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Abstract 
This paper presents a new approach to generate view-independent 
global illumination solutions using kernel density estimation. 
Kernel density estimation allows smooth reconstruction of the 
radiance from hit points generated by shooting random walk or 
photon tracing. The advantage of this method is that an unbiased 
Monte-Carlo algorithm simulates light transport and that light 
reconstruction introduces error but this error is controllable and 
purely local. We present an approach that does not require storing 
the set of hit points generated by photon tracing contrary to 
previous implementation. A method to reduce error both from the 
light transport and the light reconstruction is also presented. 
Keywords: Global illumination, density estimation, Monte Carlo. 

1. INTRODUCTION 
Kernel density estimation is a technique used in statistics and data 
analysis to construct a smooth estimate of a density function from 
observed data [5]. This method has been adapted to the global 
illumination problem. The observed data are the hit points of 
photons that trace random walks originating from the luminaries. 
The density of these hit points is proportional to the irradiance. 
So, a smooth estimate of the irradiance can be found using density 
estimation. 
Density estimation was first used in global illumination to 
construct caustic maps in a multi-pass method [2][3]. Then, it has 
been used to construct a very coarse estimate of radiance known 
as photon map in distributed ray tracing [4]. Density estimation 
has also been used more directly to construct an estimation of the 
irradiance [5][7][10]. The two main difficulties of density 
estimation are highlighted in these latter papers: boundary bias 
and bandwidth selection. We will go into these problems more in 
depth in the next section. 
Compared to other algorithms, density estimation has several 
advantages. The error on an estimate of a function can be 
separated into variance and bias. Pure Monte-Carlo techniques 
generate unbiased but very noisy estimates. Density estimation 
allows the introduction of some bias in order to smooth the 
estimate. This is known as the variance-bias trade-off of density 
estimation because reducing the bias increase the noise.  So, we 
can choose between noise and bias. 
Furthermore, the error in density estimation is purely local 
compared to finite element method. Indeed, error in finite element 
methods comes from the projection of the function to be estimated 
on a basis of functions. But, this error is propagated because of 
the interaction between all basis functions of the elements. This 
global error is very hard to control and measure. In density 

estimation, the error is purely local. The photon tracing phase that 
represents light transport is unbiased and is separated from the 
lighting reconstruction that introduces the error. 
In this paper, we present a new approach to kernel density 
estimation. Previous implementations of density estimation for 
view-independent global illumination required to store the hit 
points to estimate the radiance at each vertices of the surfaces of 
the scene. We present a technique that avoids the separate 
estimation phase and that efficiently estimates the irradiance 
directly in the photon tracing phase. We also present how this new 
technique can easily eliminate boundary bias. Another 
consequence of our method is to reduce the variance of small 
surfaces. Indeed, photon tracing, as a shooting random walk 
method, generates variance inversely proportional to the area of 
the surfaces [1]. So, solutions with a small number of initial 
photons can be computed with our method without creating 
disturbing visual artefacts on small features of the scene. 

2. DENSITY ESTIMATION FOR GLOBAL 
ILLUMINATION 

2.1 Principles 
The kernel density estimation constructs an estimate f̂ of an 

unknown density function f from a set of observed data points 

nXX ,...,1 : 
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with h the bandwidth or smoothing parameter and K  a kernel 
function [6]. 
This method has been adapted to the global illumination problem 
[8]. The set of observed data points is built from photon tracing. 
Photon tracing simulates the light flow in the scene. First, a 
photon is generated from a light source according to its emitted 
radiance distribution. The photon generated is then traced in the 
environment until it reaches an object. The photon is ever 
absorbed or reflected according to the bi-directional reflectance 
distribution function or BRDF of the object. If reflected, the 
photon is then traced again from its hit point in a new direction 
according to the  BRDF of the object.  

So, the probability )(xp  that a photon hits an object at a given 
point x  is: 
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with n  the total number of photons hit,φ   the amount of power 

carried by each photon, and )(xLi the incident irradiance at this 
point. 

Combining  (1) and (2), )(xLi  can be estimated by: 

)()(ˆ
1
∑

=

−=
n

i

ii h
XxKhxL φ

 

 So, we can reconstruct the irradiance at any point from the hit 
points nXX ,...,1 generated by the photon tracing. 

2.2 Choice of the dimension 
The incident irradiance )(xLi is a 3-dimensional function, so 
naively the kernel density estimation should be made in three 
dimensions. The problem is that the irradiance is only defined at 
the surface of the scene, so considering the problem in three 
dimensions is not the correct approach. 

Instead of estimating the incident radiance )(xLi with 3Rx∈ , we 

can estimate the incident radiance )(uLs
i  of each surface s  in 

the scene with 2Ru∈  . Then, )(uLs
i is estimated with the subset 

s
n

s
sXX ,...,1  of photons that hit the surface s . To use this subset 

in the estimation, we must find a transformation sρ : 23 RR → , 

to transform the photons hit points in two-dimension. sρ must 

minimize metric distortion in order to obtain correct result. It is 
trivial for planar surfaces and much work has been done on this 
problem for general triangular meshes, but it’s still an area of 
active research. 
Jensen [4] overcomes this problem using a mixed solution. The 
hit points for the estimation are selected in three dimensions but 
the kernel has a two-dimension support. This solution used 
directly can lead to strong visual artefacts at boundaries surfaces 
but in his method density estimation is used only after a gathering 
step as a coarse approximation. 
Volevich [10] used the same technique as Jensen, but he selects 
more carefully the hit points for the estimation using a heuristic.  

2.3 Bandwidth selection 
The accuracy of the estimation depends on the bandwidth and on 
the number of observed data points. If the bandwidth is too high 
with respect to the number of observed data points, the resulting 
estimate will be over-smooth, if the bandwidth is too low, the 
estimate will be too noisy. More formally, we can find in [9] that 
the integrated square bias is proportional to 4h , but the integrated 

variance is proportional to 1)( −nh .  

 

Bandwidth h=0,4 

Bandwidth h=0,8 
Figure 1:Bandwidth selection 

 
Choosing the optimal bandwidth is a difficult task. The figure 
above illustrates the importance of a good bandwidth selector. Hi-
tech bandwidth selectors have been described in [8], but they are 
very expensive. 

2.4 Local kernel density estimation 
Walter [8] and Myszkowsky [5] use variable bandwidth, 
adaptively chosen for any point of estimation to decrease the 
error. This is known in statistics literature as local kernel density 
estimator: 
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with )(xh a function that gives a different bandwidth for each 
point x . 

To obtain an optimal bandwidth at point x, Walter looked for the 
value of h that minimize both the variance and the bias. The 
variance was estimated from the points data set and the bias was 
estimated with a difference of two estimators. This technique 
requires many additional kernel evaluations, twice the original 
number in Walter’s view.  
Another technique based on local kernel density estimator is to 
use the k-th nearest neighbour method, as reported by Jensen [4]. 
The bandwidth at )(xh  is chosen as the distance from x  to its 
k-th nearest neighbour. This method is popular because there are a 
lot of fast algorithms for finding nearest neighbours in computer 
science. However, it was proven in [9], that the optimal )(xh is 

{ } 5/1)²(")/( xfxf , but in the case of the nearest neighbour 

method, )(xh is essentially equivalent to )(/1 xf , so it’s not a 
very good choice in many cases. 
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2.5 Boundary bias 
The kernel density estimator assumes that the domain of definition 
of the density function is unbounded. In the global illumination 
settings, we deal with bounded surfaces. If we do not pay 
attention of the boundary-induced bias, we have strong visual 
artefacts as illustrated below: 
 

 
Figure2: Boundary bias in Cornell box 

 
A simple technique to deal with boundary is to reflect the photons 
along it [9]. This reduces the bias only when the function is 
locally constant at the boundary.  
Walter [8] resolved this problem using the local linear kernel 
density estimation method. It is complex to implement, but the 
runtime costs are said to be negligible in his implementation. In 
fact, local linear kernel density estimation only reduces the bias 
where the gradient of the function is locally linear. 

3. DIRECT ESTIMATION 

3.1 Principles 
Our goal was to estimate the incident irradiance for a scene 
represented by a triangular mesh. Triangular mesh is the most 
common representation of objects, it consists of a set of vertices 
and a set of connected triangles. An estimation of the irradiance 
must be computed for each vertex of the triangular mesh. The 
triangular mesh needs to be tessellated enough to provide a 
correct representation of the irradiance because at display, 
irradiance at the vertices is interpolated linearly across the 
triangles. 
The basic idea of our approach is to not store the hit points for the 
estimation. Instead, we directly evaluate the contribution of a 
photon after it hits a triangle.  
The direct estimation of the irradiance has several obvious 
advantages: 

• No needs for complex and costly structures for storing 
hit points data set 

• No needs of cache mechanism for huge set of hit points 
data 

The main inconvenient of direct estimation is that we cannot use 
the set of hit points as guidance for choosing the bandwidth 
contrary to previous approaches. We will present in the next 
section how this problem can be overcome. 
First of all, we will present an efficient algorithm for direct kernel 
density estimation. The kernel we use for the estimation is the 2D 
Epanechnikov kernel that is defined by: 
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21π . From the formula of the kernel 

density estimation presented in section 2.1 and the formula of the 
kernel, we can find that the contribution of the hit point x to the 

vertices v is )1(2 2

h
xv

h
−−

π
φ  if hxv <− )( , 0 otherwise. 

This means that only the vertices at a distance from the hit point 
less than the bandwidth h are affected by the hit point 
contribution. So, we need an algorithm to quickly find the 
neighbouring vertices. To do this, we use the edge connectivity of 
the triangular mesh as illustrated below: 
 

 

 
Figure 3: propagation of the contribution 

 
The algorithm of the propagation is then: 
 
addContribution (Point x): 

For each vertex v of the triangle Do 
  d =( v –x) / h 
  If |d| < 1 Then 

  Add )1()(2 21 dh −−πφ  to )(ˆ vL  

  For each edge e of the triangle Do 
   addContribution(e,x) 
 
addContribution(Edge e, Point x) 
 Let v the vertex opposite to the edge e 
 d =( v –x) / h 
 If |d| < 1 Then 

 Add )1()(2 21 dh −−πφ  to )(ˆ vL  

  Let  e’ the edge that start from v 
  addContribution(e’,x) 
  Let e” the edge that finish in v 
  AddContribution(e”,x) 
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To break cycle during propagation with the edge connectivity, we 
also need a flag for each vertex to know if the contribution of the 
hit point x has not already been added. For clarity, we have not 
shown the algorithm with this information. 

3.2 Bandwidth selection 
The problem of direct estimation is that we must choose a fixed 
and empirical bandwidth per surface at the start-up of the photon 
tracing phase. Fortunately, we present a method to select 
automatically a bandwidth. 
First, a set of hit points is generated with a low number of initial 
photons. The mesh of the scene does not need to be tessellated at 
this point. Then, the bandwidth for each surface is chosen using 
least squares cross validation on hit points of this surface [6].  
The method consists in searching the bandwidth h that minimize 
the function: 

nh
K

h
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i j
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A problem is that some surfaces may not have sufficient hit points 
to find a suitable bandwidth. So, bandwidth is computed only for 
surfaces with a sufficient number of hit points. The bandwidth of 
the other surfaces can then be chosen using an average of 
neighbouring surfaces. 
Then, we adapt the bandwidth for a different number of initial 
photons.  As shown in [9], the optimal bandwidth that minimizes 

the integrated mean squared error is proportional to 5/1−n .  So, if 

the optimal bandwidth 1h  has been found for 1n  photons, 

optimal bandwidth 2h  for 2n  photons is then: 5/1
2

1
5

12 )( n
nhh = . 

The next phase of the density estimation algorithm is then 
performed without storing the hit points of the photons. Also, 
mesh is tessellated until the distance separating neighbouring 
vertices is less than a specified threshold that is equal to the 
bandwidth times a constant parameter usually between two and 
four. 

4. REDUCING VISUAL ARTEFACTS 

4.1 Extended triangles 
A cause of strong visual artefacts with density estimation is 
boundary bias as explained in §2. Boundary bias is eliminated 
with a new method. We consider that the surfaces are not bounded 
for the estimation. That means that photon hit points used for the 
density estimation can be outside the triangle. 
To obtain the hit points outside the triangles, the contour of the 
triangular mesh is extended by the bandwidth. Extended triangles 
are built from the extended contour and the basic contour using 
basic triangulation. Then, extended triangles are added to the 
photon tracing phase. The difference with normal triangle is that 
we do not stop the photon when it intersects an extended triangle, 
we only add its contribution as explained in ¤3. 
With this approach the bias at the boundaries is naturally 
eliminated. The irradiance at the boundaries is not sub estimated 
because of the lack of hit points outside the border. 

 

Hit point 

Kernel support 

Mesh edges Extended edges
 

Figure 5: Boundary bias elimination 
 
A direct consequence of this method is also to eliminate the 
higher variance on small surfaces because the kernel support of 
the estimation at the vertices of small surfaces has the same size 
than for large surfaces. That means also that we can use a small 
amount of photons to estimate the radiance without having 
disturbing noisy artefacts on small features of the scene. 
The principal drawback of this method is that extended triangles 
add a lot of geometric complexity to photon tracing especially if 
the bandwidth is high. On the other hand, our method does really 
eliminate boundary bias contrary to previous approaches that 
make assumptions on the property of the function at the boundary. 

4.2 Bias from discontinuity 
The method of extended triangles does not eliminate all visual 
artefacts. The problem appears at touching surfaces. A touching 
surface create boundary that causes also bias. We resolve this 
boundary bias as previously. We consider for the estimation that 
there is no boundary. That means that for the estimation at a 
vertex above the touching surface we consider there is no 
occlusion by the touching surface. 
The photons are not stopped after a hit with a surface. But its 
contribution to the estimation of irradiance at a vertex after the 
first hit is only added if the vertex is above the first hit plane. So, 
a photon is stopped only after they are at a distance from the first 
hit plane greater than the bandwidth because then its contribution 
is null. 
 

4.3 Bias from singularity 
There is still a case of visual artefact with the current method. 
Indeed, when a photon is traced the probability to hit a point 
behind the plane of his origin is null. This is also a case of strong 
visual artefact as illustrated below: 
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With bias 

 
Without bias

Figure 6: Singularity bias 
This is in fact a case of boundary-induced bias where the 
boundary is the line of intersection between the origin plane of the 
photon and the kernel support of the vertex. To eliminate this 
boundary bias, we use a special boundary kernel. We choose the 
local constant kernel instead of the local linear kernel for 
efficiency reason because we must compute the boundary kernel 
for each photon-hit point near the boundary. 

5. RESULTS 
We have implemented an algorithm based on the approach 
presented in the previous section. Our implementation has several 
limitations for the moment in terms of realism: 

• All surfaces are perfect diffuse reflectors 

• Colour are represented by RGB 

• Emitted radiance distribution is constant 
A very interesting aspect of our algorithm is to need only one 
parameter to control the quality of the solution: the number of 
photons traced from the light sources. We use a tenth the number 
of photons to find the bandwidth for each surfaces using least 
squares cross validation. Other parameters control the efficiency 
of our algorithm. Indeed, efficiency depends of the size of the 
uniform grid used to accelerate photon tracing and the level of 
tessellation. The uniform grid has been greatly modified to take 
into account the various techniques of bias reduction. 

In the table below, time are presented for different scenes with 
hundred of thousand and one million of photons.  All the results 
have been obtained on an Athlon 900 MHz under Linux. 

 100 000 1 000 000 

Cornell Box 11,8s 76,92s 

Room 27,86s 164,54s 

Library 140,63s 725,34s 

 
We show in this table how our algorithm scale with the 
complexity of the scene in terms of memory. 

 # of initial 
triangles 

# of tessellated 
triangles 

Memory 

Cornell Box 36 11808 11 MB 

Room 338 15572 15 MB 

Library 18246 26548 31 MB 

 
Then, we compared our algorithm without the correction of bias 
to show the impact in terms of efficiency of our technique of bias 
reduction. 

 100 000 1 000 000 

Cornell Box 7,36s 68,23s 

Room 10s 100,39s 

Library 26,4s 220,21s 

 
These results show clearly that our bias reduction algorithm has 
fewer penalties when the number of photons is high. Indeed, in 
this case, the bandwidth is smaller and many part of the algorithm 
depends on the size of the bandwidth. Especially, for the Library 
scene composed of many small triangles, the lack of efficiency of 
our bias reduction method is explained by the fact that a lot of 
triangles are extended by the bandwidth so it increase 
considerably the geometric complexity of the scene. 
In the figure below, we compare visually random walk radiosity 
[1] with our method. Random walk radiosity is ten times faster on 
this scene than our technique. The artefacts on the photon tracing 
image are caused by the high variance on small triangles. Our 
method does not suffer of these artefacts. 
 

 
Figure 7: Comparison with random walk radiosity 

International Conference Graphicon 2001, Nizhny Novgorod, Russia, http://www.graphicon.ru/



 

 

6. CONCLUSION 
We have presented a new approach to density estimation for view 
independent global illumination. Our approach has several 
advantages compared to previous implementation. It has low 
memory requirement, and reduces visual artefacts. Also, a coarse 
estimate can be obtained very quickly with a small number of 
photons without creating disturbing visual artefact. Furthermore, 
an important advantage for usability of our method is that only 
one parameter controls the quality of the solution, the number of 
photons traced from the light sources. 
Much work remains to be done. First, we want to improve the 
selection of the bandwidth.  Least squares cross validation does 
not always give good result for very complex scene. The problem 
is that bandwidth selection is still an active area of research in 
statistics. Then, our method does not scale well in terms of speed 
with the complexity of the scene as shown in the results. The 
method must be modified to overcome this problem. 
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Figure 8: Cornell Box, Room and Library with our method 
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