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Abstract 
Geometric and computational approach based on the theory of 
Chebyshev nets is developed for the analysis of an arbitrary sur-
face dressed by woven fabric or for the construction of the fiber 
trajectories in each lamina of braiding reinforcement in laminated 
composite double curved shells. The approach is also applicable 
to fabric tension structure cutting pattern generation. The efficient 
computer tool is developed on the basis of the approach described 
in this paper, and is included into FABRIC CAD system aimed at 
fabric tension structures design. 
Key words: Fabric tension structure, Chebyshev nets, laminated 
composite double curved shells, NURBS representation, FABRIC 
CAD system. 

1. INTRODUCTION 
Over the past 20 years, there has been a rapid growth in the use of 
fabric tension structures. A fabric tension structure has the advan-
tage of covering very large areas with clear spans and provides the 
ideal solution for such applications as indoor tennis courts and 
swimming pools. It also offers low construction and maintenance 
costs, high mobility and prefabrication possibilities. Further, such 
structures, with doubly-curved shapes, are aesthetically pleasing. The 
design of a fabric tension structure, however, is a complex task. 
Three steps are usually required in the design process of tension 
structure, namely, form finding, load analysis and cutting pattern gen-
eration. Form finding problem is mostly performed by first estab-
lishing a mesh over a surface and may be resolved by some formu-
lations of FEM or by the so called Stretched Grid Method (SGM) 
as it is described in [1], [2]. Once a satisfactory shape has been 
found, a cutting pattern may be generated. Tension structures are 
highly varied in their size, curvature and material stiffness. Cut-
ting pattern approximation is strongly related to each of these 
factors. It is essential for a cutting pattern generation method to 
minimize possible approximation and to produce reliable plane cloth 
data. The objective is to develop the shapes described by these data, 
as near as possible to the ideal doubly-curved strips. In general, cut-
ting pattern generation involves two steps. First, the global surface 
of a tension structure is divided into individual cloth layout. The 
corresponding cutting pattern at the second step can be found by sim-
ply taking each cloth strip and unfolding it on a planar area. In the 
case of the ideal doubly-curved membrane surface the subsurface 
cannot be simply unfolded and they must be flattened. In [3] the 
flattening problem has been resolved by the form of SGM. 
As well as fabric tension structures the laminated shell structures 
laminated by fibre arrays, such as 3-D Sails etc, are very popular. 
Typically, design of a laminated shell is based on a strength 
analysis at one or several critical locations over the shell surface. 
At one such location, the layout may be optimised (e.g., by mini-
mizing the amount of reinforcement) subject to specified strength 
constraints. However, a given directional lay-up of the fabric, 
braiding or unidirectional tape reinforcement is, generally, realiz-

able only at one location in the shell; elsewhere, the orientation of 
fibre arrays in each lamina must vary according to the shell ge-
ometry. The extent of the variation depends on the Gaussian cur-
vature of the surface and, for a doubly curved shell, the rein-
forcement at some locations may turn out to be statically inade-
quate or even geometrically infeasible. 
At the current state of the art in the manufacturing of doubly 
curved laminated shells, the reinforcement flat cutting patterns for 
each lamina are often obtained experimentally, which is both 
time-consuming and costly. Moreover, even when aided by com-
puter, the user has little control over the geometric properties of 
the required cutting patterns.  
A comprehensive geometric analysis of a single lamina is devel-
oped in a form suitable for subsequent geometric optimisation of a 
laminate layout and is described in [4]. This paper is dedicated to 
developing of the efficient means for cutting pattern problem so-
lution. The means are based on Chebyshev net theory. 
2. THE SETTING OF THE PROBLEM 
Consider the problem of how to generalize the notion of “Carte-
sian grid” (chess board) on а general, curved surface. Clearly one 
has to do some concessions in order to be able to apply the net to 
the surface. Two obvious possibilities are, f i r s t ,  to keep all an-
gles at π/2, or, second, to preserve the equality of edge lengths. 
In the first case one obtains conformal nets. In general their edge 
lengths will vary from place to place. The nets of principal cur-
vature directions are one possibility (since the principal direc-
tions are orthogonal), but infinitely many others exist. In the 
second case one obtains the so-called Chebyshev nets. In that 
case the angles vary from place to place, i.e., the mazes become 
parallelograms. Further we consider this second possibility. 
The theory of Chebyshev nets is to be of interest among the sur-
face internal geometry problems. In 1878 P.L. Chebyshev has 
presented the report "On the cutting of our clothes" [5], where he 
formulated some rules of great practical and theoretical meaning. 
For cutting out of clothes, as well as for manufacturing of fabric 
shells for various structures, the problem is to make a planar pat-
tern on a fabric dressed a curvilinear surface that might fit it in a 
possibly better way. 
It was shown by Chebyshev, that in that case there can be no sur-
face bending, because the fabric and surface fitness can be ob-
tained by the network distortion in diagonal direction of an inter-
lacing rather than of a fabric interlacing fibers stretching. At the 
first assumption Chebyshev considered fabric-interlacing fibers 
were inextensible. When one dresses a surface by a fabric of a 
classical interlacing, which consists of two generally orthogonal 
fibers directions called warp and weft, the curvilinear network 
over a surface is formed. As a result the network corners are 
changed but the fibers are bended with their lengths being conser-
vative. Such network has the following properties: two lines be-
longing to one family of the fibers pick out arches of the same 
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length at any string belonging to a family of other strings. In other 
words, in any curvilinear rectangle, formed by lines of Chebyshev 
net, the opposite edges are equal. 
Chebyshev’s idea mentioned above was the basis for the mathe-
matical approach that allows one the developing of a planar rec-
tangular net mapping with the conservative cell segment length. 
The approach is based on decomposition of the Chebyshev net 
coordinate lines at semi-geodetic net coordinates. 
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Figure 1: The surface area near regular point O.
The general problem is to develop Chebyshev net on an arbitrary 
double-curved surface with known shapes. It is known [6], that 
there is an uncountable set of Chebyshev nets on a planar surface. 
Each Chebyshev net is completely defined by two lines belonging 
to the first, and second fiber families. The lines can set across a 
point arbitrary but in a various directions. Naturally, it is possible 
to develop Chebyshev nets randomly at any surface. Let us show 
it by the following sample (See Fig. 1). Let two arbitrary lines 
(Uo, Vo) in different directions on surface S plotted through a 
regular point O. Let us divide each line into series of equal arches 
with length ρ (along Uo) and σ (along Vo). Draw arch ab of geo-
detic circle with the center at point M1 and with Gaussian radius 
ρ. Draw a similar geodetic circle arch cd of Gaussian radius σ
with the center at point No. The current point N1 that one can con-
sider as a Chebyshev net vertex may be obtained at the point of 
two arches ab and cd intersection. Other vertices, i.e. N1…Nn,
K1….Kn, M1….Mn, may be obtained by a similar drawing. 
It may be shown that the net obtained by the described above 
drawing converges to the exact Chebyshev net simultaneously 
with the convergence ρ and σ to zero. Obvious that the direction 
of two lines Uo and Vo can be definitely arbitrary (excluding the 
case of coincidence). Then one may develop an uncountable set of 
Chebyshev net using the same initial point O of an arbitrary sur-
face. Besides one may deduce that a very convenient approxima-
tion approach to Chebyshev net generation at an arbitrary surface 
may be developed. 

3. THE APPROXIMATE APPROACH 
Any modern geometry design systems, analysis of geometric ob-
jects, conversion from one geometric representation to another 
and graphical display of geometric objects, if they are to work 
well, must be based on sound mathematical theories and numeri-
cal methods. If the underlying computation and mathematics are 
sound, one can expect systems based on them to, by and large, 

perform well, be easy to maintain and be adaptable to new, cur-
rently unforeseen, needs as they arise. For geometry design, it is 
generally understood that methods based on splines using the B-
spline, as well as it further advancement like NURBS representa-
tion, provide the best tools for meeting these goals. Taking it into 
account the NURBS surface representation is added to mathe-
matical arsenal of FABRIC CAD system (see for example [7], [8], 
[9]), aimed at tension fabric structures design. 
The key fabric structures design problem is to generate cutting 
pattern of each double-curved fabric cloth. FABRIC CAD system 
is provided with a special procedure based on SGM as it is de-
scribed in [7], [9] that allows a designer to flatten double-curved 
patches of shells. If the fabric structure cloth is manufactured 
from fabric of traditional interweaving it seems more preferable to 
use another approach based on the Chebyshev net properties. The 
approach, however, provides for an availability of the Chebyshev 
net with desirable attributes that covers given and in general arbi-
trary surface represented by NURBS. Formally, construction of a 
Chebyshev net on a given surface calls for solving an initial value 
problem for a simultaneous system of two nonlinear partial differ-
ential equations. The structure of the equations rules out the pos-
sibility of an analytical solution even for simple surfaces (with the 
exception of a few classical closed-form solutions, such as transla-
tion nets on translation surfaces); thus, the only practical course of 
action is to solve the problem approximately. The developed ap-
proximate procedure must be computationally very efficient. Such 
approximated approach is developed on the basis of idea outlined 
in previous section and is used by special procedure available in 
FABRIC CAD toolbox. After comparing a few possible ap-
proaches, a cell-by-cell construction of a Chebyshev net emerged 
as the most promising method. The method capitalizes on the 
characteristic property of the net—the rhombic shape of its ele-
mentary cell. 
At the heart of the approach is a “Spherical Tool” concept that is 
introduced into lexicon to explain how one may produce a geo-
detic circle near given point of an arbitrary surface. The Spherical 
Tool is a usual spherical surface represented by NURBS with 
predefined radius that a designer could change as he wishes ac-
cording to his needs. Placing the center of Spherical Tool at the 
desirable surface point one may obtain a geodetic circle as a 
NURBS line of two NURBS surfaces intersection, i.e., the origi-
nal surface and spherical tool. Obviously, in such case a geodetic 
circle is a closed regular line that can be represented both in 3D 
Cartesian and 2D surface parametric spaces. Placing further the 
spherical tool at another surface point one may obtain another 
geodetic circle. Both geodetic circles may be treated as two closed 
planar curves in 2D surface parameter space so it is very easy to 
calculate their points of intersection. 
Definitely the problem of two NURBS surfaces intersection must 
be developed well. Planar cut and surface intersection software is 
an important part of any CAD system. A number of different fun-
damental approaches to this problem are followed in these sys-
tems, including geometric methods for quadric sections, subdivi-
sion-based methods, implicit schemes and curve tracing schemes 
etc. The latter schemes are often referred to as “marching” or 
“curve following” schemes in the literature. In recent years, “loop 
detection” has become the hot topic in this field. The technique is 
described in [10] so will not be discussed here. 
FABRIC CAD system provides a designer with a possibility to 
develop Chebyshev net dressed an arbitrary NURBS surface 
pressing one button only. Let us demonstrate it by the following 
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sample (See Fig. 2). The Chebyshev net development comes in 
the following steps: 
1. The initial surface point O is defined. Naturally the initial 
point may be arbitrary. As a default point in FABRIC CAD sys-
tem is considered the point at the middle of 2D surface parameter 
space. However, the user may define another point. 

Figure 2: The given surface represented by NURBS. 
2. The centre of spherical tool of desirable radius is located to a 
given point (See Fig. 3) and two NURBS surfaces are intersected 
to find a parametric representation of a geodetic circle. Note that 
the radius of spherical tool may vary according to size of final 
Chebyshev net cells. The default value of radius is equal to 1/25 
of the length of shortest NURBS surface edge. 

Figure 3: Spherical NURBS tool placed at the initial surface point 

3. Two unmatched surface directions T1 and T2 at the given 
point O are defined. Since such directions may differ, two 2D 
parameter lines Uo = const, Vo = const (where U, V – surface 
parameters) are selected as a default directions. The user may 
define two other directions. Reasonably the shape of final Cheby-
shev net will depend on it. 
4. The geodetic circle defined at the step 2 is intersected with 
parametric lines Uo = const, and Vo = const to obtain for points 1, 
2, 3, 4 (See Fig. 4) that combine into the “initial cross” shown in 
Fig. 5 in 3D Cartesian space. 
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Figure 4: Generation of Chebyshev net vertices in 2D space. 

Figure 5: “The initial cross” at the beginning of Chebyshev net. 

5. We shift the centre of spherical tool to points 1, 2, 3, 4 in 
turns and intersect produced geodetic circles with lines Uo =
const, and Vo = const and between each other in pairs such as it is 
shown in Fig. 4 to generate Chebyshev net vertices 5, 6, 7 com-
pleting cells and so on. The cycle is repeated “spiralwise” around 
point O in ascending direction as long as the whole surface area is 
covered by Chebyshev net vertices. Thus, completing a cell with 
already located vertices represents a recurring generic step of the 
net construction procedure. It should be noted that problems arise 
at the surface edges, where some current vertices become imagi-
nary, i.e., lie out of the surface parameter space. Moreover, it is 
impossible to compute two geodetic circles intersection here. In 
such case the system produce current vertex by simple extrapola-
tion using previous vertices. The final Chebyshev net covering the 
given surface is presented in Fig. 6 

4. CONCLUSION 
The developed fast and computationally efficient geometric gen-
eration of the Chebyshev net can be useful for a variety of prob-
lems, from general CAD-like application for surface "clothing" 
and fabric tension structures design to computer aided design of 
laminated composite shells. 
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Figure 5: The final Chebyshev net dressed a given surface. 

Taking the initial directions of two intersecting fibers (directional 
lay-up) at some point on the surface, one may determine the two 
respective reference fiber trajectories on the surface in the engen-
dered Chebyshev net. A designer may vary such trajectories vary-
ing the orientation of the initial cross at the beginning of the net. 
At the same time two difficulties with the described approach are 
immediately obvious. The first one, rooted in the very nature of 
the problem as the initial value problem, is the solution sensitivity 
both to initial conditions (to location and orientation of an initial 
cross) and to the accumulation and propagation of computational 
error. The second difficulty is associated with the cell-by-cell net 
generation method itself, even assuming a modest computational 
effort involved in each cell completion step. The fact is that for 
the purpose of generation, the elementary cells, theoretically in-
finitesimal in size, must be aggregated into finite size curvilinear 
rhombuses. To maintain reasonable accuracy, the aggregated cell 
should be sufficiently small, hence, a large number of cells is 
needed. The major challenge is a very large number of cell com-
pletion steps in the overall scheme. Thus, these problems need 
further studying. 
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