К ВОПРОСУ ПОСТРОЕНИЯ ФУНДАМЕНТАЛЬНЫХ ОБРАЗОВ В ГЕОМЕТРИИ

Олег А. Графский

Дальневосточный государственный университет путей сообщения

Как известно, в основаниях геометрии фундаментальную роль играют квадратичные формы (поверхности, кривые линии и их вырожденные виды), которые принимаются и как за модели плоскостей неевклидовых геометрий, и за соответствующий абсолют этих геометрий.

Обоснование введения бесконечно удаленных элементов, а затем мнимых элементов (в том числе и на многомерной основе) позволило классикам геометрии (в особенности Ф. Клейну) развить стройную теорию этой науки. При этом, если бесконечно удаленные элементы более удачно рассматриваются при введении проективных координат, то в интерпретациях мнимых элементов и соответствующих образов проводят, как правило, аналог с действительными образами.

Поэтому определенный интерес представляют такие интерпретации, которые позволили бы наряду с действительными образами рассматривать и мнимые, и не раздельно, а совместно с ними.

Тогда такие интерпретации должны представлять и циклические (круговые) точки (абсолют геометрии Евклида), через которые проходят все окружности евклидовой плоскости; изотропные прямые линии (с проективной точки зрения два пучка в центрами в круговых точках), а следовательно и несобственную прямую линию, которая проходит через обе круговые точки и является, таким образом, тоже изотропной [1]. При этом такая интерпретация должна способствовать моделированию окружностей 1-го и 2-го рода псевдоевклидовой геометрии (Г. Минковского), которые, как известно, рассматриваются как сопряженные равносторонние гиперболы (поскольку окружность нулевого рода представляется асимптотами этих гипербол - изотропными прямыми линиями). В трехмерном пространстве такая интерпретация должна сопровождаться наличием мнимой окружности сфер (общую для всех сфер), изотропного конуса и т. д. Так как геометрические построения должны подтверждаться аналитически, то в первую очередь необходимо обоснованное задание системы координат и структуры координатной плоскости, в которой рассматриваются геометрические объекты.

Ввиду того, что координатная ось представляет собой числовую ось, как упорядоченную последовательность чисел, то формирование такой оси нужно производить с позиции алгебры.

Исходя из построения современной (абстрактной) алгебры, можно рассматривать такие известные математические модели, которые определяются в терминах бинарных операций. Эти операции связывают (ставят в соответствие) пары математических объектов с соответствующими результатами определяющих операций. Именно к моделям такого рода относят группы, кольца, поля и пр.

Согласно теории групп, имеет место так называемая цикли-

ческая группа, которая состоит из степеней $a^o = E$, a^1 ,

 a^2 , . . . одного элемента *а* (такая группа обязательно коммутативна [2, 3]).

Естественно полагать, что в поле действительных чисел в качестве результата операции по умножению (как одной из основной арифметической операции) имеет место число $a \cdot b$, а при случае b = a, – число $a \cdot a$ или a^2 (т.е. имеется число $a_1 = a \cdot a = a^2$). При выполнении этой же операции с парой чисел $a \cdot a_1$, получим следующий результат операции (число) $a_2 = a \cdot a_1 = a \cdot a^2 = a \cdot a \cdot a = a^3$. Аналогичным образом могут быть получены числа $a_3 = a \cdot a_2 = a \cdot a^3 = a^4$; $a_4 = a^5$ и т.д. Таким образом, можно записать:

$$a_{k} = a \cdot a_{k-1} = a \cdot a^{k} = a^{1+k} = a^{n}$$

где k и n – целые числа; $k \ge 1$ – число операций по умножению; n = k + 1 – итоговая степень числа (результата операции).

Поскольку поле комплексных чисел отличается от поля действительных чисел наличием мнимой единицы (числа $i = \sqrt{-1}$), в первую очередь рассмотрим образование циклической группы с этим элементом (числом i): $i^0 = 1$; $i^1 = i$; $i^2 = -1$; $i^3 = -1$ и т.д.

В данном случае имеется цикл кратный числу 4, так как $i^{p+4} = i^p$, где *p* является степенью числа *i*.

Запишем полученные результаты для степеней p(0; 1; 2; 3)числа i в виде числа a_{ik} : $a_{i1} = i^0 = 1$; $a_{i2} = i^1 = i$; $a_{i3} = i^2 = -1$; $a_{i4} = i^3 = -i$. Сумма этих значений четырех чисел будет равна нулю:

$$a_{i1} + a_{i2} + a_{i3} + a_{i4} = \sum_{k=1}^{4} a_{ik} = \sum_{p=0}^{3} i^p = 0$$

Если ввести понятие периода T, при котором сумма результатов четырех последовательных степеней чисел равна нулю, то, очевидно, вся последовательность n чисел a_{ik} (от a_{i1} до a_{in}) может быть условно разбита на конечное целое число m периодов T. Число таких периодов m = n/4. Отсюда следует, что величина n чисел a_{ik} для конечного числа периодов m будет определяться как n = 4m. Тогда сумма всех чисел n, входящих последовательно в каждый *j*-й период (T_i) может быть записана выражением:

$$S_m = S_{T1} + S_{T2} + \ldots + S_{Tm} = \sum_{j=1}^m S_{Tj} = m \sum_{k=1}^4 a_{ik} = \sum_{p=0}^{p_n} i^p = 0$$
,

где $p_n = n + 1$ – степень *n* -го (последнего) числа a_{in} . Если рассматривать в качестве бинарной операции арифметическое умножение между упорядоченной последовательностью положительных чисел a_k и числа i^0 , а затем аналогично между той же последовательностью a_k и числами i^1 , i^2 , i^3 , то получим четыре последовательности следующих чисел ($a_k \cdot i^p$): положительных и отрицательных действительных чисел a и -a, положительных и отрицательных мнимых чисел ai и -ai.

На основании полученных последовательностей $(a_k \cdot i^p)$ можно сформировать соответствующие числовые оси с общим началом координат (числом 0), так как это число имеется в каждой последовательности $(a_k \cdot i^p)$:

$$a_{k} \cdot i^{0} = a_{k} (0, 1, 2, \dots a, \dots n);$$

$$a_{k} \cdot i^{1} = a_{k} i (0, 1i, 2i, \dots ai, \dots ni);$$

$$a_{k} \cdot i^{2} = -a_{k} (0, -1, -2, \dots -a, \dots -n);$$

$$a_{k} \cdot i^{3} = -a_{k} i (0, -1i, -2i, \dots -ai, \dots -ni).$$

Эти числовые оси представлены на рис. 1, на которых отмечены значения чисел как координат:

$$(a_k \cdot i^0 = a_k) \subset Ox, \qquad (a_k \cdot i^2 = -a_k) \subset -Ox, (a_k \cdot i^1 = a_k \cdot i) \subset Ox_i, \qquad (a_k \cdot i^3 = -a_k \cdot i) \subset -Ox_i.$$

Рис. 1. Интерпретация числовых осей с числами *a_ki^p*

При решении задач, в которых переменная обозначена, например как x, результаты решений будем записывать в виде выражений x = 0, x = 1, ... x = a. Это соответствует значениям координат на оси Ox (на положительной полуоси). В случае если переменные имеют мнимые значения x = i, x = 2i,... x = ai, то этим значениям будут соответствовать точки на положительной полуоси числовой оси Ox_i . Аналогична интерпретация и для отрицательных действительных и мнимых значений переменной x, которой соответствуют координаты на отрицательных полуосях.

При решении задач с несколькими переменными (например, x, y, z), числовые оси обозначаются как $Ox, Ox_i; Oy, Oy_i; Oz, Oz_i$ (в многомерной алгебраической геометрии переменные, как правило, обозначаются одним символом с индексами).

Обозначим построенные последовательности как $(a_k i^p)^l$, то есть это последовательности первой степени. Очевидно, можно сформировать последовательности и с другими значениями степеней: $(a_k i^p)^2$, $(a_k i^p)^3$, ... $(a_k i^p)^q$. Этим

самым вновь получаем циклическую группу, где первый элемент (q = 0) равен единице: $(a_k i^p)^0 = 1 = E$. Для числовых последовательностей $(a_k i^p)^q$ при значении q = 2 $((a_k i^p)^2$ или $a_k^2 i^{2p}$) сформированы две числовые оси Ouи Ov (рис. 2):

$$\begin{array}{ll} (a_k^2 \cdot i^0 = a_k^2) \subset Ou\,, & (a_k^2 \cdot i^2 = -a_k^2) \subset -Ou\,; \\ (a_k^2 \cdot i^4 = a_k^2) \subset Ov\,, & (a_k^2 \cdot i^6 = -a_k^2) \subset -Ov\,, \end{array}$$

где a_k^2 имеет значения 0, 1, 2^2 , ... a^2 , ... n^2 ; $-a_k^2$ – соответственно 0, -1, -2^2 , ... $-a^2$, ... $-n^2$).

Рис. 2. Интерпретация числовых осей с числами $(a_k i^p)^2$

Учитывая, что на осях фиксируются значения соответствующих переменных (координаты проекций точек), тогда на оси *Ou* каждая точка соответствует значению переменной u ($u_1, u_2, \ldots, u_a, \ldots, u_n$). Из значения переменной $u = a^2$ следует, что число a может принимать как положительные «+a», так и отрицательные значения «-a», т.е. $u = (\pm a)^2$, поэтому $\sqrt{u} = \pm a$, или $x_1 = a$ и $x_2 = -a$. Откуда следует, что $x = \pm \sqrt{u}$ и $u = x^2$.

Аналогично имеем для переменных оси Ov с координатами переменных $v_1, v_2, ..., v_a, ..., v_n$. Здесь $v = (\pm a)^2$. Принимая за « y » числовые переменные числовых рядов первой степени, запишем $y_1 = a$ и $y_2 = -a$, тогда $y = \pm \sqrt{v}$, $v = y^2$. Для отрицательных значений переменных числовых рядов второй степени будут справедливы выражения:

$$u = ((\pm a)i)^2 = a^2i^2 = -a^2; \quad \sqrt{u} = \pm \sqrt{-a^2} = \pm ai,$$
 тогда
 $x = \pm ai;$

$$v = ((\pm a)i)^2 = a^2i^2 = -a^2; \quad \sqrt{v} = \pm \sqrt{-a^2} = \pm ai,$$
 тогда
 $v = \pm ai.$

Следовательно, положительным значениям переменной u соответствуют квадраты действительных положительных и отрицательных значений переменной x, а положительным значениям переменной v соответствуют квадраты действительных положительных и отрицательных значений переменной y. Эти значения откладываются на положительных полуосях соответственно оси Ou и оси Ov:

$$(\pm x)^2 = x^2 = u$$
 и $(\pm y)^2 = y^2 = v$.

Отрицательным значениям переменной u соответствуют квадраты мнимых положительных и отрицательных значений переменной x, а отрицательным значениям переменной v соответствуют квадраты мнимых положительных и отрицательных значений переменной y. Эти значения откладываются на отрицательных полуосях -Ou и -Ov:

$$(\pm xi)^2 = x^2i^2 = -x^2 = -u; \quad (\pm yi)^2 = y^2i^2 = -y^2 = -v.$$

В связи с этим, можно полагать, что координатная плоскость (Ouv), задаваемая прямыми Ou и Ov, будет являться «квадратичной» плоскостью по отношению к координатной плоскости (Oxy).

Таким образом, для рассматриваемых переменных (и как значениям координат точек на соответствующих координатных осях) справедливы следующие выражения:

$$T: x = \pm \sqrt{u}, y = \pm \sqrt{v}$$
 и $T^{-1}: u = x^2, v = y^2$, (1)

Следовательно, взаимосвязь декартовых линейных координат любой точки A(x, y) действительной плоскости $\pi_r(Oxy)$ с квадратичными координатами соответственной точки $A_q(u, v)$ действительной плоскости $\pi_q(Ouv)$ осуществляется выражениями (1) на основании которых можно записать:

$$tg\theta = tg^2\varphi, \qquad (2)$$

где φ - угол наклона отрезка OA к оси Ox; θ - угол наклона отрезка OA_q к оси Ou.

Прежде чем устанавливать соответствие между точками $A(x, y) \in \pi_r$ и $A_q(u, v) \in \pi_q$ при совмещенном положении плоскостей π_r и π_q необходимо рассмотреть вопрос о наличии двойных (неподвижных) точек, то есть точек, которые бы не изменяли своего положения при рассматриваемом отображении. По выражению (1) установлено (согласно методу представленному в работе [4]), что в плоскости π_r точки O(x = 0, y = 0);имеют место четыре $E_x(x=1, y=0); E_y(x=0, y=1); E_r(x=1, y=1),$ которым при отображении на плоскость π_q соответствуют также четыре точки с теми же значениями координат. На основании этого заключаем, что при данном отображении неподвижными (двойными) точками являются O(0;0), $E_u = E_x(1;0), E_v = E_v(0;1), E_q = E_r = E(1;1).$ И как следствие этого – прямые линии с уравнениями x = 1 и y = 1, отображаются также в аналогичные прямые u = 1, v = 1.

Анализируя выражение (2) для первого квадранта плоскости π_r отмечаем что еще положение трех прямых (лучей) остается неизменным: при значениях $\varphi = 0$ и $\theta = 0$ (совпадение положительных полуосей абсцисс); при значениях $\varphi = \frac{\pi}{2}$ и $\theta = \frac{\pi}{2}$ (совпадение положительных полуосей ор-

динат); при значениях $\varphi = \frac{\pi}{4}$ и $\theta = \frac{\pi}{4}$ (совпадение биссектрис I первого квадранта, которые проходят через неподвижные точки O и E).

В обратной задаче точке A_q I квадранта плоскости π_q соответствуют в плоскости π_r , четыре точки (по одной в каждом квадранте). Лучу OA_q с углом наклона θ к оси абсцисс (Ou) I квадранта плоскости π_q соответствуют в плоскости π_r четыре луча с углами наклона к оси абсцисс (Ox): φ ; $\pi - \varphi$; $\pi + \varphi$; $-\varphi$;. Это соответствие вытекает согласно выражению (2), из которого следует $tg\varphi = \pm \sqrt{tg\theta}$.

Исследуемое отображение является одно-четырехзначным соответствием, а полученная «квадратичная плоскость» *Оиv* своими квадрантами интерпретирует четырехлистную модель. При этом квадратичная функция в простейшем случае в виде параболы $y = x^2$ (и $y^2 = x$) с параметром p = 1/2 координатной плоскости *Oxy* отображается в плоскости *Ouv* также параболой $v = u^2$ (и $v^2 = u$) с «полуветвями» в первом квадранте, проходящими через неподвижные точки *O* и *E*. Параболы мнимых пространств отображаются в «полуветви» таких же парабол других квадрантов. Поэтому в рассматриваемых отображениях параболу можно считать инвариантной кривой. Построение точки $A_q \in \pi_q$ по заданной точке $A \in \pi_r$ (точка *A* соответствует точке A_q) можно осуществить на основании инверсии координат точки *A*, рассматриваемых как

точки принадлежащие соответствующим координатным осям. Запишем выражение $u = x^2$ в инверсионном виде: $u = \frac{x^2}{1}$. Тогда координата u точки A_q при совмещении плоскостей π_r и π_q будет определена при помощи окружности $r_x = x$ и «единичной» точки на оси Ox (x = 1). Построение квадратичной координаты $u = a^2$ по исходной координате x = a представлено на рис. 3, |a| < 1.

Рис.3. Построение квадратичной координаты $u = a^2 (|a| < 1)$

Аналогично (рис.4) осуществляются построения для определения квадратичной координаты $v = b^2$ по исходной координате y = b (|b| > 1), если выражению $v = y^2$ придать

также инверсионный вид: $v = \frac{y^2}{1}$.

Рис.4. Построение квадратичной координаты $v = b^2 (|b| > 1)$

Анализируя представленные построения можно заключить, что квадратичные координаты определяются как точки пересечения соответствующих осей координат либо с прямыми o' и o'' (a и b по абсолютной величине меньше единицы), либо с касательными τ_1 , τ_2 и τ_3 , τ_4 , проведенными через точки O_1 , O_2 и O_3 , O_4 (a и b по абсолютной величине больше единицы).

Во всех представленных случаях (рис. 3, 4) рассматривались только положительные координаты точки $A \in \pi_r$ (предполагалась, что точка A находилась в I квадранте плоскости π_r).

Если рассматривать точку $A \in \pi_r$ в любом другом квадранте, то искомая точка $A_q \in \pi_q$ также будет находиться в I квадранте плоскости π_q , поскольку аналитически для действительных положительных и отрицательных значений координат x и y точки A соответствуют только положительные действительные значения координат $u = x^2$ и $v = y^2$ точки A_q .

Таким образом, точке $A_q \in \pi_q$ в плоскости π_r будут соответствовать четыре точки A_1 , A_2 , A_3 , A_4 (каждая в соответствующем квадранте плоскости π_r).

Если будет дана точка $A_q \in \pi_q$, расположенная в каком-

либо другом квадранте, то ей соответственные четыре точки будут располагаться в других координатных плоскостях (табл. 1), которые содержат хотя бы одну координатную ось с мнимыми значениями координат.

Таблица 1. Координаты соответственных точек

Координаты	Квадранты плоскостей			
точки	Ι	II	III	IV
$A_q \in \pi_q$	точка	точка	точка	точка
	A_1	A_2	A_3	A_4
I квадрант $u = a^2$ $v = b^2$	Координатная плоскость π_r			
	x = a	x = -a	x = -a	x = a
	y = b	y = b	y = -b	y = -b
II квадрант $u = -a^2$ $v = b^2$	Координатная плоскость π_{i_r}			
	x = ia	x = -ia	x = -ia	x = ia
	y = b	y = b	y = -b	y = -b
III квадрант $u = a^2$ $v = -b^2$	Координатная плоскость π_{r_i}			
	x = a	x = -a	x = -a	x = a
	y = i b	y = ib	y = -ib	y = -ib
IVквадрант $u = -a^2$ $v = -b^2$	Координатная плоскость π_i			
	x = ia	x = -ia	x = -ia	x = ia
	y = ib	y = ib	y = -ib	y = -ib

Анализ установленной зависимости между полярными радиусами $\rho_{\phi} \in \pi_r$ и $\rho_{\theta} \in \pi_q$:

$$\rho_{\theta} = \frac{\rho_{\phi}^2}{\cos\theta + \sin\theta} \tag{3}$$

позволят утверждать, что данное выражение представляет собой инверсионную зависимость:

$$\rho_{\theta} = \frac{\rho_{\varphi}^2}{\rho_e} \,. \tag{4}$$

Числитель выражения (4) можно рассматривать как окружность s_r

$$\rho_{\varphi}^{2} = r^{2}$$
(или $x^{2} + y^{2} = r^{2}$), (5)

а знаменатель

$$\mathcal{O}_e = \cos\theta + \sin\theta \,, \tag{6}$$

как окружность $(u^2 + v^2 - u - v = 0)$, которая проходит через начало координат, единичные точки координатных осей и единичную точку плоскости. В канонической форме уравнение этой окружности (*s*_e) имеет следующий вид:

$$\left(u - \frac{1}{2}\right)^2 + \left(v - \frac{1}{2}\right)^2 = \left(\frac{\sqrt{2}}{2}\right)^2.$$
 (7)

В целом выражение (3) является уравнением прямой линии (l_a) :

$$u + v = r^2 . ag{8}$$

Уравнение окружности s_e (6) показывает, что эта окружность является постоянным геометрическим образом плоскости π_q для всех концентрических окружностей s_r (5) плоскости π_r с общим центром в начале координат O(x = 0; y = 0) и соответствующим им прямым параллельным линиям l_a вида (8) плоскости π_q . Можно также констатировать, что в эту окружность (s_e) отображаются все прямые линии l_q (8) при выполнении инверсии всех ее точек относительно окружности s_r (кроме прямой, проходящей через начало координат). Это положение справедливо на основании того, что выражение (4) можно записать

$$\rho_e = \frac{r^2}{\rho_\theta} \quad . \tag{9}$$

Пример построения точки $A \in l_q$ соответствующей точке $A_1 \in S_e$ показан на рис. 5 ($\rho_e = OA_1$, $\rho_\theta = OA$).

Рис. 5. Пример построения соответственных точек $A \in l_q$ и $A_1 \in s_e$

Бесконечно удаленным точкам прямой l_q будет соответствовать точка окружности s_e , расположенная в начале координат (O). Такой случай можно наблюдать графически и аналитически по выражению (9), так как луч (c), на котором определяются точки при выполнении инверсии будет проходить через точку O(0;0) параллельно прямой l_q (8), что соответствует углу наклона $\theta_o = \frac{3}{4}\pi$ (или $\theta_o = -\frac{\pi}{4}$) луча (c) с осью. Этим значения угла соответствуют в выражении (3) $\cos \frac{3}{4}\pi = -\sin \frac{\pi}{4} = -\frac{\sqrt{2}}{2}$ и $\sin \frac{3}{4}\pi = \cos \frac{\pi}{4} = \frac{\sqrt{2}}{2}$. Поэтому знаменатель выражения (3) обращается в ноль, а $\rho_{\theta} = \infty$. Бесконечно удаленные точки прямой l_q будут соответствовать циклическим (круговым) точкам, так как проведенный в плоскости π_q под углом θ_o луч (c) соответствует изотропным прямым плоскости π_{ir} ($Ox_i y$) и плоскости π_{ri} (Oxy_i).

Таким образом, той части окружности s_e , которая расположена в I квадранте плоскости π_q соответствует часть прямой l_q , расположенной также в I квадранте (отрезок MN). Этому отрезку в плоскости π_r (*Oxy*) соответствует окружность (5): $x^2 + y^2 = r^2$.

Дуге окружности s_e , которая расположена в II квадранте в плоскости π_q соответствует часть прямой l_q , простирающаяся от точки M также во II квадранте. Этой части прямой (лучу с началом в точке M) соответствует в плоскости π_{ir} ($Ox_i y$) равносторонняя гипербола

$$y^2 - x_i^2 = r^2. (10)$$

Другой дуге окружности s_e , расположенной в IV квадранте, соответствует та часть прямой l_q , которая расположена также в IV квадранте (луч с началом в точке N). Этому лучу соответствует в плоскости π_{ri} (Oxy_i) другая равносторонняя гипербола

$$x^2 - y_i^2 = r^2 \,. \tag{11}$$

Полученную аналитическим путем окружность s_e можно рассматривать как множество точек, которое подчинено уравнению (6) или уравнениям (3) и (7). Одна точка этого множества совпадает с началом координат. Таким образом, эта точка находится одновременно во всех квадрантах плоскости π_q . В III квадранте это будет одна единственная точка, принадлежащая окружности s_e . Поэтому окружность s_e отобразится в плоскость $\pi_i (Ox_i y_i)$ только одной своей точкой, совпадающей также с началом координат плоскости π_i . Дуге окружности s_e , расположенной в I квадранте (ее длина равна половине длины всей окружности) соответствует в плоскости $\pi_r (Oxy)$ кривая четвертого порядка s'_{le}

$$x^4 - x^2 + y^4 - y^2 = 0, \qquad (12)$$

которая представлена на рис. 6.

Кривая s'_{le} состоит из двух частей: одна часть это построенная замкнутая кривая линия, которая симметрична относительно осей координат, начала координат и биссектрис координатных углов; другая ее часть состоит из одной изолированной точки (считаемая дважды), которая совпадает с началом координат.

Дуге окружности s_e , расположенной во II квадранте (ее длина равна четверти длины всей окружности) соответствует в плоскости π_{ir} ($Ox_i y$) кривая четвертого порядка s'_{IIe}

$$x_i^4 + x_i^2 + y^4 - y^2 = 0, \qquad (13)$$

которая изображена на рис. 7. Эта кривая симметрична относительно осей координат и имеет одну узловую точку (считаемую дважды), совпадающую с началом координат.

Рис. 6. Кривая четвертого порядка s'_{Ie} плоскости $\pi_r(Oxy)$

Рис. 7. Кривая четвертого порядка s'_{IIe} плоскости $\pi_{ir}(Ox_iy)$

Другая дуга окружности s_e , которая расположена в IV квадранте плоскости π_q (ее длина равна также четверти длины всей окружности) соответствует в плоскости π_{ri} (Oxy_i) кривая четвертого порядка s'_{IVe}

$$x^{4} - x^{2} + y_{i}^{4} + y_{i}^{2} = 0.$$
 (14)

Эта кривая изображена на рис. 8, она также симметрична относительно осей координат и имеет одну узловую точку (также считаемую дважды), совпадающую с началом координат.

Визуализация представленных кривых осуществлялась с использованием пакета Maple. Разработан и способ построения каждой точки этих кривых. Так, например, установлено, что построение точек кривой s'_{IIe} (рис. 9) подчинено условию конгруэнтности двух пучков (a, b, ..., c) и $(\overline{a}, \overline{b}, ..., \overline{c})$, проходящих через начало координат. В этом случае имеет место ортогональная инволюция, которая является эллиптической инволюцией прямых пучка (O).

Рис. 8. Кривая четвертого порядка s'_{IVe} плоскости $\pi_{ri}(Oxy_i)$

При анализе отображения окружности $s_r \subset \pi_r$ в прямую линию $l_q \subset \pi_q$ установлены три типа соответствий: гиперболический (прямая и окружность имеют две общие соответственные различные действительные точки: $A = E_x = E_u$ и $B = E_y = E_v$), параболический (прямая и окружность имеют две соответственные совпавшие действительные точки: A = B = E), эллиптический (прямая и окружность не имеют общих соответственных точек).

Рис. 9. Построение кривой четвертого порядка s'_{IIe}

Анализ проводился на основе теории функций комплексной переменной: w = f(z), где z = x + iy, а w = u + iv. Это равносильно заданию двух функций: u = u(x, y) и v = v(x, y) [5]. Так как в рассматриваемых отображениях (1) $u = x^2$, $v = y^2$, то законом отображения является выражение

$$w = z^2 \frac{\cos^2 \varphi + i \sin^2 \varphi}{\cos 2\varphi + i \sin 2\varphi}$$
или
$$w = z^2 e^{-2i\varphi} (\cos^2 \varphi + i \sin^2 \varphi),$$

которые для построения на чертеже (рис. 10) удобнее записать как

$$w = \left| z \right|^2 (\cos^2 \varphi + i \sin^2 \varphi). \tag{16}$$

Этот анализ предоставил возможность построения точки $A_q \in \pi_q$ (как комплексного числа $w_A \in \pi_w$) по заданной точке $A_r \in \pi_r$ (как комплексного числа $z_A \in \pi_z$). Построения осуществляются в четыре этапа. На первом этапе на единичной окружности определяется точка $A_E(x = \cos\varphi, y = \sin\varphi)$: $z_1 = \cos\varphi + i \sin\varphi = e^{i\varphi}$. На втором этапе при помощи двух инверсий (вдоль осей координат) определяется точка $A^*(x_* = \cos^2\varphi, y_* = \sin^2\varphi)$:

или

 $z_* = x_* + iy_* = \cos^2 \varphi + i \sin^2 \varphi$ $z_* = u_* + iv_* = |z_*| \cdot e^{i\theta} = w_*$

На третьем этапе определяется точке A_e (как результат пересечения прямой OA^* с окружностью s_e), для которой $\rho_e = \cos\theta + \sin\theta$ (6):

$$w_e = \left|\cos\theta + \sin\theta\right| \cdot \left(\cos\theta + i\sin\theta\right) = \frac{e^{2i\theta} + i}{1+i}.$$
 (17)

Рис. 10. Построение соответственных точек на основе теории функций комплексного переменного

На четвертом этапе выполняется инверсия по определению

искомой точки
$$A_q(w_A)$$
: $w_A = \frac{|z_A|^2}{w_e}$

Выполняя обобщение декартовых координат [1, 4], перейдем к проективным координатам плоскости $\pi_q(Ouv)$. На рис. 12 представлен известный базисный (координатный) треугольник (ΔOUV), который в качестве вершин имеет начало координат O и пару точек $U \in l_{\infty}$, $V \in l_{\infty}$, где l_{∞} является несобственной прямой плоскости $\pi_q(Ouv)$.

Рис. 12. Проективная плоскость $\pi_a(Ouv)$

Через произвольно выбранную в I квадранте единичную точку $E_{\rm I}$ определяются единичные точки E_u и E_v на коори Ov $(E_u = VE_1 \cap Ou$, динатных осях Ou $E_v = UE_{\rm I} \cap Ov$) и проводится «биссектриса» $d(d'_1 u d'_2)$ – образы биссектрис всех квадрантов плоскости π_r). На продолжении прямой DE_v до пересечения с отрицательной полуосью Ои определяется единичная точка E_{-u} . А на пересечении прямых линий $V\!E_{-u}$ и $U\!E_v$ отмечается единичная точка E_{II} II квадранта плоскости π_a . Тогда прямая линия, проходящая через начало координат (О) и единичную точку $E_{\rm II}$, будет являться «биссектрисой» (c) II квадранта плоскости π_q , а c'_1 и c'_2 – образами биссектрис плоскости $\pi_{ir}(Ox_i y)$, которые являются изотропными прямыми. Следовательно, точка $C = c \cap l_{\infty}$ является таковой точкой несобственной прямой l_∞ , которая отображает точки C'_1 , C'_2 как образы циклических (круговых) точек.

Представленная модель наглядно иллюстрирует положение о том, что все окружности проходят через пару циклических точек. Так на прямой l_1 отрезку $E_u E_v$ соответствует «еди-

ничная окружность» (r = 0) плоскости π_r (*Oxy*). При этом на всех прямых, проходящих через точку *C* можно выделить отрезки заключенные между осями *Ou* и *Ov* (для сравнения отрезок *MN* прямой l_q на рис. 5). Эти отрезки и являются концентрическими окружностями плоскости π_r (например, окружность s_r на рис. 5). Окружность нулевого радиуса также проходит через эти точки (ей соответствует прямая, проходящая через начало координат *O* и точку *C*, т.е. на прямой $c(c'_1 \cap c'_2)$ отрезок, заключенный между осями координат *Ou* и *Ov*, имеет длину равную нулю).

Мнимые окружности (радиуса *ir*) также проходят через циклические точки. Это отрезок прямой $l_i \supset C$, заключенный между отрицательными полуосями осей координат *Ou* и *Ov*.

Пара противоположно направленных лучей, исходящих из концов рассмотренных отрезков (например, из E_u и E_v) и простирающихся во II и IV квадранты являются сопряженными равносторонними гиперболами, которые можно принять за модели окружностей псевдоевклидовой геометрии Г. Минковского; окружность нулевого рода (инцидентна изотропным прямым) на данной схеме представляется прямой $c(c'_1 \cap c'_2)$. Не трудно заметить, что на несобственной прямой линии l_{∞} устанавливается эллиптическая инволюция точек V,U и C,D. Это гармоническая четверка точек: (UVDC) = -1. Этот факт подтверждается наличием полного четырехугольника, например, $OE_uE_IE_v$, где несобственная прямая линия l_{∞} является одной из его диагоналей. Такая инволюция точек несобственной прямой называется абсолютной инволюцией [4]. Ее можно рассматривать и как ортогональную. Тогда отмеченные выше окружности псевдоевклидовой геометрии можно интерпретировать в евклидовой плоскости. Это будут пучки исходящие из точки D. Точка D, как и все точки прямой l_{∞} считается двойной; она является образом двух точек D'_1 и D'_2 , которые являются абсолютом псевдоевклидовой геометрии. Поэтому прямые пучков с центрами С и D в общем случае это окружности и гиперболы плоскостей π_r , π_{ir} , π_{ri} и π_i , а биссектрисы плоскостей π_{ir} и π_{ri} являются общими изотропными прямыми линиями. Прямые пучков с центрами U и V являются соответственно горизонтальными и вертикальными прямыми линиями плоскостей π_r , π_{ir} , π_{ri} и π_i . Если проследить за процессом вращения прямой (например,

Если проследить за процессом вращения прямой (например, l_1) вокруг точки C, а также вокруг точек E_u и E_v , вокруг точек E_1 и O_e , можно рассмотреть постепенное превращение одних геометрических образов второго порядка в другие [1]. Например, при повороте прямой l_1 вокруг точки E_u обнаруживаем постепенную деформацию окружности радиуса r=1 (диаметра 2r) плоскости π_r в эллипс со значением малой оси равной 2r, другая ось увеличивается и при прохождении прямой l_1 через точку V эллипс превращается в пару параллельных прямых линий. Эти прямые линии можно принять за модель окружности геометрии Галилея (абсолютом которой является несобственная прямая l_{∞} с выделенной точкой V на ней [6, 7]). При дальнейшем повороте прямой l_1 полученные параллельные прямые линии превращаются в гиперболы и, при прохождении l_1 через точку D, получаем в плоскости π_r равностороннюю гиперболу (модель окружности 1-го рода псевдоевклидовой геометрии).

В дальнейших исследованиях при переходе к трехмерному пространству R_3 рассматривается система двух плоскостей проекций π_{1q} (Ouv) и π_{2q} (Ouw), которые имеют геометрический аппарат рисунка 12 (в каждой плоскости имеется несобственная прямая $l_{1\infty}$ и $l_{2\infty}$ с точками C_1 , D_1 и C_2 , D_2 соответственно). При введении третьей плоскости π_{3q} (Ovw) в I октанте построим единичный треугольник следов ($\Delta E_u E_v E_w$) плоскости s_{1q} . Плоскости этого треугольника в первом октанте действительного пространства R_3 (Oxyz) соответствует сфера (r = 1) с центром в начале координат. Эта же плоскость проходит через точки C_1 и C_2 (как и все плоскости пучка плоскостей проходящие через эти точки). Тогда ось этого пучка, заключенная между двумя точками C_1 и C_2 является мнимой окружностью всех сфер.

Прямые d и c можно рассматривать как образующие кругового конуса k (Ou – ось вращения). Тогда полость k_c конуса k с отрицательной полуосью интерпретирует изотропный конус.

При соответствующих вращениях плоскости s_{Iq} вокруг

одного из ее следов можно рассматривать взаимные превращения квадрик [1], которые можно рассматривать как модели плоскостей остальных шести метрических неевклидовых геометрий.

Литература

- Ф. Клейн. Неевклидова геометрия. М.-Л.: Объединенное научно-техническое изд-во НКТП СССР. Главная редакция общетехнической литературы и номографии, 1936. – 355 с.
- Садовничий В.А. Теория операторов. 3-е изд. М.: Высш. шк., 1999. – 368 с.
- Г. Корн, Т. Корн. Справочник по математике (для научных работников и инженеров). – 4-е изд. – М.: Наука, Главная редакция физико-математической литературы, 1977. – 832 с.
- Четверухин Н.Ф. Проективная геометрия. 8 изд. М.: Просвещение, 1969. – 368 с.
- Лаврентьев М.А., Шабат Б.В. Методы теории функций комплексного переменного. 2-е изд. – М.: Государственное изд-во физико-математической литературы, 1958. – 678.
- Каган В.Ф. Основания геометрии. Ч. 2. М.: Государственное изд-во технико-теоретической литературы, 1956. – 344 с.
- Розенфельд Б.А. Неевклидовы геометрии. М.: Государственное изд-во технико-теоретической литературы, 1955. – 744 с.