
Real-time simulation of water surface

Vladimir Belyaev
Applied Math. Department,

St. Petersburg State Polytechnical University, St. Petersburg, Russia
vladimir@d-inter.ru

Abstract
The paper is devoted to efficient algorithms for computer
simulation of water surface with waves. The water surface is a
usual component of virtual environment in trainers/simulators and
games and often should look as highly realistic as possible, which
leads to sophisticated algorithms. On the other hand, these
algorithms are aimed at real time mode, and their high speed is
crucial. This paper embraces a number of techniques covering all
three steps of water simulation: the surface generation, optical
effects imitation and building a polygon mesh. Some of the used
techniques are well known; we have adapted them to real time
requirements. Some new algorithms were developed. There are
presented results of implementation of these three steps
altogether: on up-to-date personal computers we can calculate
and render the surface 30 times per sec and spend at most 8 ms for
each frame.

Keywords: real-time rendering, water surface simulation.

1. INTRODUCTION

Today there are a lot of non real-time tools for creating different
types of wavy water surface and even more tools for rendering
this surface. At the same time there are not many techniques to
provide real-time applications with simulated water of realistic
looking visual quality. Of course, major problem is performance
restrictions. For example, we had to spend for the simulation
calculations not more than 25% of overall processor time and to
reach rendering speed 30 frames per second and higher. So our
goal was to develop fast enough simulation that gives us realistic
visual results and fits into performance restrictions. Our target
platform is PIII-733, with GeForce 3 Ti.

Logic of water surface simulation brings us to the idea of three
main blocks that form entire simulation task:
• simulation of the water surface itself (getting height field on

each frame),

• optic effects (such as reflection, refraction) simulation,

• rendering technique, i.e. the way of forming triangle mesh
for visualization of the surface.

In this paper we are discussing methods for simulating wavy, but
not stormy water surface in areas away from the shore with
reflection and refraction only.

2. PREVIOUS WORK

Water surface simulation itself (here we mean the surface
simulation only, i.e. without rendering) is actually very popular
direction of research. There are many approaches to the problem.
Some of them are based on solving Navier-Stokes equations in 2D
[2] and 3D [4]. Some of them employ simplified water models:
small amplitude waves [4] and shallow water waves [7, 10]. For
example, in the paper [8] a shallow water waves model is used to
create waves near the shore. There is a method based on the idea
of approximating water volume with columns connected by pipes
[1]. It is used to produce animation of splashing fluids. Fournier
and Reeves developed a simple method of representing water
surface using Gerstner model [5]. The mentioned methods are
either highly performance consuming or give (when using too
coarse grid) unrealistic results. One of the latest methods is based
on using fast Fourier transformation (FFT) to produce tilable
height map [11]. This method is rather scalable and so can be used
not only for high-quality water animation for video, but in real-
time applications also. This is why we have chosen it as a core of
our water surface simulation method.

Common approach for the optic effects simulation is ray-tracing
or reverse ray-tracing [13]. These methods are widely used in
commercial products like Blue Moon Rendering Tools™1 or 3DS
MAX™. One of the models of light scattering in water volume
and water color dependence on different parameters is described
in [9]. Some real-time methods of realistic simulation are
described in [6]. It seems that nowadays it is the most advanced
work on real-time optic effects simulation, so we used and
evolved some ideas from it.

Actually, in the current papers there is not much information
about way of creating triangle mesh for water surface rendering.
This is obviously because realistic water surface simulation is still
rarely used in realtime applications where highly optimized
geometry is really needed. Most realtime applications with the
live water are actually only demos like NVidia TLWater demo2 or
Chen’s demo3, in which water surface is bounded by walls of the
pool. These demo applications always use uniform grid, which is
inapplicable for large water surfaces. Standard continuous LODs

1 http://www.exluna.com/products/bmrt/
2 http://developer.nvidia.com/view.asp?IO=demo_pool
3 http://www.unet.univie.ac.at/~a9104678/ChengineOrg/

Pages/Home.htm

International Conference Graphicon 2003, Moscow, Russia, http://www.graphicon.ru/

techniques like ROAM [3, 12] or adaptive quad-tree [14] are too
complex and performance consuming to be used as method of
water surface tessellation in real-time.

3. BUILDING WATER SURFACE

As it was said earlier the core of our water simulation is based on
Tessendorf’s method described in [11]. In short, this method is
based on water surface representation given by the following
expression:

∫
∞

∞−
∫
∞

∞−
−−+= zdkxdkxkietiekhtiekhtxh

rrrrr
))(

~
)(

~
(Re),(ωω (1)

where () gkkkzkxkk === ω,,,
rr

 and)(
~ kh
r

 -

spectrum that defines surface configuration.
This representation is derived from model of small amplitude
waves in the case of absence of waves with cylindrical symmetry
[10]. Following Tessendorf, we transform this representation for
2q x 2q (2q = N) grid and get

∑ ∑
−

−=

−

−=

−−+=
12/

2/

12/

2/

))(
~

)(
~

(),(
N

Nn

N

Nm

xkititi eekhekhtxh
rrrrr ωω (2)

where 





=

S
m

S
nk ππ 2,2r

- wave vector, kk
r

= , gk=ω , S –

geometrical size of the grid.

It can be proved (by determining)0,(xh
r

 и)0,(xht
r

∂
∂ , then using

Fourier inversion) that

)(
~

)(
~

khkh
rr

−= ∗ . (3)

Using this equation and changing indices limits we can rewrite (1)
as

∗−=−− +qpNN tqph)1(2),,(22 (4)

 ∑∑
−

=

−

=

++ −−−∗
1

0

1

0

)(2

22),,()1(Re
N

n

N

m

mqnp
N

i
NNmn etmnH

π

So, if we know H(u,v,t) – the waves spectrum, we can use FFT to
get h values in all grid points at once. Note that according (4)
resulting height map is repeatable (tilable).

Oceanographic researches show that (4) describes wind-driven
waves in the open ocean close enough. They also show that

)(
~ kh
r

coefficients are Gaussian distributed random numbers with

zero mean value and standard deviation depending on k
r

.
Deviation spectrum is well known for different waves kinds.
There are several analytical semi-empirical models for this
spectrum. Tessendorf used Phillips spectrum for wind-driven
waves:

2)(

1

4

21)(wke
k

AkP kL
h

rrr
⋅=

−
 (5)

where g
wL

2r
= is the largest possible wave arising from

continuous wind with the speed w and A is just a scale coefficient
defining waves height.
We modified this spectrum for better control under waves shape:














≤
>∗

∗⋅

= −

⋅− −

*

*

)()(1

,0
,)(

22

2

4

kk
kke

wkeA

kP lk

wkkL
k

h

rr
rr

r

γ

, (6)

where




<
≥

=
−

+

0,
0,

)(
t
t

t
γ
γ

γ .

Parameters k* and l allow us to cut too long and too short waves,
parameters γ+, γ- along with w allow us to control oblongness of
waves. Making γ+ and γ- different leads to water with waves
moving in a certain direction.

Knowing Ph we can write down)(
~ kh
r

:

 ())(
2

1)(
~

kPikh hir
rr

ξξ += , (7)

where ξr and ξi are ordinary independent draws from a Gaussian
random number generator, with zero mean value and the standard
deviation equal to 1.

According to the model of small amplitude waves gk=ω (in

the case of constant depth d,)tanh(kdgk=ω (see [10] for
details). Now we have everything to calculate H matrix for FFT.

 () ti
hir ekPitkH ωξξ)(

2
1),(

rr
+= (8)

Actually, the height map is not all that we need. We also need a
normal to the surface at each grid point. In [11] and [6] it is
proposed to use another FFT to get normals matrix. But it is still
needed to fit into performance restrictions so we just used finite
difference method to get the normals. The result of such
optimization is visually acceptable.

Since resulting surface is the sum of the number of sine waves,
which tops can not be sharp as it is in a real life (see Fig. 1), we
need to modify the grid to sharp them. The corresponding method
is described in [11] and [6]. In short, every grid point is displaced
according to the formula:

),(00 txDxx rrrr λ+= , (9)

where λ is a parameter that controls degree of grid modification.
Offset D is given by the formula:

 ∑ ∑
−

−=

−

−=

−=
12/

2/

12/

2/

),(),(
N

Nn

N

Nm

xkietxH
k
kitxD

rrr
r

rr
. (10)

International Conference Graphicon 2003, Moscow, Russia, http://www.graphicon.ru/

But this method has great disadvantage: it needs one more FFT.
Instead of it we use simpler way for calculation of the offset:

),(11 yxyxyxyxxy MMMM
N
SD −−= ++

r
, (11)

where M is the height map.
This simplified method produces a bit worse result, but it is still
acceptable visually. Parameter λ should be chosen carefully to
avoid self-intersection of water surface.

It is important to note that normals in the grid points should be
recalculated after this modification. For a grid quad with the
height hij at ij-th point, point offsets δxij and δzij and grid step s
(using expansion in Taylor series) we can write down a simple
system of linear equations from which we can get:

1111

1111

++++

++++

−+−
−−+

=∆
jijijiji

jijijiji

zzsxx
zzxxs
δδδδ

δδδδ

 jijijiji

jijijiji

jijijiji

jijijiji

hhxx
hhxxs

z
h

zzshh
zzhh

x
h

−−
−−+

∆
=

∂
∂

−+−
−−

∆
=

∂
∂

+++

+++

+++

+++

111

111

111

111

1

1

δδ
δδ

δδ
δδ

(12)

So, the new normal is:









∂
∂

−
∂
∂

−=
z
h

x
hN ,1,

r

 (13)

4. OPTICS EFFECTS IMITATION

In this work we present two “models” for imitating optics effects.
They can be called “reflection and
refraction” and “sky reflection”.

4.1. “Reflection and
refraction”

The first model is briefly described in [6]. The base idea is clear:
the whole scene (except water) is rendered into main camera
forming “refraction” texture. Then camera is reflected as shown
on Fig. 2. Rendering into this camera produces “reflection”
texture. Then using projection mapping, the textures are mapped
onto the water surface and mixed, using Fresnel coefficient. This
technique works fine for a plane water. For oscillating water we
need to take into account the normal change to get the correct
result. It can be done in such way: in every grid point we calculate
the reflection ray and intersect it in with the plane raised on hr
above the water plane; intersection point is then projected into
camera to form texture coordinate for the grid point. This method
is illustrated by Figure 3. Reflection vector is given by the
formula:

cp
cpenener rr

rr
rrrrrr

−
−

=⋅−= ,)(2 , (14)

where p
r

- grid point position, nr - grid point normal, c
r

- camera
position.

This method actually is nothing more than good imitation of
reflection.
Texture coordinates for “refraction” are calculated in the same
way except for three things: plane is lowered, refraction vector is
used and intersection point is projected to main camera.
Refraction vector formula is more complex than reflection one:

 ()22
12

1
12

1
12

11)(

,)(),(

τττα

τα

−−+=

−=
−−

−

nn

nennpt
rrrrr

, (15)

where ne rr
⋅=τ ,

2
11

12 n
nn =− and n1, n2 – indices of refraction.

Figure 1. Photo picture of Neva river waves.

Figure 2. "Reflected"
camera

Figure 3. The way of "reflection" texture mapping

International Conference Graphicon 2003, Moscow, Russia, http://www.graphicon.ru/

To mix “reflection” and “refraction” textures we need to calculate
Fresnel coefficient at every grid point. Its formula is also complex
enough:

()
()

()()
()() 











+−

−+
+

+

−
= 2

2

2

2

1
11

2
)(

kgk
kgk

kg
kgkF , (16)

where 1, 2
2

1

2 −+







=−= k

n
ngk τ .

(We have to notice that formula for Fresnel coefficient given in
[6] is wrong. A mistake is in expression for value g.) Since this
formula is very expensive to compute per vertex we use its
approximation proposed in [6]. We approximate it by the function:

 () α−+= kkG 1)(, (17)

where α is coefficient corresponding to relative refraction index.
Examples of correspondence are
given in Table 1.

To implement this method we
need to code two additional
renders of the whole scene, code
one vertex shader (containing
reflection and refraction vectors
calculation, code for finding
intersection points, projection to
cameras and Fresnel coefficient
evaluation) and one pixel shader
(mixing 2 textures according per-pixel interpolated Fresnel
coefficient). But that is only the beginning. If somebody codes
this algorithm “as is”, he will surely encounter two problems.

First, there are texture
misses. Water with waves
reflects a bit more of the
scene than the plane
water. It also refracts
more of the underwater
scene than visible in main
camera. This idea is
illustrated on Fig. 4.

To cover this texture
misses we increase FOV (field of view) for the cameras: a little
for reflection camera and on 10-20% for main camera when
rendering refraction scene. Also to avoid artifacts if texture miss
happens we use clamp texture addressing. Fig. 5 shows how
camera FOV adjustment affects the picture.

The second problem is more difficult. Let us examine reflection
case: the problem appears when underwater objects are rendered
into “reflection” texture (see Fig. 6). To avoid this we just need to
skip underwater objects while rendering into “reflection” texture.
The same situation is for refraction: we must skip objects, which
are above water surface. Objects crossing the surface should be
clipped. Clipping can be performed by user clip plane technique

(on GeForce 2) or texkill pixel shader instruction (on GeForce 3 or
later). In the second case, all objects that intersect water surface
should be rendered through vertex shader that copies vertex height
above the surface to texture coordinate which is used in pixel
shader to mask the pixel that is under/above water.

Figure 5. Scene that shows FOV artefacts at refraction (FOV is
not adjusted (left); FOV increased 20% (right)). Water surface is

the same in both cases.

We must also say some words about texture resolution. Of course,
the best case is if the texture resolution matches output resolution.
But it might be too expensive. Experiments showed that
everything looks fine enough with the texture resolution 1.5 times
less then output one. Fig. 11 shows the result of this approach.

4.2. “Sky reflection”
This method can be used in case of invisible or nearly invisible
bottom, for the open water (or the water that does not reflect
anything except sky). It is based on per-pixel cubic environment
mapping. So we need bump and cubic environment texture.
Environment texture should contain sky (or other things to be
reflected). Bump is generated from N x N normals matrix. That is

n2/n1 α

1.1 10

1.2 8

1.33 7

1.5 6

Table 1. Examples
of relative refraction

index and alpha
correspondence

Figure 6. Underwater part of the object is rendered
into reflection texture. So it has reflection –

impossible situation in real life.

Figure 4. Texture miss for the
refraction case.

International Conference Graphicon 2003, Moscow, Russia, http://www.graphicon.ru/

actually a simple operation: lock bump texture, convert normals to
RGB values using formula (for RGB bump texture):

]1,1[,,,
127*)1(
127*)1(
127*)1(

−∈








+=
+=
+=

zyx
yB
zG
xR

 (18)

and then unlock the texture. Tiling of the bump texture should be
chosen carefully because too frequent tiling is noticeable and
looks unrealistic, while too small tiling coefficient leads to
pixelization of the bump texture that looks bad.
Now, on GeForce 3, it is impossible to calculate Fresnel
coefficient per-pixel, so we still calculate Fresnel coefficient (via
approximation) in vertex shader. But in this method we have no
refraction texture to mix it with reflection. There are two options:
to use constant color as a color of light coming from the volume
of water or use Fresnel coefficient as opacity value and to draw
some bottom picture.
To implement per-pixel cubic environment mapping we must
write pixel shader using instructions texm3x3pad and
texm3x3vspec (see DirectX 8.0 help for details). Therefore we
need to calculate texture space coordinate system in the vertex
shader. We already have one (y) vector – normal. If the mesh is
axis aligned we can reconstruct two other vectors from the normal
by formulas:

()
()





−=

−=

yz

xy

nnz

nnx

,,0

0,,
r

r

 (19)

and then normalize them (or better: calculate only x-vector and
get z-vector via cross product). Result of this method is shown on
Fig. 12.

This method can be modified for platforms that have feature-poor
graphics hardware of high performance. Well-known example of
such platform is Sony Playstation 2. Its high performance
Graphics Synthesizer can deal with only one texture and it doesn’t
support features like cubic environment mapping. But we can
simplify this method to fit into such hardware. We just get rid of
bump and replace cubic environment mapping with spherical. The
result is worse but it still looks like real water surface.

5. RENDERING TECHNIQUE

Rendering technique is mostly depending on the way of
constructing mesh representing water surface. During the
development of construction method four requirements appeared.
By the first requirement, final triangular representation of water
surface must allow us fast culling of invisible (out of the camera
frustum) triangles. Of course, no calculations should be performed
for vertices of the invisible triangles. The second requirement
appeared because of artefacts in the final image when using
translucency. The problem is in triangle rendering order (it is very
important when dealing with translucent objects and z-buffer).
When the triangle order was back-to-front, the distant triangles
were seen through near ones, thus creating those artefacts. So, in a
resulting mesh all triangles should be sorted front-to-back.

To produce water surface of acceptable quality the grid step
should be small enough: 10-40 cm. So, we can not use an uniform

grid and need some kind of LODs. So the third requirement says:
mesh building algorithm must provide enough details near the
camera while overall triangles number should be not very big
(actually, we used 5000 – 15000 triangles).

The fourth requirement is simple: water surface mesh should be
easily stripifiable. That is for improving rendering speed
(especially on the platforms like Sony Playstation 2).

5.1. 3D grid solution
One of possible solutions is a static mesh: a mesh with fixed
structure is created on XZ plane. This mesh is moving together
with camera, so every time there is water around the camera.
Structure and topology of the mesh is not changed during the
movement. But in case of rigid binding of mesh to camera one
more problem appears. We call this effect “movement of a rabbit
inside a boa”. Actually, water surface is called “rabbit”, while
“boa” is mesh. This effect at great camera speed can be seen as
jerky color changes in mesh vertices. The reason can be explained
in such way: water movement and its color changing depends only
on time, but when we move mesh together with camera, change of
height and color in mesh vertex become dependent on the camera
speed. So when the speed is small, the effect is unnoticeable, and
when the speed increases, it looks like we move some static
surface under the cloth (that reminds of gulped rabbit moving
inside boa). If the speed increases more, the whole mesh begins to
jerk.

To avoid this problem the movement of mesh can be quantized.
E.g., if mesh is a grid with a constant step, we move mesh only
when XZ projection of camera position leaves the central square.
We move the mesh to keep the projection in the central square
(see Fig. 7). The mesh is an uniform grid, so we can notice its
movement only at the border. So, if we hide the border (e.g. by
some flat polygons lasting from the grid border to horizon) the
movement will be nearly unnoticeable.

Figure 7. Example of mesh movement to preserve
camera’s position projection in central square.

Gray lines – possible mesh positions, black lines –
mesh itself

International Conference Graphicon 2003, Moscow, Russia, http://www.graphicon.ru/

Figure 8. Example of the mesh (camera is looking 45° down).

To meet the requirements we build mesh of blocks and solve
invisible triangles problem by culling blocks by camera frustum
(the first requirement). Blocks must be numbered in a “spiral”
order (inner blocks first). If we construct whole block as one
stripe with front-to-back triangle order, the second and fourth
requirement will be met. To meet the third requirement we use
blocks with different steps and add “connection” blocks that have
interstep translation triangle line. The result is shown on Fig. 8.

5.2. 2D grid solution
Other possible solution is 2D mesh. If we prohibit the camera tilt
we can create uniform axis-aligned 2D mesh in the screen space
as one strip. Then we just need to find upper and lower borders of
the mesh in output window and to evaluate height and normal for
each mesh vertex. Raytracing method (shooting a ray through 2D
vertex, intersecting it with the water plane, indexing into height
and normal map) proved itself inefficient. The trouble is in
indexing into matrix. If we do not blend four neighboring matrix
elements we will get some sort of pixelization, if we do we will
lose performance. Solution is in using render-to-texture. The final
algorithm is as follows:
1. On create we build a static 2D grid (M x N cells) that covers

whole output window.
2. On frame update we project water plane into screen space

and determine water borders in screen space.
3. Then we code height & normal map into RGB texture (8-bit

per color channel). Let us call it “matrix” texture. We lose
some precision here, but it is nearly unnoticeable.

4. We map “matrix” texture onto the water plane and render the
plane into main camera with “grid” texture’s (M+1) x (N+1)
region (2D grid is M x N cells) as target. “Grid” texture is
also RGB texture with 8-bit per channel.

5. Then we lock “grid” texture for read and decode it into 2D
mesh (note that “grid” texture region completely matches 2D
grid).

6. At each used vertex we calculate reflection vector, then
texture coordinates, then “project” height (note that we have
got the height in the world space and have to transform it into
the screen space). This operation can be highly optimized
due to the nature of the grid: z value is constant per line and
camera-to-point normalized vector (used for calculating
reflection vector) can be precalculated.

7. Then we just render selected (by the water borders in the
screen space) block grid lines.

This method has several disadvantages. The first and the most
important is that here we can not fight against “rabbit inside boa”
effect. We just increase number of cells to compensate it and use
special methods to hide jerking at distance. These methods are
very unnatural: amplitude of height and normal oscillation is
decreased (the farther, the more). Also mipmaps are added for the
“matrix” texture. Other disadvantages are: prohibition of the
camera tilt, restriction on the camera attack angle and
performance dependence on the camera attack angle (the greater
angle - the more triangles we see - less fps we get). The main
advantages are high speed and (it sounds strange but it is true)
simplicity of coding in comparison with the previous method of
building 3D mesh. Textures are small enough (lock time is small),
world-to-screen transformations are done by graphics processor
(works in parallel), some calculations may be precomputed and
the whole mesh is one strip only.

6. RESULTS AND PERFORMANCE

6.1. Water surface building
The most performance expensive part of water patch calculation
algorithm is FFT due to its computational complexity O(n2logn).
We found that the largest but acceptable height map has the size
of 64x64. On our target platform (PIII-733) FFT for 64 x 64
matrix takes 0.894 ms (4.13 ms for 128 x 128 matrix –
unacceptable for real-time). Performance measurements for the
entire method are given in the Table 2.

Name Time, ms

Matrix H filling 0.577

FFT 0.886

Normals calculation 0.332

Shearing (chopping) and
normals recalculation 0.838

Overall 2.633

Table 2. Performance measurements of water surface building
algorithm.

6.2. “Optical effects”
Here we will discuss the external part of “optical effects”
imitation – the part performed out of water surface rendering.
“Reflection and refraction” model is very performance consuming
due to two additional scene renders. So instead of Nabove+Nintersect
triangles in scene (Nabove – number of triangles in objects that are
completely above water, Nintersect and Nbelow are defined in the
same way) we have 2Nabove+3Nintersect+ Nbelow triangles. For
average scene that means 2.5-3 times increasing number of
triangles to render.
To be more concrete let us discuss a real scene. Scene image
shown on Fig. 11 is a screenshot of the game prototype. Visible

4 We used Intel Math Kernel Library for FFT because it is

optimized for PIII SIMD instructions.

International Conference Graphicon 2003, Moscow, Russia, http://www.graphicon.ru/

landscape at this point has about 15000 triangles. Visible water
consists of 7100 triangles. On our platform this scene is viewed at
75 FPS (game physics is off).
“Sky reflection” (see an example on Fig. 12) model needs the
bump texture update on each frame. The texture also should have
mipmaps, because to avoid noise effect in the distance we use
mipmap filtering. On our platform building and uploading to
video hardware 64x64 texture with mipmaps till 8x8 costs 0.96
ms.

6.3. Grids
Real 3D grid used in water skiing game prototype (maximum
camera height 5 meters) has 7100 visible triangles, 4 LOD levels,
smallest step 0.2 meters and grid side 90 meters. This grid was
used to get results shown on Fig. 11 and Fig. 12. GPU render cost
for this configuration in case of bumped water is about 1.59 ms.
All per vertex calculations are in vertex shader so CPU cost is
rather small: about 1 ms for grid updating and blocks visibility
determination.
2D grid is best used on PlayStation 2. We found that 8000
triangles is enough. Overall performance of this method on PS2 is
greater that in 3D grid case (with nearly the same quality) because
all texture transfers are performed in parallel and rendering of 2D
grid is faster.
Results for 2D and 3D grids on PS2 can be compared on Fig. 9.

Figure 9. Water surface rendering results using 3D grid (upper)

and 2D grid (lower). Note that 2D grid smoothes water at the
distance.

7. CONCLUSION AND FUTURE WORK

We have presented the methods for all 3 steps of real-time water
surface simulation. These methods can be used as a meccano to
build simulation for the different purposes. Fig. 10 illustrates
possible combinations of different methods.

Although this work presents ready-to-use simulation, it covers
only a small number of possible ways of water interaction with
the rest world. There are several directions of our further research:
waves interacting with the shore, breaking waves, foam and spray,
color of water depending on angle of view, light transporting
model and caustics.

water surface optical effects
rendering
technique

Water patch
calcualtion

Waves
sharpening

Reflection &
refraction

Sky reflection

3D Grid

2D Grid

Figure 10. Chart of possible methods combination. E.g. you can
walk such path: (water patch calculation) → (sky reflection) →

(3D grid).

8. REFERENCES

[1] O’Brien, J.F., and Hodgins, J.K. “Dynamic Simulation of
Splashing Fluids” Proceedings of the Computer Animation'95
(CA '95)

[2] Jim X. Chen. Physically-based modelling and real-time
simulation of fluids. PhD in the Department of Computer
Science of University of Central Florida, 1995.

[3] Duchaineau, M., Wolinsky, M., Sigetti, D.E, Miller, M.C.,
Aldrich, C., Mineev-Wienstein, M.B. ROAMing terrain: Real-
Time Optimally Adapting Meshes. Proceedings of the 8th
IEEE Visualization '97 Conference.

[4] Foster, N. and Metaxas, D. Realistic Animation of Liquids.
Proceedings GI '96, pp. 204-212

[5] Fournier, A., and Reeves, W.T. “A Simple Model of Ocean
Waves”, Proceedings of SIGGRAPH '86, Volume 20,
Number 4, pp. 75-84.

[6] Jensen, L. Deep-Water Animation and Rendering. Gamasutra,
September 26, 2001.
http://www.gamasutra.com/gdce/jensen/jensen_01.htm

[7] Kass, M., and Miller, G. Rapid, stable fluid dynamics for
computer graphics. Proceedings of SIGGRAPH '90, in
Computer Graphics, Volume 24. Number 3, pp.49-57.

[8] Layton, A.T. Numerically Efficient and Stable Algorithm for
Animating Water Waves. The Visual Computer, Vol. 18, No.
1, pp. 41-53, 2002.

[9] Premoze. S, and Ashikhmin, M. “Rendering Natural Waves”,
Computer Graphics Forum, v. 20, no. 4 (2001), pp. 189-200

[10] J. J. Stoker. Water waves. The Mathematical Theory with
Applications. Interscience Publishers Inc., New York. 1958

[11] Tessendorf, J. Simulating Ocean Water. SIGGRAPH 2001
Course notes. http://home1.gte.net/tssndrf/index.html.

[12] Turner, B. Real-Time Dynamic Level of Detail Terrain
Rendering with ROAM. Gamasutra, April 03, 2000,
http://www.gamasutra.com/features/200000403/turner_01.htm

[13] Watt, A. and Watt, M. Advanced Animation and Rendering
Techniques. Theory and Practice.ACM Press, 1992.

[14] Ulrich, T. Continuous LOD Terrain Meshing Using Adaptive
Quadtrees. Gamasutra, February 28, 2000,
http://www.gamasutra.com/features/200000228/ulrich_01.htm

International Conference Graphicon 2003, Moscow, Russia, http://www.graphicon.ru/

Figure 11. “Reflection and refraction” method result (resolution of reflection and refraction textures – 512x256)

Figure 12. “Sky reflection” with environment reflection bump

About the author
Vladimir Belyaev is a Ph.D. student at Applied Math. Department,
St. Petersburg State Polytechnical University, St. Petersburg, Russia
His contact email is vladimir@d-inter.ru.

International Conference Graphicon 2003, Moscow, Russia, http://www.graphicon.ru/

