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Abstract 
Hierarchical radiosity provides a good model for the lighting of 
static scenes. But when an object moves, this model requires an 
update of all the lighting. In fact, thanks to space-time coherence, 
we just have to compute some of the geometry parameters (form 
factors). The problem is to determine which part of the hierarchy 
of links must change or not. 
A shaft is a practical mean to represent the interactions of light 
between two objects. A hierarchy of shaft describes all the 
interactions in a 3D scene. So the intersection of the moving 
object and the hierarchy of shafts directly gives the part of the 
hierarchy that are concerned by the displacement. 
The time needed to compute the new required form factors is 
somehow proportional to the total number of shafts of the 
hierarchy. Therefore, in order to decrease this computation time, 
we present a method based on the Oriented Bounding Box of the 
objects and compare it to a more standard Axis Aligned Bounding 
Box approach. 
Keywords: Dynamic Radiosity, OBB, AABB, Visibility, Shaft. 

1. INTRODUCTION 
Radiosity is a perfectly suited model for walk-through class 
applications. The lighting of the scene is computed only once, and 
afterward, today's hardware is able to cope with the high number 
of polygons needed by the rendering of the solution. But as soon 
as the scene turns dynamic, things are much more complicated. 
As for any global model, the smallest change implies a different 
solution for the whole scene. Some works ([1], [2], [10], [9]) have 
already shown that it was possible to profit by the space and time 
coherence to avoid computing everything from scratch. 
In fact, we can characterize two kinds of “dynamic” environments. 
On the one hand, in scenes where every move is known at the 
beginning, we can compute all the changes in lighting before 
displaying the first frame. This can take a while, but it is then 
possible to display the dynamic scene in “real-time”. This would 
typically be the case when creating movies, instead of computing 
a frame at a time. 
On the other hand, many other applications require a different 
approach, as we might neither have the necessary long pre-
processing time, nor know what will append. For instance, in a 
virtual visit of a building, the visitor might want to interact with 
the furniture, or even do simple things like opening or closing a 
door, switching on or off a light. This implies we are able to 
compute the new lighting situation on the fly. And we must 
absolutely compute it in a very short time. 
We can define this constraint as “interactive time”: the acceptable 
delay for rendering a new correctly light scene after the user 
action. Longer than real-time, but short enough to provide 

interaction between the user and the application. As we only have 
little time, we must reduce the computations. 
Considering the radiosity model, many form factors will not be 
affected by the displacement of an object. Knowing that the 
computation of the form factors is the longest part of the 
resolution process, this is a rather good piece of news. In the case 
of hierarchical radiosity, only a few links will change. And we 
need a quick identification of these. 
Convex objects have very interesting features, such as providing 
real light occlusion: a chair cannot lead to plain shadow, whereas 
the convex seat itself does. This is why, from now on, we will 
only consider convex objects, as most of complex concave objects 
can be divided into many convex ones. 

2. WHAT'S TO BE MODIFIED? 
The use of shaft, as defined by Eric Haines, provides an excellent 
subdivision of space: each shaft bounds the interaction between 
two objects, as far as light transfer is concerned. Considering a 
shaft as the volumic representation of a link, it is possible to 
merge the hierarchy of links (from the hierarchical radiosity 
method) and a hierarchy of shafts. 
Now if we consider an object moving from a position to another, 
we can split the set of shafts into three parts: 

• the shafts based on the moving object 

• the shafts being intersected by any position of that object 

• the shafts not being intersected 
The third part will not need any new computation of form factor 
and/or visibility factor. On the contrary, both first and second 
parts require work. 
When an object moves, so does its bounding box. Remember a 
shaft relies on axis aligned bounding boxes of two objects. We 
must then calculate again every shaft based on the moving object: 
in a scene of n objects, this involves the computation of a 
hierarchy coming from n-1 shafts (about twice that amount if we 
differentiate transfer direction). This results in approximately o(n) 
complexity. 
If a shaft is intersected by the starting or finishing position (or 
both), this will most of the time result in a change of the visibility 
between the sides (the objects) of the shaft. In a hierarchical 
radiosity method [7] (as well as in wavelet radiosity [5]), we can 
compute the form factors without any visibility consideration, and 
apply a visibility factor to the energy transfer. Doing so, we will 
only need do compute the changes in visibility. Here again, there 
are several possible cases. The new position of the object can lead 
to a new occlusion in a shaft, as well as it can undo a previous 
one. A shaft that was occluded (and therefore not subdivided), 
will require a complete computation of its hierarchy. To avoid 
part of this particularly bad situation, we can only deactivate the 
part of the hierarchy that is not useful anymore when a change 
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happens. We will only have to reactivate it when necessary. In 
case of partial visibility, we only need to go deeper in the 
hierarchy and do the necessary changes. 
The potential number of shafts intersected by the moving object 
approximately corresponds to o(n2) complexity. 
Once the change made in the shaft hierarchy, we can go back to 
the iterative resolution process to compute the new lighting of the 
scene. We can either do a full gather pass, or only a local gather if 
the scene is too big. The iterative resolution process will apply the 
changes in the whole scene. Anyway, this is not the point in this 
paper. 
The shaft hierarchy provides an excellent way to locate the link 
that will change because the movement of the object. Though we 
only have to test at the higher level of the hierarchy to see which 
shaft is concerned by the moving object, we must go down and 
test any concerned part of the shaft hierarchy. And the bigger the 
hierarchy, the more shaft to test and thus, the more time spent. So 
we must absolutely reduce the total amount of shafts in the scene. 
Here are a few approaches for computing the shaft hierarchy, 
keeping in mind that we must be quite fast! 

3. THE CASE STUDY 
Before going any farther with some possible way to limit the shaft 
hierarchy, we must briefly view how a shaft is represented. This 
implementation as several useful properties we shall use. 

3.1 Shaft implementation 
To represent a shaft we need to use planes. We can define a plane 
by its normal vector ( )cbaN ,,

r
, and its distance to origin d . A 

plane splits 3D space into two regions: we chose the normal to 
aim at the exterior. We can tell whether a point ( )zyxP ,,

r
 is inside 

or outside a plane by computing dPN +⋅
rr

. A positive result 
indicates that the point is outside the plane, whereas a negative 
one implies P

r
 is inside the plane. 

 
Figure 1. 3D shaft. The set of occluders is also represented. 

 
We use E. Haines method [6] to build the shaft between two 
objects. We obtain an axis aligned bounding box, bounding the 
two AABB of the objects, and a set of planes, each plane lying on 

one edge of each AABB. For further algorithms purposes, those 
planes are sorted out, so that two successive planes have exactly 
one common edge. The shaft is the intersection of the insides of 
the box and the planes. Figure 1 is a 3D example of a shaft 
between a neon light and a step in the Duplex scene. 

3.2 Axis Aligned Bounding Boxes 
AABB is a very fast (computationally speaking) and easy 
representation of an object, as we just need to know about the min 
and max values for the three reference axes. They behave very 
well with shafts, as shafts themselves are built on AABB of 
objects. The main drawback is the poor fit of an object by its 
bounding box. Using AABB approximation of objects can lead to 
erroneous intersection considerations. 
Anyway, this is not a real problem. If we use a ray casting for the 
final visibility computation, it will cope with possible intersectors 
that should not be considered. It will only have to test for ray 
intersection with more patches than real possible candidates. 
 

3.2.1 Intersection 
Computing an intersection between a shaft and an axis aligned 
bounding box is really straightforward. An AABB is outside of a 
volume defined by a set of planes, if one of the planes satisfies all 
the vertex of the box are outside of that plane. In other words, a 
box intersects a set of planes if there is at least one vertex inside 
each plane (one vertex per plane, not a common vertex for all 
planes). 
To avoid testing all eight vertices of a box against each plane, we 
use arithmetic for intervals [13]. If we consider the plane 
analytical expression, the low bound of the function interval must 
be negative. So we just need to compute that minimum value. The 
plane expression is linear in every three dimensions, so to 
compute the minimum value for an AABB, we must take either 
the minimum or the maximum value of an axis, depending on the 
sign of the normal vector coordinate. 

3.2.2 To cast, or not to cast? 
We build most of our link hierarchy without really computing any 
visibility value. At any node, if there is an occluder, the visibility 
is set to “partial” (0.5), else, it is set to “full” (1). This avoids the 
calculation of the visibility with for instance a ray casting. As far 
as the size of the hierarchy is concerned, this of course not a good 
thing. We can develop some part of the hierarchy though it is fully 
occluded. 
So we also tried to create the links with a systematic visibility 
computation, in order to avoid those unwanted branches of the 
hierarchy. Anyway, this method cannot work properly: the ray 
casting can hardly deal with small objects. To be correct, we must 
cast a lot (how many?) of rays between two patches. But this 
would require too much time. We chose to cast 16 rays, and we 
will carefully use this other method, mostly to characterize the 
others. 

3.3 Oriented Bounding Boxes 
Minimal volume oriented bounding box provides a much better 
approximation of a convex object than the AABB. Figure 2 (left) 
gives a good example of this feature. Of course, there are some 
convex objects that can hardly be represented through their 
oriented bounding box. Even worse, a sphere or a tetrahedron will 
never fit in a box. 
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For visibility computations, we replace each object by its OBB. 
This leads to wrong but plausible results, all the more than the 
objects are properly subdivided into convex parts. But if we 
consider that an OBB is precise enough to represent an object, we 
can use the OBB to compute whether an object fully (not partly as 
we did for AABB) occludes a shaft. Of course, we reduce the 
number of objects to test for occlusion by testing only objects that 
intersect the shaft. 

  
Figure 2. Didactic 2D examples of bounding volumes 

 

3.3.1 Intersection 
Using the same method as for axis aligned bounding box, leads to 
wrong results. There might be, for each plane of the shaft, a vertex 
inside, but no intersection. Figure 2 right is a 2D example. As we 
said for AABB, a wrong intersection itself is not annoying. But, 
this time, we test for occlusion. This means that we cannot 
consider an object that is not really intersecting the shaft. 
Otherwise, it could result in very disturbing artificial shadows in 
the rendered solution. 
This why we use a totally different algorithm, based on the 
separating axis method. It is based on the following statement. For 
any line of 3D space, an object projects itself onto that line as a 
segment. If there is a line for which two objects project onto two 
separate segments, the two object do not intersect. As it is stated 
in Dave Eberly's paper [4], we only need to test for a finite set of 
lines. In our case, the set contains: 

• the normals to the faces: 
o the three axes of the oriented bounding box 
o the three scene reference axes and the normals of the planes 

• the cross products of pair of edges: 
o the three axes of the OBB 
o the three scene reference axes and the edges of the planes 

Of course for both normals and edges we must avoid as many 
redundancy as possible. This is done when creating the shaft: we 
only keep the necessary vectors (e.g. two opposite normals are 
considered as a single vector) and that way, reduce the size of the 
set. We also profit by the specific geometry of boxes and shafts to 
prevent projection whose we already know the result. 
To compute the projected segment of the box, we just have to 
calculate the minimum and maximum boundaries of the segment. 
We then project the origin and add the projections of the axes. 
To project the shaft, we can see no alternative to project the 
vertices of the shaft. We can slightly reduce the number of 
projected points by only taking into account the vertices that are 
on the surface of the shaft, not fully in it. These vertices are also 
computed when creating the shaft. 

3.3.2 Occlusion 
We already presented our method to compute occlusions in [3]. 
To sum up briefly, the occlusion of a shaft by an AABB is 
straightforward. If we find a vertex of the box outside each side 
plane of the shaft,  the box occludes the shaft. This condition is 

absolutely not enough for OBB, as we can see on Figure 3 (a). 
Figure 3 (b) clearly explains why this is not sufficient.   

 
(a) AABB occludes, 

OBB does not 

P1 SHAFT

P

P P2 3

4

 
(b) 2D slice of 3D shaft 

Figure 3. 2D and 3D occlusions considerations 
 
So we treat the side planes of the shaft, a pair at a time. We try to 
find a point outside both planes, in other words a point in the 
intersection of the outsides of each plane. The different cases to 
consider are shown on Figure 4. 

N1

N2

outside

1P

2P

SHAFT

Pi

 
(a) Vertex of the box outside 

both planes 
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outside
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2P

maxP2

maxP1
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(b) No vertex but an edge 

outside both planes 

N1

N2

outside

1P

2P

maxP2

maxP1

SHAFT

P

 
(c) Neither a vertex nor an edge outside the planes: 

there can NOT be an occlusion 

Figure 4. Possible geometric configurations. 
 
Studying each pair of planes until we find a case (c), we can tell 
whether there is an occlusion or not. Though we can regret the 
lack of theoretical validation of the whole method (see in [3], the 
trick to cope with wrong occlusion), we did not notice any artifact 
on the rendered pictures. 

4. STATIC RESULTS 
In order to compare the previous methods, we used them to 
compute different kind of scenes. Here are some quite 
representative results we obtained for the scenes shown at the end 
of this paper. For each scene and each method (respectively 
Oriented Bounding Box, Axis Aligned Bounding Boxes with 
systematic visibility with ray-casting, Axis Aligned Bounding 
Boxes without systematic calculation of the visibility), we present 
in Table 1 the total number of links. We made 20 iterations to 
ensure the convergence of the solution, and give the computation 
time as an indication (600 MHz Pentium powered by Linux). 
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 OBB AABB with systematic RC AABB without systematic RC 

Scene Links Time Links Time Links Time 

Cornell  (18 faces) 44688 11 s 55900 13 s 57796 16 s 

Shadow  (60 faces) 30593 10 s 35417 11 s 35501 12 s 

Four Rooms  (192 faces) 77612 36 s 113165 41 s 116931 44 s 

Duplex  (252 faces) 138173 155 s 184698 166 s 188973 163 s 

Table 1. Quantitative results of the three methods, for different scenes 
 
These results seem promising. Depending on the scene, the use of 
the OBB method reduces the number of shafts by 15 to 35%. As 
the hierarchical radiosity method is very sensitive to convergence 
parameters, we cannot determine any straight relation between the 
final number of links and the initial number of faces. Anyway, 
reducing the size of the link hierarchy, we expect to reduce the 
total amount of computations for dynamic update. 
As far as time is concerned, the gain is a bit smaller, from 5 to 
30%, but is not linearly dependent. If we try to define a “time per 
shaft”, we get numbers quite coherent to what we could expect: 
the complexity of the OBB algorithms involves a greater 
computation time for each shaft compared to the AABB 
algorithms. Additionally, casting rays systematically costs more 
than computing the visibility for the leaves of the hierarchy only. 
Last, we can notice that the systematic visibility computation is 
costless than casting rays for the leaves only. We could explain 
that with the compared cost of computing the intersection of 
objects and rays, and computing a shaft and its intersection with 
an AABB. We will only focus on the two best methods for the rest 
of this paper. 

5. DYNAMIC MODIFICATION 
This work primarily aimed at reducing the time needed to 
compute the new radiosity solution after a geometric change in the 
scene. We therefore compared the above methods in a dynamic 
environment. 

5.1 Update strategy 
As it was our first goal, we can greatly profit by the shaft 
hierarchy to determine the part of the hierarchy that must be 
recomputed. 
Our algorithm is based on clustered hierarchical radiosity. We use 
Smits [11] denomination of the links: β-links, α-links, and patch-
links. We associate one shaft to each link and thus, indistinctively 
deal with the link hierarchy or the shaft hierarchy. 
The higher-level shafts, which are shafts (or links) representing 
the interaction between entire objects, necessarily correspond to 
β-links. Therefore, we must have a specific treatment for those 
links, whereas α-links and patch-links will have a similar but 
reduce one. 
Once the links computed, we collect the radiosity for the new or 
modified links. After a quick push-pull, we obtain a first (but 
already good) approximation of the final solution. We just need to 
run the main resolution process to perform any additional transfer. 

5.1.1 ββββ-links particularity 
The first thing we must test is whether the source or the receiver is 
the moving object. If this is the case, we must update the whole 
involved hierarchy of the current link. As one of the base objects 
of the shaft moves, we must recompute every shafts of the 
hierarchy. This means that we have to destroy the children of the 
current link, and recalculate everything from scratch. 
This results in a o(n) complexity, and only concerns a maximum 
of n-1 β-links at the top of the hierarchy (where n is the initial 
number of objects).  

If the moving object is neither the source of the β-link, nor its 
receiver, we apply the same algorithm than the other links. Of 
course, this the most used part of the update process. 

5.1.2 All links 
The determining parameters of the algorithm are “WAS the 
moving object in the current shaft?” and “IS the moving object in 
the current shaft?”. 
First case, the object was in the shaft. If it is not in the shaft 
anymore, we must erase it from the list of potential occluders. 
Then we have to see whether the shaft is occluded or not. There 
are three possibilities left: 

• If the shaft was previously occluded and is not after the 
movement, we must develop the hierarchy. If it was 
deactivated we only need to reactivate it. Else, we create new 
links. 

• If the shaft was not but is occluded after the displacement, 
we only have to deactivate the whole children hierarchy of 
the current link. 

• If the shaft was not and is still not occluded, we recursively 
update each children of the next level of the hierarchy. 

Or, the object was not previously in the shaft. We only need to 
know if the shaft is occluded or not. And this is really easy: either 
it was already occluded, necessarily not by the moving object, and 
it remains unchanged, or the moving object involves a new 
occlusion. In the last case we just have to deactivate the children 
hierarchy. If the shaft is not occluded, we only need to update the 
existing next level of the hierarchy. 

5.2 Results 
In Table 2, we sum up some results we obtained applying the 
mentioned algorithms, for the same scenes. We moved either a 
simple object or a composed one (a chair for instance). 
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 OBB AABB with systematic ray casting 

Scene Time Parsed 
links 

Modified 
links 

Deleted 
links 

Created 
links Time Parsed 

links 
Modified 

links 
Deleted 

links 
Created 

links 

Cornell 4 s 6125 4430 14545 9246 7 s 18670 13108 13125 14956 

Shadow 3 s 6352 4063 1051 1113 3.5 s 6915 4572 964 1478 

Four Rooms 4,5 s 5310 3144 2645 1331 5,5 s 7466 4568 4045 2445 

Duplex 70 s 50587 32512 3704 1392 78 s 63904 40083 3206 2030 

Table 2. Dynamic update after some movements 
 
These are quite early results, but we can anyway conclude some 
interesting facts. Of course, the movements are not exactly the 
same for both studied method as we moved the objects 
interactively, but we tried to obtain very similar “after” positions. 
First interesting result is the close relation between the number of 
links parsed and the time needed to update the solution. As we 
could have expected after the static results, the OBB methods 
perform very well compared to the AABB algorithms. We always 
get better results with Oriented Bounding Boxes. This confirms 
are first will of reducing the hierarchy to reduce the update time. 
The algorithm behavior is very sensitive to the scene geometry. 
We can see that there is absolutely no rule for the different 
numbers of links. For instance, while the number of parsed links 
is about the same for Cornell and Shadow scenes, the number of 
created (or reactivated) and deleted (deactivated) links vary a lot. 
Anyway, this does not seem to have a huge impact on the total 
time needed for the full update process. 
Though for the first three scenes, the update time match our initial 
desire, the Duplex scene clearly shows that there is a lot of work 
still to be done. 

6. CONCLUSION AND FUTURE WORK 
All these results seem very promising. But in order to confirm, 
and maybe improve them, there are several ideas that should be 
interesting to explore. 
First of all, we showed that the better was the accuracy of the 
bounding volumes, the smaller was the shaft hierarchy. A shaft is 
a quite good approximation of the volume of the possible 
interactions between two objects. Anyway, there is a better 
approximation, especially when the objects are flat patches. In this 
case, it would be much more interesting to use the convex hull of 
the two patches, instead of the shaft. By definition, the convex 
hull of a set of points is the smallest convex polyhedron 
containing these points. So we think the convex hull is a better 
approximation because we avoid the loss of accuracy of the 
AABB necessary to build the shaft. 
In the same way, it would be much better to use biggest convex 
volume included in each object instead of convex bounding 
volumes; thus, there would be no error at all on occlusion. But the 
methods mentioned in [14], seem to complex to be useable in our 
case. 
Last point on occlusion, it might be very interesting not only to 
consider each blocker individually, but group the potential 
occluders in order to generate bigger occluding volumes and that 
way identify more occlusion. [8] is a nice approach for huge city 
scenes, and might be adapted to other scenes. 

It also seems promising not to systematically compute a shaft for 
each link. When building the link hierarchy we have to link very 
small patches together. We think we could use a threshold under 
which we would not build a new shaft but use the parent one. This 
would also clearly lead to an important saving in memory, as a 
shaft is heavy to store (planes and set of occluders). 
Finally, it would be interesting to compute an optimal initial 
cluster subdivision, in order to easily distinguish the different 
rooms. That way we could distinguish the displacement in a room 
and in the room next door (or upstairs in a duplex). This should 
help to update the links in the room where the user is, or where 
the moved object is (and was), and perform the other links with a 
background process. 

7. REFERENCES 
[1] Cyrille Damez and François Sillion. Space-time hierarchical 
radiosity. In Dani Lischinski and Greg Ward Larson, editors, 
Rendering Techniques’99, Eurographics, pages 235-246, 
Springer-Verlag, Wien New York, 1999. Proc. 10th Eurographics 
Rendering Workshop, Granada, Spain, June 21-23, 1999. 
[2] George Drettakis and François Sillion. Interactive update of 
global illumination using a line-space hierarchy. In 
TurnerWhitted, editor, SIGGRAPH 97 Conference Proceedings, 
Annual Conference Series, pages 57-64. ACM SIGGRAPH, 
Addison Wesley, August 1997. ISBN 0-89791-896-7. 
[3] Yann B. Dupuy, Mathias Paulin and René Caubet. Occlusion 
evaluation in hierarchical radiosity. WSCG’01 Conference 
Proceedings, pages (SC)52-59, Plzen, Czech Republic, February 
5-9, 2001. ISBN 80-7082-713-0. 
[4] Dave Eberly. Testing for intersection of convex objects: the 
method of separating axis. http://www.magic-software.com, 2000.  
[5] Steven J. Gortler, Peter Schroder, Michael F. Cohen, and Pat 
Hanrahan. Wavelet radiosity. In Computer Graphics Proceedings, 
Annual Conference Series, 1993, pages 221-230, 1993. 
[6] Eric A. Haines and John R. Wallace. Shaft culling for 
efficient ray-cast radiosity. In Pere Brunet and Frederik 
W.Jansen, editors, Photorealistic Rendering in Computer 
Graphics, Eurographics, pages 122-138. Springer-Verlag Berlin 
Heidelberg New York, 1991. 
[7] Pat Hanrahan, David Salzman, and Larry Aupperle. A rapid 
hierarchical radiosity algorithm. Computer Graphics 
(SIGGRAPH’91 Proceedings), 25(4):197-206, July 1991. 
[8] Gernot Schaufler, Julie Dorsey, Xavier Decoret, and François 
X. Sillion. Conservative volumetric visibility with occluder fusion. 
In SIGGRAPH’00 Conference Proceedings (New Orleans), LO, 
July 23-28, 2000), July 2000. 

International Conference Graphicon 2001, Nizhny Novgorod, Russia, http://www.graphicon.ru/



[9] Franck Schöffel and Andreas Pomi. Reducing memory 
requirements for interactive radiosity using movement prediction. 
10th Eurographics Workshop on Rendering, Granada, Spain, 
June 1999. 
[10] Erin Shaw. Hierarchical radiosity for dynamic environ-
ments. Computer Graphics Forum, 16(2):107-118, 1997. ISSN 
0167-7055. 
[11] Brian Smits, James Arvo and Donald Greenberg. A 
clustering algorithm for radiosity in complex environments. 
Proceedings of SIGGRAPH '94 (Orlando, Florida, July 24--29, 
1994), Computer Graphics Proceedings, Annual Conference 
Series, pp. 435-442, ACM Press, July 1994. 
[12] Brian Smits and Henrik Wann Jensen. Global illumination 
test scenes. Technical Report UUCS-0-013, Computer Science 
Department, University of Utah, June 2000. 
http://www2.cs.utah.edu/~bes/papers/scenes. 

[13] John M. Snyder. Interval analysis for computer graphics. 
Computer Graphics (SIGGRAPH’92 Proceedings), 26(2):121-
130, July 1992. 
[14] M. Szilvasi-Nagy. Two algorithms for decomposing a 
polyhedron into convex parts. Computer Graphics Forum, 
5(3):197-201, September 1986. 

About the authors 
Yann Dupuy  is a PhD student, Mathias Paulin is an Associate 
Professor and René Caubet is the Professor in charge of the Image 
Synthesis and Virtual Reality staff of the IRIT Laboratory.  
IRIT – Université Paul Sabatier 
118, route de Narbonne 
31062 Toulouse cedex 04 
France 
  
E-mail: ydupuy@irit.fr, paulin@irit.fr, caubet@irit.fr 
 

   

 
( a ) Cornell Box 

 
( b ) Duplex 

 
( c ) Duplex: moving a chair 

   

 
( d ) Four Rooms 

 
( e ) Shadow [12] 

 
( f ) Shadow: moving two blockers 
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