
Machine Learning for a General Purpose Declarative Scene
Modeller

Dimitri PLEMENOS*, Georges MIAOULIS**, Nikos VASSILAS**
*University of Limoges, MSI laboratory, 83, rue d’Isle, Limoges (France)

plemenos@unilim.fr
** Technical Educational Institute of Athens, Athens (Greece)

{gmiaoul, nvas}@teiath.gr

Abstract

In this paper we discuss about the implementation of
machine learning mechanisms in declarative scene
modelling. After a study of the different kinds of declarative
modellers and the different cases where machine learning
seems useful, we describe two implemented techniques
allowing machine learning for declarative modelling by
hierarchical decomposition. The first technique is based on
neural networks and allows reduction of the solution space
in order to generate only solutions corresponding to the
user’s wishes. The second one uses a genetic algorithm
which, starting from a set of scenes produced by the
generation engine of the declarative modeller, produces
other solutions under the user’s control, taking hence the
place of the generation engine. The obtained results are then
explained and discussed.

Keywords : Machine learning, declarative scene
modelling, neural networks, genetic algorithms.

1. INTRODUCTION

Declarative scene modelling is a very useful modelling
technique which allows the user to create scenes by simply
describing their wished properties and not the manner to
construct them. Scene creation is performed by the modeller,
using the properties given in the user’s description.
As a scene is described in a simple intuitive manner by the
user of a declarative modeller, this description is often
imprecise. This lack of precision can be due to two different
reasons: (a) the user does not know exact properties (exact
position, height, width, etc.) of the scene or of parts of the
scene to be designed and uses the possibility offered by
declarative modellers to make imprecise descriptions; (b)
the user believes he (she) is giving exact description by
using some properties proposed by the modeller, as “object
A is put on the left of object B” although these properties
are not precise and admit, generally, more than one
solutions.
A consequence of that can be that the scene (or some scenes)
proposed as solution by the modeller does not satisfy the
user’s desires. Several scenes or parts of scenes can be
generated by the modeller, because they satisfy the user’s
description, before obtaining a scene matching with the
user’s idea about it. This problem will continue with
subsequent generated scenes because the modeller does not
know better the user’s ideas concerning the scene’s
properties. The modeller does not learn during the scene
generation process and it can be frustrating for the user to
often obtain non wished scenes. The purpose of this paper is
to study satisfactory solutions to this problem, that is to the

problem of machine learning from the user’s actions.
In section 2, general principles of declarative modelling
will be presented together with a special declarative
modelling technique, namely declarative modelling by
hierarchical decomposition (DMHD). A DMHD-based
modeller’s prototype, MultiFormes, will be presented too.
In section 3 a distinction is established between two kinds
of declarative modellers, the dedicated and the general
purpose ones. Section 4 presents neural networks based
machine learning. A dynamically generated neural network,
allowing to filter non satisfactory solutions is proposed in
section 5. In section 6, another machine learning approach,
based on genetic algorithms, is proposed. A brief discussion
on the efficiency of the proposed machine learning
techniques is presented in section 7 which concludes the
paper.

2. DECLARATIVE MODELLING

Declarative modelling [2, 5, 10, 11] in computer graphics is
a very powerful technique allowing to describe the scene to
be designed in an intuitive manner, by only giving some
expected properties of the scene and letting the modeller
find solutions, if any, verifying these proporties.
As the user may describe a scene in an intuitive manner,
using common expressions, the described properties are
nearly always imprecise. For example, the user can tell the
modeller that “the scene A must be put on the left of scene
B”. There exist several possibilities to put a scene on the
left of another one. Another kind of imprecision is due to
the fact that the designer does not know the exact property
his (her) scene has to satisfy and expects some proposals
from the modeller. So, the user can indicate that “the house
A must be near the house B” without giving any other
precision. Due to this lack of precision, declarative
modelling is generally a time consuming scene modelling
technique.
It is generally admitted that the declarative modelling
process is made of three phases: the description phase,
where the designer describes the scene, the scene generation
phase, where the modeller generates one or more scenes
verifying the description, and the scene understanding
phase, where the designer, or the modeller, tries to
understand a generated scene in order to decide whether the
proposed solution is a satisfactory one, or not.

Declarative modelling by hierarchical decomposition
(DMHD) [5, 8, 9] is a declarative modelling technique, based
on top-down designing of scenes. Its principle can be
described in a recursive manner:
1. If the scene can be easily described with the properties

implemented in the modeller, the designer gives a
description of the scene and the designing process is
finished.

International Conference Graphicon 2002, Nizhny Novgorod, Russia, http://www.graphicon.ru/

2. Otherwise, the part of description possible at this level
is made, the scene is decomposed in a set of sub-scenes
and each sub-scene is described using the DMHD
principle.

The main advantages of DMHD are: top-down designing;
description made locally for each part of a scene without
having to take into account its other parts; factorisation of
properties; generation in various levels of detail.

MultiFormes is a declarative modeller’s prototype working
according to the DMHD principle. The tree of the
hierarchical description of a scene, used in the generation
phase, allows scene generation in various levels of detail
and reduction of the generation’s cost. To do this, the
modeller uses a bounding box for each node of the tree. This
bounding box is the bounding box of the sub-scene
represented by the sub-tree whose the current node is the
root. All bounding boxes of the children nodes of a node are
physically included in the bounding box of the parent node.
This property permits to detect very soon branches of the
generation tree which cannot be solutions. In figure 1, the
spatial relation between the bounding boxes of a scene and
its sub-scenes is shown.

Scene

Subscene1 Subscene2

Figure 1: The bounding boxes of the sub-scenes of a
scene are inside the bounding box of the parent scene.

Four kinds of properties are mainly used by MultiFormes for
its descriptions:
• inter-dimensions s i z e properties like “scene A is higher

than wide”,
• inter-scenes s i z e properties like “scene A is higher than

scene B”,
• inter-scenes p o s i t i o n properties like “scene A is put on

the left of scene B”,
• form properties like “the top of scene A is almost

rounded”.

There exist several improvements of the MultiFormes
declarative modeller [5, 8, 11, 12]. Latest improvements are
based on arithmetic and/or geometric constraint satisfaction
techniques. In figure 2, one can see some scenes generated
by the MultiFormes declarative modeller.

Figure 2: Two scenes generated by the last versions of
the MultiFormes declarative modeller. On the left: inside a 3
floors building. On the right: Cathedral of Le Dorat (France),

designed by W. Ruchaud.

3. DEDICATED AND GENERAL
P U R P O S E D E C L A R A T I V E
MODELLERS

There exist two kinds of geometric modellers, general
purpose modellers, allowing to design almost everything,
and specialised (or dedicated) modellers, offering high level
modelling for limited specific modelling areas. In the same
manner, there exist two families of declarative modellers:
general purpose modellers, covering a large set of possible
applications, and dedicated modellers, covering a specific
area (architectural design, mechanical design, …).
The principle of dedicated modelling is to define a
declarative modeller each time it is necessary for a well
delimited modelling area (see figure 3). Thus, PolyFormes
[6] is a declarative modeller designed to generate regular or
semi-regular polyhedra.

International Conference Graphicon 2002, Nizhny Novgorod, Russia, http://www.graphicon.ru/

properties of
area 1

Generation
engine

for area 1

Declarative modeller
for area 1

properties of
area 2

Generation
engine

for area 2

Declarative modeller
for area 2

Figure 3 : Dedicated declarative modellers

The main advantage of the dedicated declarative modellers is
efficiency because their solution generation engine can be
well adapted to the properties of the specific modelling area
covered by the modeller. On the other hand, it is difficult for
such a modeller to evolve in order to be able to process
another specific modelling area.
The aim of the general purpose modellers is generality.
These modellers include a solution generation engine which
can process several kinds of properties, together with a
reduced set of pre-defined properties, as general as possible.
General purpose declarative modellers could normally be
specialised in a specific modelling area by adding to them
new properties, corresponding to the specific modelling
area we want to cover (see figure 4). In this sense, general
purpose modellers can be seen as platforms to generate
dedicated declarative modellers.
The main advantage of general purpose declarative modellers
is generality which allows to specialise a modeller in a
specific modelling area without having to modify its
solution generation engine. On the other hand, general
purpose modellers suffer from their lack of efficiency,
because of the generality of the solution generation
mechanism.

properties of
area 1

general
properties generation

engine

General General declarative
modeller

(a)

general
properties generation

engine

General Specialised declarative
modeller

(b)

Figure 4 : general purpose declarative modeller (a) and
its specialisation (b)

The declarative modeller’s prototype MultiFormes is a
general purpose declarative modeller.

4 . M A C H I N E L E A R N I N G A N D
GENERATION MODES

A declarative modeller can be used in two different modes:
exploration mode and solution search mode.
In exploration mode, the declarative modeller, starting from
a user’s description, performs a full exploration of the
solution space and gives the user all found solutions. This
mode can be used when the designer has insufficient

knowledge of a domain and wants to discover it by an
exhaustive exploration or when the designer is looking for
new ideas and hopes that the modeller could help him (her)
by exploring a vague description. The use of imprecise
properties increases the richness of the solution space and
allows the user to obtain concrete answers for a vague
mental image. So, the use of imprecise properties is very
important for the designer. As the exploration mode is based
on the use of imprecise properties, it is very important to
have techniques to reduce exploration cost by reducing the
number of useless tries during the solution search process
[9, 1, 11]. A problem with the exploration mode is that the
use of general imprecise properties can produce a very
important number of solutions and make very difficult the
management of these solutions. Furthermore, some families
of solutions can be of no interest for the designer and he
(she) would like to avoid generation of such solutions in
subsequent generations. As the modeller does not know the
designer’s preferences, machine learning can be used to
teach the modeller what kind of scenes are, or are not,
interesting.
In solution search mode, the designer has a relatively
precise idea of the kind of scenes he (she) would like to
obtain. Thus, the designer would like to obtain a solution
immediately or very quickly from a description using less
imprecise properties. Unfortunately the semantic of a
property is often ambiguous and several solutions not
satisfactory for the user can be faced by the modeller. In such
cases, the knowledge of the designer’s preferences can guide
the modeller in its search. So, if some proposed solutions do
not satisfy the designer, it would be interesting to teach the
modeller not to examine this kind of solutions. This
learning decreases the solution space because, for a great
number of scenes verifying the properties of the initial
description, some scenes will not satisfy the intuitive idea
of the user and these scenes will be avoided.
It is easy to see that machine learning often lightens the
designer’s work and increases the efficiency of generation.
In the following sections we present two methods to
implement machine learning for declarative modelling by
hierarchical decomposition in order to improve modelling
in both exploration and solution search mode.

5. A DYNAMICAL NEURAL NETWORK
FOR FILTERING UNSATISFACTORY
SOLUTIONS IN DMHD

In order to improve exploration mode generation, but also
solution mode generation, we have implemented an
interactive machine learning mechanism based on the use of
neural networks [3, 4, 7, 1], applied to DMHD. This
mechanism is used by the modeller in the following manner:
• During a learning phase, some scenes, generated by the

modeller from the initial description, are selected by the
user to serve as examples of wished scenes. Each time a
new example is presented, the modeller learns more on
the user’s preferences and this is materialized by a
modification of the values of weights associated to the
connections of the network. At the end of the learning
phase, an acceptation interval is calculated and assigned
to each decision cell.

• After the end of the learning phase, the modeller is in the
normal working phase : the weights of connections
calculated during the learning phase are used as filters

International Conference Graphicon 2002, Nizhny Novgorod, Russia, http://www.graphicon.ru/

allowing the choice of scenes which will be presented to
the user.

The used machine learning mechanism takes into account
only relative dimension and position properties of a scene.
Form properties are processed by the scene generation
engine after selection of dimensions and positions of the
bounding boxes of each sub-scene.

5.1 Structure of the used network

The neural network is created dynamically from the
description of the scene and its structure is described in the
following lines.
To each node of the scene’s description tree are assigned:
• A network whose input layer is composed of two groups

of neurons (see figure 5) : a group of two neurons whose
inputs are w/h and w/d where w, h and d are respectively
the width, the height and the depth of the scene
associated with the current node; a group of neurons
whose inputs are the results of acceptance of the other
nodes of the scene. The network contains another layer
of two neurons which work in the following manner: the
first one evaluates the quantity i1*w1+ i2*w2, where wk
represents the weight attributed to the connection
between the k-th neuron of the input layer and the
intermediate layer and ik the k-th input; it returns 0 or 1

according to whether this weighted sum belongs to a
given interval or not. The values of weights wk can be

modified during the learning phase. The second neuron
computes the sum of acceptance results coming from the
second group of neurons of the input layer. Its output
function returns 0 or 1 according to whether this sum is
equal or not to the number of acceptance neurons. The
decision layer of the network contains one neuron and
computes the sum of the outputs of neurons, returning 1
(acceptance) or 0 (refusal) according to whether this sum
is equal to 2 or not.

i1 i2 a1 a2 an…
w1 w2 1 1 1

1 1
0 or 1 0 or 1

0 or 1

Figure 5 : local neural network

• n*(n-1)/2 networks, corresponding to all possible
arrangements of two sub-scenes of the current scene,
where n is the number of child-nodes of the current node.
These networks have the same structure and the same
behaviour as the others except that the inputs of the first
group of neurons of the input layer are dx/dy and dx/dz,
where dx, dy and dz are the components of the distance d
between the two sub-scenes. The values of weights wk
can be modified during the learning process.

Let us consider the scene House, described by the following
Prolog-like pseudo-code:

House(x) ->
Habitation(x1)
Garage(x2)
PasteLeft(x1,x2);

Habitation(x) ->
HigherThanWide(x)
HigherThanDeep(x)
Roof(x1)
Walls(x2)
PutOn(x1,x2);

Garage(x) ->
TopRounded(x,70);

Roof(x) ->
Rounded(x,60);

Walls(x,p) ->;

The generated neural network for this description is shown
in figure 6.

House network

Habitation-Garage
placement network

Habitation
network

Garage
network

Roof-Walls
placement network

Roof
network

Walls
network

1

1 1

1

1 1

Decision

1 1 1

Figure 6 : Neural network generated for the “House”
scene description

The acceptance process of a scene generated by the modeller
is the following:
• If the current node of the generated scene is accepted at

the current level of detail and relative placements of all
the sub-scenes of the node at the next level of detail are
also accepted by the associated neural networks, the
scene is partially accepted at the current level of detail
and acceptance test is performed with each child-node of
the current node. A scene is accepted at the current level
of detail if it is partially accepted for each node up to this
level of detail.

• A scene generated by the modeller is accepted if it is
accepted at each level of detail. Otherwise, the scene is

International Conference Graphicon 2002, Nizhny Novgorod, Russia, http://www.graphicon.ru/

refused and it is not presented to the user.

5.2 The machine learning process

For each neural network of the general network, machine
learning is performed in the same manner.
From each new example of scene presented by the user
among the scenes generated by the modeller, each local
network learns more and more and this fact is materialised
by modifying the weights of connections between the
association (intermediate) layer and the decision (output)
layer. The formula used to adjust a weight w is the following:

wi+1 = w0 - wi V(Xi+1)

where
wi represents the value of the weight w at step i,

w0 represents the initial value of the weight w,

Xi represents the value of the input X at step i,

V(Xi) represents the variance of values X1, ..., Xi.

This formula permits to increase, or not to decrease, the
value of the weight when the corresponding input value is
constant and to decrease the value of the weight when the
corresponding input value varies.
When, at the end of the learning phase, the final value of the
weight w has been computed, the value of the quantity (w -
w0) / m is estimated, where m is the number of examples
selected by the user. If the value of this quantity is less than
a threshold value, the weight w takes the value 0; otherwise,
it takes the value 1.
The quantity computed by the output function of the first
neuron of the intermediate layer of each local network is:
S = w1 Xi + w2 Yi,

where Xi and Yi are the input values at step i.

Thus, at the end of the machine learning phase, each output
function of the first neuron of the intermediate layer of each
local network will compute the quantity:
Sa = w1 A(X) + w2 A(Y)

where A(X) represents the average value of the input values
X1, ..., Xn.

During the phase of normal working of the modeller, a
solution is partially accepted by a local neural network if the
output value computed by the output function of the first
neuron of the intermediate layer belongs to the
neighbourhood of the value Sa.

Let us consider three cases for each local network:

1. w1 = w2 = 0.

The value of Sa is then equal to 0 and all solutions are

accepted.

2. w1 = 0, w2 = 1.

The value of Sa is then equal to A(Y). Only the input value

associated with w2 is important and only scenes which

have, for their corresponding to the current local network
part, input values close to the value of A(Y) are selected.

3. w1 = w2 = 1.

The value of Sa is then equal to A(X) + A(Y). The two

quantities associated with w1 and w2, are important. The

parts of scenes selected by the current local neural network

will be the ones whose input values associated with w1 are

close to A(X) and input values associated with w2 are close

to A(Y). However, such a scheme does not prevent
acceptance of other undesired scenes for which the sum of
entry values is equal to A(X) + A(Y).

5.3 Discussion

Although neural networks are fully efficient for linearly
separable problems, their application to declarative
modelling for a non linearly separable problem, selecting
scenes close to those wished by the designer, gives results
globally satisfactory for exploration mode generation
because it lightens the designer’s work by filtering the
major part of non interesting solutions. Machine learning is
performed with little information and already learnt
knowledge can be used for continuous machine learning
where the modeller avoids more and more non interesting
scenes.
Figure 7 shows some rejected scenes during the machine
learning phase for the above “House” scene description. The
purpose of this phase was to teach that the “Habitation” part
of the scene must be wider than the garage part. In figure 8,
one can see some generated scenes for the “House” scene
description, after the machine learning phase.

Of course, this kind of interactive machine learning reduces
the number of solutions shown to the user but not the
number of tries; the total exploration time remains
unchanged. Another drawback of the method is that learning
is not efficient if the number of given examples is small and
that learning can be avoided if the given examples are not
well chosen.

Figure 7: Scenes generated from the “House”
description and rejected by the user.

We think that it is possible to use the same neural network
to reduce the number of tries during generation. To do this,
after the machine learning phase, the neural network has to
be activated as soon as possible, after each enumeration
phase in the constraint satisfaction process. In this manner,
the next step of the resolution process will take place only
if the scene goes through the neural network filter.

International Conference Graphicon 2002, Nizhny Novgorod, Russia, http://www.graphicon.ru/

Figure 8: Machine learning for the “House”
description. Only generated scenes with the wished shape

are presented to the user.

6 . A M A C H I N E L E A R N I N G
A P P R O A C H U S I N G G E N E T I C
ALGORITHMS

Genetic algorithms [14] can also be used to perform machine
learning because they are supposed to follow natural
evolution lows, based on selection of individuals
(chromosomes). Chromosomes are selected, according to
their importance, to participate to the next generation.
Finally, an important number of generated chromosomes
has the properties corresponding to the evaluation function.

Genetic algorithms based machine learning has been
implemented on MultiCAD [13], an information system for
CAD, which uses the MultiFormes’ generation engine to
generate scenes.

In this implementation, the initial generation is composed
of an arbitrary chosen number of scenes generated by the
generation engine of MumtiFormes and the purpose of
machine learning is to generate other scenes verifying the
properties wished by the user. Each initial scene is a
chromosome, encoded in a special manner.

6.1 Encoding chromosomes

Information taken into account to encode a scene generated
by the MultiFormes engine is the one concerning bounding
boxes of sub-scenes corresponding to terminal nodes of the
generation tree. Each sub-scene is represented by pertinent
information describing its bounding box. This information
is the following:
• coordinates of the bottom-front-left corner of the

bounding box,
• width, depth and height of the bounding box.

Assuming that each coordinate, as well as width, depth and
height of a bounding box are integer numbers, each
bounding box of sub-scene needs 6 integers to be described
(figure 9).

x y z w hd

0 1 3 5 3 6
Figure 9: sub-scene’s representation

As genetic algorithms use chromosomes encoded as binary

strings, each information describing a sub-scene is encoded
as a binary string. In the current implementation, the length
of each binary string is limited to 3, in order to represent
quantities from 0 to 7. So, the terminal sub-scene of figure 9
will be encoded as shown in figure 10.

000 001 011 101 011 110
Figure 10: binary string encoding for sub-scene of

figure 9.

The whole scene is encoded with a chomosome including all
encoded terminal sub-scenes of the scene.

6.2 The genetic algorithm

The purpose of the genetic algorithm is to create new
generations of chromosomes, i.e. solution scenes, from an
initial population by applying genetic operations to the
chromosomes of the current generation.

The genetic operations used are the classical ones, that is
cloning, crossover and mutation. The probability for a
chromosome to be submitted to a genetic operation is
proportional to the importance of this chromosome. The
importance of a chromosome is determined interactively by
the user who assigns a fitness score to each chromosome of
a new generation.

The genetic algorithm starts with an initial set of solutions
created by the generation engine of MultiCAD, which is the
one of MultiFormes. The user assigns a fitness score to each
solution and the genetic algorithm based scene generation
process starts.

At each step of generation, chromosomes are selected
according to their importance and the genetic operations are
applied to them, in order to generate the next generation of
solutions. Unlike in many genetic algorithm applications,
mutation is applied to each step of the generation process.
The whole process can be stopped when at least one of the
solutions of the new generation satisfies the user.

6.3 Discussion

Figure 11 shows two solutions generated by the
implemented genetic algorithm, for the scene “House”
described in section 5. Solutions are visualised through a
VRML file.

Genetic algorithm based learning is more suitable with the
solution search generation mode. The obtained results are
quite interesting and the generated scenes are progressively
closer to the desires of the user. The main advantage of the
genetic algorithm approach is that only some solutions, the
initial population, are generated using the time consuming
constraint satisfaction techniques, used by the main
generation engine of Multiformes. The final solutions are
obtained by the evolution process used in genetic
algorithms, with the search being guided by the user on
more promising parts of the search tree.

International Conference Graphicon 2002, Nizhny Novgorod, Russia, http://www.graphicon.ru/

(a)

(b)

Figure 11: scenes generated by the genetic algorithm
for the scene “House”

An additional advantage is that the user has to evaluate
solutions by groups, rather than one by one as in the main
generation engine of MultiFormes. This possibility permits
a relative comparison of scenes and improves, generally,
results.

On the other hand, as relative positions of the terminal sub-
scenes of a scene are not encoded, it is possible to get
undesired overlappings between these sub-scenes,
especially during the first steps of the generation process.
Moreover, some potentially interesting solutions may
never appear, due to the choice of the initial population.

7. CONCLUSION

Machine learning can be very interesting in scene
modelling, especially whenever declarative modelling is
used. We have proved that it is possible to implement
machine learning in DMHD and that the obtained results are
generally in accordance with our desires. However, there are
some drawbacks with these kinds of machine learning.

Neural networks based machine learning presented in this
paper allows a reduction of the solution space for scene
generation, but it leaves the search space unchanged. So, the
generation time is not affected by this kind of learning.

Moreover, machine learning is performed only for the
current scene description and it is unusable with other scene
descriptions.

Genetic algorithms based machine learning allows to reduce
the search space but it is also usable with only the current
scene description. Moreover, this kind of machine learning
can produce intermediate solutions which do not fit with the
initial description.

We think that it is possible to implement another kind of
machine learning for declarative modellers, complementary
of those presented in this paper, allowing to customise the
modeller according to the user practices. Each user of a
declarative modeller has probably a particular interpretation
of some imprecise properties like “A is close to B”, “A is
higher than B”, etc. This means that the search space to get
solutions is not the same for different kinds of users.
Machine learning of the user’s manner to interpret imprecise
properties can reduce the search space for solutions and,
thus, the solutions generation time.

8. REFERENCES

[1] D. PLEMENOS, W. RUCHAUD, K. TAMINE, Interactive
t e c h n i q u e s f o r d e c l a r a t i v e m o d e l l i n g . 3 I A ’ 9 8
International Conference, Limoges (France), 28-29 of
April 1998.

[2] M. LUCAS, D. MARTIN, P. MARTIN, D. PLEMENOS,
The ExploFormes project: some steps towards
declarative modelling of forms. AFCET-GROPLAN
Conference, Strasbourg (France), November 29 -
December 1, 1989. Published in BIGRE, no 67, pp 35 -
49 (in French).

[3] W. S. Mc CULLOCH, W. PITTS, A logical calculus of the
ideas immanent in nervous activity. Bulletin of
Mathematical Biophysics, 5, 115 - 133, 1943.

[4] F. ROSENBLATT, The perceptron: a perceiving and
recognizing automaton. Project Para, Cornell
Aeronautical Lab. Report 85-460-1, 1957.

[5] D. PLEMENOS, A contribution to study and development
of scene modeling, generation and display techniques -
The MultiFormes project. Professorial Dissertation,
Nantes (France), November 1991 (in French).

[6] D. MARTIN, P. MARTIN, An expert system for
polyhedra modelling. EUROGRAPHICS’88, Nice
(France), 1988.

[7] D. PLEMENOS, Techniques for implementing learning
mechanisms in a hierarchical declarative modeller.
Research report MSI 93 - 04, Limoges (France),
December 1993 (in French).

[8] D. PLEMENOS, Declarative modeling by hierarchical
decomposition. The actual state of the MultiFormes
project. International Conference GraphiCon’95, St
Petersbourg, Russia, 3-7 of July 1995.

International Conference Graphicon 2002, Nizhny Novgorod, Russia, http://www.graphicon.ru/

[9] D. PLEMENOS, K. TAMINE, Increasing the efficiency of
declarative modelling. Constraint evaluation for the
hierarchical decomposition approach. International
Conference WSCG’97, Plzen (Czech Republic), February
1997.

[10] M. LUCAS, E. DESMONTILS, Declarative modellers.
Revue Internationale de CFAO et d’Infographie, 10(6),
pp. 559-585, 1995 (in French).

[11] P.-F. BONNEFOI, D. PLEMENOS, Constraint
satisfaction techniques for declarative scene modelling
by hierarchical decomposition. 3IA’2000 International
Conference, Limoges (France), May 3-4, 2002.

[12] W. RUCHAUD, Study and realisation of a geometric
constraint solver for declarative modelling. PhD Thesis,
Limoges (France), november 15, 2001 (in French).

[13] N. VASSILAS, G. MIAOULIS, D. CHRONOPOULOS, E.
KONSTANTINIDIS, I. RAVANI, D. MAKRIS, D.
PLEMENOS, MultiCAD-GA: a system for the design of
3D forms based on genetic algorithms and human
evaluation. SETN02 Conference, Thessaloniki (Greece),
April 2002.

[14] D. E. GOLDBERG, Genetic Algorithms, Addison-
Wesley, USA, 1991.

About the authors

Dimitri PLEMENOS is professor in The University of
Limoges (France) and director of the MSI research
laboratory.
E-mail: plemenos@unilim.fr

Georges MIAOULIS is professor in the Technical
Educational Institute of Athens (Greece).
E-mail: gmiaoul@teiath.gr

Nikos VASSILAS is professor in the Technical Educational
Institute of Athens (Greece).
E-mail: nvas@teiath.gr

International Conference Graphicon 2002, Nizhny Novgorod, Russia, http://www.graphicon.ru/

