according per-pixel interpolated Fresnel 
coefficient). But that is only the beginning. If somebody codes 
this algorithm “as is”, he will surely encounter two problems.  

 
First, there are texture 
misses. Water with waves 
reflects a bit more of the 
scene than the plane 
water. It also refracts 
more of the underwater 
scene than visible in main 
camera. This idea is 
illustrated on Fig. 4.  
 
To cover this texture 
misses we increase FOV (field of view) for the cameras: a little 
for reflection camera and on 10-20% for main camera when 
rendering refraction scene. Also to avoid artifacts if texture miss 
happens we use clamp texture addressing. Fig. 5 shows how 
camera FOV adjustment affects the picture. 
 
The second problem is more difficult. Let us examine reflection 
case: the problem appears when underwater objects are rendered 
into “reflection” texture (see Fig. 6). To avoid this we just need to 
skip underwater objects while rendering into “reflection” texture. 
The same situation is for refraction: we must skip objects, which 
are above water surface. Objects crossing the surface should be 
clipped. Clipping can be performed by user clip plane technique 

(on GeForce 2) or texkill pixel shader instruction (on GeForce 3 or 
later). In the second case, all objects that intersect water surface 
should be rendered through vertex shader that copies vertex height 
above the surface to texture coordinate which is used in pixel 
shader to mask the pixel that is under/above water. 

 
Figure 5. Scene that shows FOV artefacts at refraction (FOV is 
not adjusted (left); FOV increased 20% (right)). Water surface is 

the same in both cases. 
 
We must also say some words about texture resolution. Of course, 
the best case is if the texture resolution matches output resolution. 
But it might be too expensive. Experiments showed that 
everything looks fine enough with the texture resolution 1.5 times 
less then output one. Fig. 11 shows the result of this approach. 

 

4.2. “Sky reflection” 
This method can be used in case of invisible or nearly invisible 
bottom, for the open water (or the water that does not reflect 
anything except sky). It is based on per-pixel cubic environment 
mapping. So we need bump and cubic environment texture. 
Environment texture should contain sky (or other things to be 
reflected). Bump is generated from N x N normals matrix. That is 

n2/n1 α 

1.1 10 

1.2 8 

1.33 7 

1.5 6 

Table 1. Examples 
of relative refraction 

index and alpha 
correspondence 

Figure 6. Underwater part of the object is rendered 
into reflection texture. So it has reflection – 

impossible situation in real life. 

Figure 4. Texture miss for the 
refraction case. 
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actually a simple operation: lock bump texture, convert normals to 
RGB values using formula (for RGB bump texture): 
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and then unlock the texture. Tiling of the bump texture should be 
chosen carefully because too frequent tiling is noticeable and 
looks unrealistic, while too small tiling coefficient leads to 
pixelization of the bump texture that looks bad.  
Now, on GeForce 3, it is impossible to calculate Fresnel 
coefficient per-pixel, so we still calculate Fresnel coefficient (via 
approximation) in vertex shader. But in this method we have no 
refraction texture to mix it with reflection. There are two options: 
to use constant color as a color of light coming from the volume 
of water or use Fresnel coefficient as opacity value and to draw 
some bottom  picture.  
To implement per-pixel cubic environment mapping we must 
write pixel shader using instructions texm3x3pad and 
texm3x3vspec (see DirectX 8.0 help for details). Therefore we 
need to calculate texture space coordinate system in the vertex 
shader. We already have one (y) vector – normal. If the mesh is 
axis aligned we can reconstruct two other vectors from the normal 
by formulas: 
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and then normalize them (or better: calculate only x-vector and 
get z-vector via cross product). Result of this method is shown on 
Fig. 12. 
 
This method can be modified for platforms that have feature-poor 
graphics hardware of high performance. Well-known example of 
such platform is Sony Playstation 2. Its high performance 
Graphics Synthesizer can deal with only one texture and it doesn’t 
support features like cubic environment mapping. But we can 
simplify this method to fit into such hardware. We just get rid of 
bump and replace cubic environment mapping with spherical. The 
result is worse but it still looks like real water surface.  

5. RENDERING TECHNIQUE 

Rendering technique is mostly depending on the way of 
constructing mesh representing water surface. During the 
development of construction method four requirements appeared. 
By the first requirement, final triangular representation of water 
surface must allow us fast culling of invisible (out of the camera 
frustum) triangles. Of course, no calculations should be performed 
for vertices of the invisible triangles. The second requirement 
appeared because of artefacts in the final image when using 
translucency. The problem is in triangle rendering order (it is very 
important when dealing with translucent objects and z-buffer). 
When the triangle order was back-to-front, the distant triangles 
were seen through near ones, thus creating those artefacts. So, in a 
resulting mesh all triangles should be sorted front-to-back.  
 
To produce water surface of acceptable quality the grid step 
should be small enough: 10-40 cm. So, we can not use an uniform 

grid and need some kind of LODs. So the third requirement says: 
mesh building algorithm must provide enough details near the 
camera while overall triangles number should be not very big 
(actually, we used 5000 – 15000 triangles).  
 
The fourth requirement is simple: water surface mesh should be 
easily stripifiable. That is for improving rendering speed 
(especially on the platforms like Sony Playstation 2). 
 

5.1. 3D grid solution 
One of possible solutions is a static mesh: a mesh with fixed 
structure is created on XZ plane. This mesh is moving together 
with camera, so every time there is water around the camera. 
Structure and topology of the mesh is not changed during the 
movement. But in case of rigid binding of mesh to camera one 
more problem appears. We call this effect “movement of a rabbit 
inside a boa”. Actually, water surface is called “rabbit”, while 
“boa” is mesh. This effect at great camera speed can be seen as 
jerky color changes in mesh vertices. The reason can be explained 
in such way: water movement and its color changing depends only 
on time, but when we move mesh together with camera, change of 
height and color in mesh vertex become dependent on the camera 
speed. So when the speed is small, the effect is unnoticeable, and 
when the speed increases, it looks like we move some static 
surface under the cloth (that reminds of gulped rabbit moving 
inside boa). If the speed increases more, the whole mesh begins to 
jerk.  

To avoid this problem the movement of mesh can be quantized. 
E.g., if mesh is a grid with a constant step, we move mesh only 
when  XZ projection of camera position leaves the central square. 
We move the mesh to keep the projection in the central square 
(see Fig. 7). The mesh is an uniform grid, so we can notice its 
movement only at the border. So, if we hide the border (e.g. by 
some flat polygons lasting from the grid border to horizon) the 
movement will be nearly unnoticeable. 

Figure 7. Example of mesh movement to preserve 
camera’s position projection in central square. 

Gray lines – possible mesh positions, black lines – 
mesh itself 
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Figure 8. Example of the mesh (camera is looking 45° down). 

 
To meet the requirements we build mesh of blocks and solve 
invisible triangles problem by culling blocks by camera frustum 
(the first requirement). Blocks must be numbered in a “spiral” 
order (inner blocks first). If we construct whole block as one 
stripe with front-to-back triangle order, the second and fourth 
requirement will be met. To meet the third requirement we use 
blocks with different steps and add “connection” blocks that have 
interstep translation triangle line. The result is shown on Fig. 8. 

5.2. 2D grid solution 
Other possible solution is 2D mesh. If we prohibit the camera tilt 
we can create uniform axis-aligned 2D mesh in the screen space 
as one strip. Then we just need to find upper and lower borders of 
the mesh in output window and to evaluate height and normal for 
each mesh vertex. Raytracing method (shooting a ray through 2D 
vertex, intersecting it with the water plane, indexing into height 
and normal map) proved itself inefficient. The trouble is in 
indexing into matrix. If we do not blend four neighboring matrix 
elements we will get some sort of pixelization, if we do we will 
lose performance. Solution is in using render-to-texture. The final 
algorithm is as follows: 
1. On create we build a static 2D grid (M x N cells) that covers 

whole output window. 
2. On frame update we project water plane into screen space 

and determine water borders in screen space. 
3. Then we code height & normal map into RGB texture (8-bit 

per color channel). Let us call it “matrix” texture. We lose 
some precision here, but it is nearly unnoticeable.  

4. We map “matrix” texture onto the water plane and render the 
plane into main camera with “grid” texture’s (M+1) x (N+1) 
region (2D grid is M x N cells) as target. “Grid” texture is 
also RGB texture with 8-bit per channel.  

5. Then we lock “grid” texture for read and decode it into 2D 
mesh (note that “grid” texture region completely matches 2D 
grid).  

6. At each used vertex we calculate reflection vector, then 
texture coordinates, then “project” height (note that we have 
got the height in the world space and have to transform it into 
the screen space). This operation can be highly optimized 
due to the nature of the grid: z value is constant per line and 
camera-to-point normalized vector (used for calculating 
reflection vector) can be precalculated. 

7. Then we just render selected (by the water borders in the 
screen space) block grid lines.  

 
This method has several disadvantages. The first and the most 
important is that here we can not fight against “rabbit inside boa” 
effect. We just increase number of cells to compensate it and use 
special methods to hide jerking at distance. These methods are 
very unnatural: amplitude of height and normal oscillation is 
decreased (the farther, the more). Also mipmaps are added for the 
“matrix” texture. Other disadvantages are: prohibition of the 
camera tilt, restriction on the camera attack angle and 
performance dependence on the camera attack angle (the greater 
angle - the more triangles we see - less fps we get). The main 
advantages are high speed and (it sounds strange but it is true) 
simplicity of coding in comparison with the previous method of 
building 3D mesh. Textures are small enough (lock time is small), 
world-to-screen transformations are done by graphics processor 
(works in parallel), some calculations may be precomputed and 
the whole mesh is one strip only.  

6. RESULTS AND PERFORMANCE 

6.1. Water surface building 
The most performance expensive part of water patch calculation 
algorithm is FFT due to its computational complexity O(n2logn). 
We found that the largest but acceptable height map has the size 
of 64x64. On our target platform (PIII-733) FFT for 64 x 64 
matrix takes 0.894 ms (4.13 ms for 128 x 128 matrix – 
unacceptable for real-time). Performance measurements for the 
entire method are given in the Table 2.  

Name Time, ms 

Matrix H filling 0.577 

FFT 0.886 

Normals calculation 0.332 

Shearing (chopping) and 
normals recalculation 0.838 

Overall 2.633 

Table 2. Performance measurements of water surface building 
algorithm. 

 

6.2. “Optical effects” 
Here we will discuss the external part of “optical effects” 
imitation – the part performed out of water surface rendering.  
“Reflection and refraction” model is very performance consuming 
due to two additional scene renders. So instead of Nabove+Nintersect 
triangles in scene (Nabove – number of triangles in objects that are 
completely above water, Nintersect and Nbelow are defined in the 
same way) we have 2Nabove+3Nintersect+ Nbelow triangles. For 
average scene that means 2.5-3 times increasing number of 
triangles to render. 
To be more concrete let us discuss a real scene. Scene image 
shown on Fig. 11 is a screenshot of the game prototype.  Visible 

                                                                 
4 We used Intel Math Kernel Library for FFT because it is 

optimized for PIII SIMD instructions. 
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landscape at this point has about 15000 triangles. Visible water 
consists of 7100 triangles. On our platform this scene is viewed at 
75 FPS (game physics is off).  
“Sky reflection” (see an example on Fig. 12) model needs the 
bump texture update on each frame. The texture also should have 
mipmaps, because to avoid noise effect in the distance we use 
mipmap filtering. On our platform building and uploading to 
video hardware 64x64 texture with mipmaps till 8x8 costs 0.96 
ms. 

6.3. Grids 
Real 3D grid used in water skiing game prototype (maximum 
camera height 5 meters) has 7100 visible triangles, 4 LOD levels, 
smallest step 0.2 meters and grid side 90 meters. This grid was 
used to get results shown on Fig. 11 and Fig. 12. GPU render cost 
for this configuration in case of bumped water is about 1.59 ms. 
All per vertex calculations are in vertex shader so CPU cost is 
rather small: about 1 ms for grid updating and blocks visibility 
determination.  
2D grid is best used on PlayStation 2. We found that 8000 
triangles is enough. Overall performance of this method on PS2 is 
greater that in 3D grid case (with nearly the same quality) because 
all texture transfers are performed in parallel and rendering of 2D 
grid is faster.  
Results for 2D and 3D grids on PS2 can be compared on Fig. 9. 

 

 
Figure 9. Water surface rendering results using 3D grid (upper) 

and 2D grid (lower). Note that 2D grid smoothes water at the 
distance. 

7. CONCLUSION AND FUTURE WORK 

We have presented the methods for all 3 steps of real-time water 
surface simulation. These methods can be used as a meccano to  
build simulation for the different purposes. Fig. 10 illustrates  
possible combinations of different methods. 
 
Although this work presents ready-to-use simulation, it covers 
only a small number of possible ways of water interaction with 
the rest world. There are several directions of our further research: 
waves interacting with the shore, breaking waves, foam and spray, 
color of water depending on angle of view, light transporting 
model and caustics. 
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Figure 10. Chart of possible methods combination. E.g. you can 
walk such path: (water patch calculation) → (sky reflection) → 

(3D grid). 
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Figure 11. “Reflection and refraction” method result (resolution of reflection and refraction textures – 512x256) 

 

 
Figure 12. “Sky reflection” with environment reflection bump 
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