
Color Distribution for Compression of Textural Data

Denis V. Ivanov, Yevgeniy P. Kuzmin
Mathematics Department, Moscow State University

Moscow, Russia

Abstract
Texture compression is recently one of the most important topics
of 3D scene rendering because it allows visualization of more
complicated high-resolution scenes. As standard image
compression methods are not applicable to textures, an overview
of specific techniques that are currently used in real 3D
accelerators is presented. Because their major weakness is
eventual image quality degradation, we introduce an approach
that makes it possible to achieve superior image quality in most
cases while providing higher compression ratios. Being an
essential refining upon block decomposition strategy, it allows
sharing the same color by several blocks, which partially solves
the problem of colors deficit. We also describe some methods that
can be used for conversion of textures to the proposed
representation. Future prospects conclude the paper.
Keywords: Texture, Texel, Compression, Block Decomposition

1. INTRODUCTION
Reproducing the visual complexity of the real world is a
challenge for many Computer Graphics practitioners. Since every
detail cannot be represented on the geometric level, texturing
techniques were designed to introduce complexity to synthetic
scenes. For instance, textures can be anything from wood grain or
marble patterns to detailed pictures of people, trees, buildings, etc.
To simulate real life scenes and render them in real time, it is
desirable to have fast access to a large number of high-quality
detailed textures. However, this requirement introduces
significant demand of system or graphics memory depending on
which is used for texture storage. Memory limitations in turn
forces application developers to use fewer and less detailed
texture maps.
The Accelerated Graphics Port (AGP) has made it possible to
access textures stored directly in system memory increasing
overall available storage capacity. However, AGP bus and system
memory are shared resources. AGP is also used for uploading
geometric data to the graphics accelerator, while the system
memory services operating system and other applications.
Therefore, it is a mistake to assume that the whole bandwidth is
available for transferring textural data. In many cases, AGP
bandwidth can be a bottleneck of the whole graphics system that
limits users in gaining as much as they can from texturing
techniques.
Texture compression allows the use of less memory for textures,
or, which is more important, render scenes with more detailed
high-quality textures without the necessity of buying additional
memory units; besides, it lowers bandwidth requirements because
compressed data may be passed to the graphics accelerator and
then decoded on the other side of the bus. For these two reasons
(more economical use of memory and significant reduction of bus

traffic) texture compression is one of the hottest topics of GPU
designs and graphics APIs.
Because texture compression techniques should comply with
some specific requirements that ensure their efficient use in 3D
engines including those implemented in hardware, we
circumstantially discuss these requirements in the next section.
We also give there a detailed overview of currently most
exceptional techniques and discuss their possible outcome of
significant perceptual quality degradation.
In Section 3 we present a new approach that solves the problem of
the local colors deficit, which may arise while representing
textures. This approach, previously introduced in [9], is based on
the idea of sharing the same color by several blocks. Some
methods that can be used for generating proposed color data are
described in Section 4. The paper concludes with performance
analysis of the new technique and discussion of possible future
work with respect to the proposed approach.

2. EXISTING TECHNIQUES
Textures are regular raster images that are used for rendering
surface-based 3D models. Due to growing popularity of
visualization technologies, real-time rendering solutions have a
strong tendency to be optimized for using as much of hardware as
possible. For this reason, textural data decompression, which is
one of the stages performed during rendering, should be very
simple and efficient. On the other hand, considering standard
rasterization approaches (such as polygon scan-line rasterization),
texels may be fetched in random order, which strongly depends
on the viewpoint. For the reasons above, the following
requirements for texture compression techniques are introduced.
♦ High Compression Ratios
♦ No visible image degradation
♦ Fast (real time) data decoding
♦ Efficient random texel access
Obviously, if any compression technique uses variable length data
encoding (including RLE, LZW, Huffman, arithmetic, etc.
[5,11,13]), it is not applicable to texture compression, because it
violates the requirement of random texel access. For example,
RLE (run-length encoding) strategy encodes sequences of
repeating elements into counter-element pairs; therefore, decoder
has to analyze data stream from the very beginning in order to
retrieve the required texel. As most of standard image
compression formats are based on mentioned above algorithms,
they could not efficiently be used for textures.
The existing texture compression approaches may be divided into
two major groups: (1) vector quantization (VQ) and palletizing;
(2) Block decomposition and block transforms.

2.1 Vector Quantization
VQ is based on the principle of look-up tables. For every texture,
the VQ-coder constructs a codebook, which is an array of blocks

International Conference Graphicon 2000, Moscow, Russia, http://www.graphicon.ru/

(typically 2x2 pixels) that appear most frequently in the
corresponding image. When a codebook is generated, the whole
image is divided into rows of blocks of the same size, and each
block is substituted by the index of the most acceptable entry of
the codebook. The typical size of the codebook is 128 or 256
entries. If blocks of 1x1 pixels in size are considered, than the
compression procedure is called palletizing and the codebook is
called palette.
However, VQ techniques suffer from two major problems. The
first problem is memory access. If a decoder needs to extract any
individual texel, it must first retrieve the index of the
corresponding block, and then get the block colors from the
codebook. This decoding procedure requires two serially
dependent memory references per one texel, unless the whole
codebook is stored on chip. The latter solution in its turn requires
the codebook be uploaded to graphics accelerator before any
decoding begins. Thus, none of these approaches provide
acceptable compression ratios in terms of bus traffic.
The second problem of VQ technique is visual quality. VQ has a
potential possibility of representing sharp edges (if codebook is
large enough); however, it cannot represent smooth variations of
colors very well, because in this case almost all blocks will differ
from one another giving no possibility to group them on visual
similarity basis.
For these two reasons (small reduction of actual bus traffic and
poor quality on smooth surfaces) VQ is rarely used for texture
compression.

2.2 Block Decomposition
The other group of techniques, which is called block
decomposition, solves the problem of two separate memory calls
per one texel. This approach is based on the idea of dividing an
image into equally sized blocks (typically, 4x4 pixels) and storing
each of them in a uniform manner, so that each block takes the
same amount of memory after compression. Thus, all blocks may
be stored row by row, and an offset of a block containing any
individual texel may be easily calculated. The decoder has to
retrieve the data of the block containing the required texel,
decompress it, and extract the corresponding color.
This basic idea is used widely in most existing texture
compression approaches. Recently, the following techniques
based on block decomposition have been developed.
♦ Texture and Rendering Engine Compression (TREC) [15].
♦ S3 Texture Compression (S3TC) [14].
♦ 3dfx’s texture compression (FXT1) [6].
2.2.1 Texture and Rendering Engine Compression
Texture and Rendering Engine Compression (TREC) was
developed by Microsoft. This technique is very similar to the
JPEG standard since it is based on the two-dimensional discrete
cosine transform (DCT) of 8x8 pixel blocks and further
quantization of coefficients. This approach provides variable
compression ratios with satisfactory visual quality; however, it is
relatively expensive to put hardware implemented DCT decoder
on a graphics accelerator board only for texture decoding
purposes.

2.2.2 S3 Texture Compression
The other technique, which was originally developed by S3 and
then licensed by Microsoft for DirectX texture compression
(DXT) [3], is very efficient, and therefore is implemented in

several graphics accelerators, such as Savage2000, Voodoo 5 and
6 series, ATI RagePro. The simplest scheme encodes blocks of
4x4 texels. Each texel is represented by a 2 bit index of color
from a local palette, which is generated for each block. The
palette has 4 entries that are linearly interpolated from 2 RGB565
colors stored in the block (Figure 1).

01 10 00 01
10

00

01 11
00

11
01 0011
00

1110

Color 00
Color 11

Color 00

Color 11

Color 01
Color 10

encoded block reconstructed palette

Color01=(2*Color00+Color11)/3
Color10=(Color00+2*Color11)/3

Figure 1: S3TC block encoding scheme
DirectX texture compression (DXT) has 5 variations of the S3TC
scheme. These variations support transparency and alpha channel;
however, none of them provides more then 2 original and 2
derived colors per each block.

2.2.3 3dfx’s Texture Compression
The most recently developed texture compression technique was
presented by 3dfx Interactive, Inc. and is called FXT1. This
technique may be considered a powerful extension of S3
approach, since it separately encodes equally sized blocks of 4x8
texels by small local palettes (look-up tables). FXT1 has 4
modifications, each of which is specially designed to represent
different color distributions within a block. However, the major
idea remains the same: (1) some original colors (RGB555) are
stored in a block; (2) local palette (or palettes) is generated by
interpolation of provided colors; (3) each texel is represented by
index of the most appropriate look-up table entry.
Table 1 briefly presents the FXT1 encoding parameters for
different modifications. For CC_HI scheme, 2 original RGB555
colors, which are stored in a block, are used for interpolating 7
RGB8888 look-up table entries, while the 8th entry is defined
transparent; thus, 3 bits per texel are required. CC_CHROMA
refers to storing 4 colors, which are used with no change as the 4-
entry palette. CC_MIXED is very similar to S3TC approach, since
two 4-entry palettes are generated, each by interpolating between
2 colors (therefore, 4 colors are stored for a 4x8 block); then, two
sub-blocks of 4x4 texels are encoded separately by their own
palettes. For CC_ALPHA, two palettes of the same size are
generated as well, but one of the colors out of 3, stored in a block,
is shared during interpolation. This solution provides some extra
space for storing alpha channel data in a block. While
compressing, FXT1 encoder produces all representations of each
4x8 block of texels, chooses the one that introduces the least
error, and stores the corresponding data in the resulting data
stream.

FXT1 mode Colors stored Palette size Bits/texel

CC_HI 2 8 3

CC_CHROMA 4 4 2

CC_MIXED 4 2x4 2

CC_ALPHA 3 2x4 2

Table 1: FXT1 block encoding schemes

International Conference Graphicon 2000, Moscow, Russia, http://www.graphicon.ru/

Thus, S3TC represents each block of 4x4 texels by 8 bytes (4 for
colors + 4 for indices), while FXT1 uses 16-byte data chunk for
each 4x8 texel block. Compression ratio, provided by these
techniques, is 6:1 for TrueColor 24bpp images, and 8:1 for 32bpp
images, which is appropriate regarding texture compression
requirements.

2.2.4 Quality Degradation on Compressed Textures
However, high compression ratio is archived by serious reduction
of color data available for texels representation. For all described
above schemes, excluding CC_CHROMA, generated local palette
for each block consists of the colors belonging to a strait line in
the RGB color space due to linear interpolation. For
CC_CHROMA, 4 unique colors per 32 texels are used. Therefore,
we can summarize that current techniques provide each block of
4x4 texels with 2 original colors, while others are linearly derived
from them. This severe limitation may introduce perceptible
quality degradation in some cases. For example, if a block
comprises texels of at least 3 completely independent colors in
RGB space (it could be pure red, green and blue), there is no way
to reproduce them appropriately by interpolation of any two.
Figure 2 validates this fact.

Original S3TC FXT1

Figure 2: Visual degradation of compressed images. Each flower
is approximately 50x50 pixels. The original compression software

was downloaded from S3 and 3dfx web sites, respectively.

3. COLOR DISTRIBUTION

3.1 Color Distribution Basics
In order to provide more originally different colors on a block, we
propose another approach to constructing a local palette it. Instead
of interpolating colors from those stored in the reconstructing
block, we propose to use colors stored in its neighbors. For
example, we can put just one color in a block, and form a 4-entry
palette by retrieving colors from the left, bottom and left-bottom
adjacent blocks (Figure 3).

Color 00 Color 01

Color 11 Color 10

Color 00
Color 01

Color 11
Color 10

Indices Indices

Indices Indices

Block to reconstruct Palette for selected block

Adjacent blocks
considered for forming

palette entries
Figure 3: Generating local palette from adjacent blocks

Thus, the idea is to use colors from neighboring blocks instead of
simple interpolation of colors stored in the currently
reconstructing one. This approach allows, for example, encoding

the image shown on Figure 2 with no color degradation at all,
because it has only 4 unique colors.
Obviously, for constructing the local palette of a block we can
choose any set of neighboring blocks, relative position of which
may be defined by a pattern. Moreover, this pattern may even
differ from block to block, and, in this case, should be stored for
each of them. This strategy of color distribution is described in [9]
with more details.
However, this new approach was originally developed as an
efficient technique of texture compression. Therefore, if relatively
distant blocks are involved to generate the palette, the problem of
several memory calls, being similar to VQ, may arise. In order to
simplify the decoding procedure and avoid the problem of several
memory calls, we have chosen the simplest scheme, which
provides 4 unique colors per a block. This scheme corresponds to
Figure 3, and may be defined in more detail by the following.

3.2 Nodal scheme of Color Distribution
Let us subdivide a texture by a uniform grid having cells of 4x4
texels, and assign a color to every node of this grid. Thus, each
block is defined by 4 corner nodes, which supply the decoder with
4 unique colors (Figure 4). As local palette has 4 entries, each
texel can be indexed by 2-bit value which indicates the color of
which corner should be taken.

C01 C00

C10 C11

4x4 texels
2 bits/texel

Figure 4: Nodal scheme of color distribution

As shown on Figure 4, each block has 4 corners providing 4
unique colors for decompression. On the other hand, each node is
retrieved color from by 4 adjacent blocks, so the same color will
be used in palettes of 4 blocks. This property significantly reduces
the amount of memory required to store colors and indices.
Indeed, the compressed texture has an equal number of blocks and
nodes (we do not consider the last row and column here for
simplicity), so each block takes

16 bits (RGB565) + 2*16 bits (indices) = 6 bytes,
which is 1/8 of uncompressed data considering TrueColor 24bpp
images. Thus, providing compression ratios better than S3TC as
well as FXT1, the color distribution approach allows
reconstructing a larger number of unique colors on a block.

3.3 Decompression algorithm
Decompression of the data encoded by the described above
technique can be implemented very efficiently. In fact, since color
interpolation is not used, no arithmetic operations on colors are
required. At this point, the proposed technique is even simpler
than S3TC. However, color data is not as locally stored as it is
done by standard block decomposition approaches, which may
introduce a little more complex memory management.
Pseudocode 1 presents the general strategy of decompressing
images encoded by nodal scheme of color distribution. We
assume here, that colors and block indices are stored as separate

International Conference Graphicon 2000, Moscow, Russia, http://www.graphicon.ru/

2-dimentional arrays; however, interlaced storages may be
considered as well.

Pseudocode 1: Decompression algorithm for nodal scheme
RGB565 GetTexel(int x, int y) {

block_x=x/4; block_y=y/4;
index=GetBlockIndex(block_x,block_y);
index=ExtractTexelIndex(index, x%4,y%4);
if (index&1) block_x++; // shift left
if (index&2) block_y++; // shift down
return GetColor(block_x,block_y);

}

In Pseudocode 1, GetBlockIndex() and GetColor()
functions are used for retrieving the index of the block and
required color from the corresponding arrays, and
ExtractTexelIndex() extracts 2-bit index of the
corresponding texel from 32-bit index data of the whole block.
Since decoding typically takes place during 3D scene rendering,
the data obtained by calling these functions is likely to be used for
decompression of the next texel. For this reason, the memory
cache (standard or specially designed) may be efficiently used for
providing faster access to previously loaded indices and colors.

4. COMPRESSION ALGORITHMS
Compression of an image by proposed nodal scheme of color
distribution appears to be much more complicated comparing to
decompression. Obviously, the complexity of the compression
algorithm and its time requirement are not critical parameters of
entire technique; however, the visual quality of compressed
images is of great importance. Since each node is involved in
local palettes of 4 adjacent blocks, some variational methods are
natural to be used for finding colors introducing minimal error.
In [9] we presented an algorithm that being relatively simple
produces very good results on textures of various types. It does
not reach the theoretical minimum of error, but the practical
results proved to be quite sufficient. One of the advantages of the
proposed algorithm is constant number of iterations that is equal
to the number of blocks, since it sets up exactly one node by each
iteration minimizing overall error as much as possible. On the
other hand, nodes are assigned colors that are actually present in
the original texture. This property is not required, but proved to
result in compressed images of good visual quality.
In this paper we would like to formalize this algorithm, because it
can be used not only for nodal scheme of color distributions, but
also for any approach that looks up the color of a pixels in
specially reconstructed local palette.
We also describe briefly the other solution, which is based on K-
means clustering and is called Iterative Conditional Mode (ICM).
Some aspects of its improvement and optimization are discussed.

4.1 Compression Algorithm
Let us introduce the following notations.
X = {xi, i=1…N} denotes the original texture of N elements. We
assume that perceptually uniform color space is used allowing us
to measure distance between colors by Euclidean metric function.
In practice, weighted RGB or L*u*v* (L*a*b*) [4], which is more
correct, can be used as adequate approximations of uniform color
space.

Y = {yi, i=1…K} denotes the global palette, i.e. the set of colors
that are involved at least in one local palette. In case of nodal
color distribution, Y would consist of all available nodes.

R = {rij∈{0,1}, i=1…N, j=1…K} is the set of rules that define
which entries from the global palette Y should be considered as
the local palette for a texel. Thus, for a texel xi the local palette
includes yj if and only if rij=1. For the nodal scheme, each row of
the matrix R would have exactly four units corresponding to
block corners. In general, the property (4.1) should be fulfilled.

∑
=

>∀
Kj
ijri

...1
0 . (4.1)

M = {mij∈{0,1}, i=1…N, j=1…K} is the assignment matrix. It
has exactly one unit in each row. Position of this unit specifies
which color from a global palette is currently used for
representing the corresponding texel. Because, in addition to the
palette we defined a set of rules, the assignment matrix M should
comply with (4.2), which is

∑
=

=∀
Kj

ijijmri
...1

1 . (4.2)

Thus, the formalized problem of texture compression is the
following. Given an arbitrary texture X and a set of rules R, the
objective is to find the global palette Y and the corresponding
assignment matrix M, such that the error between the compressed
image

X*=RM×Y, (4.3)

and the original image X is minimal (the symbol × denotes here a
standard matrix multiplication, while RM means ‘per element’
multiplication resulting in matrix of the same size).
It is well known that, due to physiological nature of human vision,
the color perceived in each pixel depends not only on its original
colors, but also on colors of neighboring pixels, as well. At this
point, some complicated models based on Gaussian kernel as
spatial support of each pixel can be considered. This strategy is
extensively described in [2,8,10,7]. However, for the sake of
simplicity we consider the straightforward Euclidean distance in
approximately uniform color space as the error of compression.
Thus, this error is defined by (4.4).

()
2

...1 ...1

*XX, ∑ ∑
= =

−=Ε
Ni Kj

jijiji ymrx (4.4)

As was introduced previously, the proposed algorithm defines
exactly one palette entry in each iteration; thus, let us assign a
boolean value to each entry specifying whether it has been
already set up or not. Denoting this values with

S = {sj∈{0,1}, j=1…K}, we state that before the algorithm begins
all sj are set to 0, and in the end, they are all equal to 1.

E = {εi, i=1…N} is the set of errors calculated for each texel
regarding only set-up palette entries. Each error is defined by
(4.5), and in the beginning is set to the maximum possible value
(we consider finite color space here).

⎪⎩

⎪
⎨
⎧ =∃−

= =

otherwiseVALUEMAX

rsjifyx ijjjirsji ijj

,_

1:,min
2

1:ε (4.5)

For each palette entry that is not yet set up to the final value, we
find the texel from the corresponding area, such that if the color
of this texel were assigned to the palette entry, the overall error

International Conference Graphicon 2000, Moscow, Russia, http://www.graphicon.ru/

would maximally decrease. The position of this texel for yj is
obtained by (4.6)-(4.7).

()∑
==

−−=
Nk

kkikjri
xxrl

ij ...1

2

1:
max εχ , where (4.6)

⎩
⎨
⎧ >

=
otherwise

xifx
x

,0
0,

)(χ . (4.7)

And, finally, the error decrease that would occur if the node yj
were set-up with the color xl is defined by (4.8) in each palette
entry.

()∑
=

−−=
Nk

kklkjj xxrd
...1

2 εχε (4.8)

The general idea of the algorithm is to find on each step the node
(palette entry) that will maximally decrease overall error E if set
up. This entry is considered defined, and all others (only those
that could have changes by this assignment) should be
recalculated to reflect the changes.
This idea is formalized in Pseudocode 2.

Pseudocode 2: Iterative Compression Algorithm
M,Y CompressTexture(X,R) {

set sj (j=1…K) to 0;
set εi
set y

(i=1…N) according to (4.5);
j=xl (j=1…K), where l complies (4.6);

set dεj (j=1…K) according to (4.8);
while (not all si are 1) {

m=arg maxj=1…K(sjdεj);
sm=1;
dεm=0;
for (i:rim=1) recalculate εi by (4.5);
for (j:∃i:rimrij=1) {

if (dεj>0) continue;
set yj=xl, where l complies (4.6);
set dεj according to (4.8);

}
}
// Y is defined, let us find M
mij=1 if yj minimizes εi, mij=0 otherwise
return M,Y;

}

The strategy presented in Pseudocode 2 is relatively simple and
produces very good results on different types of textures. In fact,
recalculations of εi and dεi are required for a small number of
elements affected by changes made in a particular step; therefore,
this algorithm is one of the fastest among other iterative
algorithms of this class.
4.1.1 Preliminary Clustering
However, considering proposed nodal scheme of color
distribution, the speed of this algorithm can be further improved
by preliminary clustering of the colors within each block. Because
proper clustering is a complicated task in general case, we
propose to use a very simple algorithm, which produces sufficient
results and works very fast considering that each time it needs to
cluster 16 points. Description of this algorithm follows.
Let us consider a set of points in a metric space, and denote it
with X. The task is to find clusters not exceeding d in diameter
and comprising all points from X. The number of clusters,
obviously, should be as little as possible. At each step, the
algorithm finds the diameter [xy] of X. Then, it forms a cluster

around x with diameter d and removes covered points from X.
The same procedure is also applied to y unless distance between x
and y is less then d. We should point out, that this procedure has
some assumptions, and does not construct a minimal set of
clusters; however, in practice it works very well, and, what is
more important, it is relatively fast.
Thus, clusters can be treated in the same way as texels in
Pseudocode 2. The only difference would be storing the number
of texels belonging to each cluster, since this information is
required for proper calculation of εi and dεi. In practice, this
approach of preliminary clustering speeds up the iterative
algorithm by 2-5 times, because the number of performed
arithmetic operations is significantly reduced.
4.1.2 Preprocessing
To make algorithm even faster, some special cases may be
determined before iterations start. Let us introduce two of these
cases:
♦ If all blocks adjacent to a node has clusters representing one

color (similar colors in term of visual difference), this color
is the only choice for this node;

♦ If all clusters corresponding to a connected area of blocks
represent, in fact, equal or less than 4 colors, than all nodes
of this area may be set with these colors in a chess-board
order.

The above-mentioned cases may be validated and processed in a
proper manner after clustering, but before calculating errors. This
procedure excludes some of the nodes from further consideration
generally reducing the overall time of conversion.

4.2 Iterative Conditional Mode
The proposed above compression algorithm fills global palette
with colors taken from the original image. This property generally
does not introduce any perceived artifacts; moreover, in some
cases this approach produces better images from human vision
point of view (for example, on sharp edges). However, we can
tune standard approaches to serve our needs. One of these
approaches is so called ICM (Iterative Conditional Mode), which
can be derived from [1,2]. ICM is, in fact, conceptually similar to
K-means clustering, which iterates through color space
converging to the minimum of error function E(X,X*).
In our notations, if the global palette Y is defined, the assignment
matrix M should comply with (4.9) to minimize overall error for a
given palette.

⎪⎩

⎪
⎨
⎧ −=

= =

otherwise

yxjif
m kirkij ik

,0

minarg,1 2

1: (4.9)

On the other hand, if the assignment matrix M is fixed, palette
entries may be obtained by (4.10).

∑
∑

=

==
Ni ij

Ni iij
j m

xm
y

...1

...1 (4.10)

Thus, the ICM-like algorithm alternately finds the assignment
matrix for the fixed palette, and calculates palette colors as the
median of the set of pixels that are indexed by this palette entry.
This strategy is expressed by Pseudocode 3.

International Conference Graphicon 2000, Moscow, Russia, http://www.graphicon.ru/

Pseudocode 3: ICM – Iterative Conditional Mode
M,Y CompressTexture(X,R) {

set yj (j=1…K) to arbitrary colors;
do {

set mij (i=1…N,j=1…K) by (4.9);
set yj (j=1…K) by (4.10);

} until (converged);
return M,Y;

}

The ICM algorithm is quite efficient; however, it is well known
that it gets frequently stuck in local minima. Therefore, some
special steps should be taken to solve this problem. For example,
multiscale (deterministic) annealing [10,12] can be considered.
The complexity algorithm can be significantly improved by
multiscale optimization, described in [7].

5. CONCLUSION
In this paper we introduced a number of requirements that should
be fulfilled by texture compression technique for its efficient use
in real-time systems of 3D scene rendering. We analyzed the most
exceptional approaches, currently invented, including S3TC and
FXT1. These approaches proved to be very efficient; however,
they may introduce perceivable quality degradation due to the
lack of colors available for decompressing each block of texels.
In order to provide more originally different colors to each block,
we proposed a general technique of color distribution, and, in
particular, the nodal scheme being the simplest one in terms of
memory management, which is critical for real-time hardware-
implemented algorithms.
The proposed technique perfectly complies with all introduced
requirements. Thus, compression ratio is superior to the one
obtained by S3TC and FXT1, and is equal to 8:1 for TrueColor
24bpp textures. Visual quality of compressed images is better in
most cases, because more independent colors are available for
each block. Decompression algorithm is very simple and can be
efficiently implemented in hardware. Finally, because color
distribution is an improvement upon block decomposition
approach, random access to the texture elements is naturally
supported.
Because, according to the proposed approach, color data are
shared by several blocks of texture, finding optimal palette that
minimizes overall error appears to be a relatively complicated
task. We introduced an algorithm that being simple and efficient
produces quite sufficient approximations to the optimal solution.
Some optimizations, such as preliminary clustering and
preprocessing, are discussed.
We also described in brief the modification of standard ICM
approach for obtaining distributed colors, and specified some
possible improvements for preventing its getting stuck in local
minima.
In conclusion, the proposed approach of color distribution can be
efficiently used for compressing images of any types, while nodal
scheme, being specially designed for texture compression, is a
valuable technique that allows real-time rendering of 3D scenes
with much higher level of details.

6. FUTURE WORK
We would propose two directions of further investigations in the
scope of color distribution approach to image compression.
As was mentioned above, this approach may be used not only for
compressing textural data, but also for regular image
compression. In addition to nodal scheme, introduced in this
paper, there could exist some other strategies that may serve
different application. Careful investigation of these strategies
seems to be very interesting and, possibly, worth developing.
For the other topic of research we would propose careful analysis
of compression algorithms. More correct models of human vision,
such as Gaussian kernel in a pixel [2], can be implemented. Some
properties of the proposed iterative algorithm may be
investigated. ICM-like approach may also be carefully studied
and improved by multiscale annealing and optimization. All these
steps are likely to improve obtained visual quality of compressed
images.

7. ACKNOWLEDGEMENTS
The presented here techniques were developed by the Computer
Graphics Group (Dept. of Math, Moscow State University) in
accordance with the Research Agreement between Department of
Mathematics and Mechanics of Moscow State University and
Intel Technologies, Inc. We would like to thank Jim Hurley and
Alexander Reshetov (Intel Technologies, Inc.) for their constant
attention to this project as well as their constructive criticism.

8. REFERENCES
1. J. Besag. On the statistical analysis of dirty pictures. Journal

of the Royal Statistical Society, Series B, vol. 48, 1986.
2. J.M. Buhmann, D.W. Fellner, M. Held, J. Ketterer, and J.

Puzicha. Dithered Color Quantization. Proceedings of
EUROGRAPHICS, vol.17, no.3, 1998.

3. Compressed Texture Formats. Microsoft DirectX 7.0,
Platform SDK, MSDN. – Microsoft, 1999.

4. C.I. de L’Eclairage. Colorimetry. CIE Pub. 15.2 2nd ed.,
1986.

5. Wolfgang Effelsberg, et al. Video Compression Techniques.
Morgan Kauffman Publishers, 1998.

6. FXT1: White Paper. – 3dfx Interactive, Inc., 1999.
7. F.Heitz, P.Perez, and P. Bouthemy. Multiscale minimization

of global energy functions in some visual recovery problems.
CVGIP: Image Understanding, vol. 59, no.1, 1994.

8. T. Flohr, B. Kolpatzik, R. Balasubramanian, D. Carrara, C.
Bouman, and J. Allebach. Model based color image
quantization. Proceedings of the SPIE: Human Vision, Visual
Processing, and Digital Display IV (J. Allebach and B.
Rogowitz, eds.), vol. 1913, 1993.

9. Denis Ivanov, Yevgeniy Kuzmin. Color Distribution – a new
approach to texture compression. Proceedings of
EuroGraphics’ 2000.

10. J. Ketterer, J. Puzicha, M. Held, M. Fischer, J.M. Buhmann,
and D. Fellner. On spatial quantization of color images.
Proceedings of the European Conference on Computer
Vision, 1998.

International Conference Graphicon 2000, Moscow, Russia, http://www.graphicon.ru/

11. Mark Nelson, Jean-Loup Gailly. The Data Compression
Book. IDG Books Worldwide, 1995.

12. J. Puzicha, M. Held, J. Ketterer, J. Buhmann, D. Fellner. On
Spatial Quantization of Color Images. Technical report IAI-
TR-98-1, University of Bonn, 1998.

13. Khalid Sayood. Introduction to Data Compression. Morgan
Kauffman Publishers, 1996.

14. S3TC: White Paper. – S3, Inc., 1998.
15. TREC: White paper. – Microsoft Corporation, 1998.

About the author
Denis V. Ivanov, Ph.D. student – Denis@fit.com.ru
Dr. Yevgeniy P. Kuzmin, Senior Scientist – Yevgeniy@fit.com.ru
Computational Methods Lab.
Mathematics and Mechanics Dept.
Moscow State University,
Vorobyovy Gory, Moscow, Russia, 119899

International Conference Graphicon 2000, Moscow, Russia, http://www.graphicon.ru/

mailto:Denis@fit.com.ru
mailto:Yevgeniy@fit.com.ru

	1. INTRODUCTION
	2. EXISTING TECHNIQUES
	2.1 Vector Quantization
	2.2 Block Decomposition
	2.2.1 Texture and Rendering Engine Compression
	2.2.2 S3 Texture Compression
	2.2.3 3dfx’s Texture Compression
	CC_HI

	2.2.4 Quality Degradation on Compressed Textures

	3. COLOR DISTRIBUTION
	3.1 Color Distribution Basics
	3.2 Nodal scheme of Color Distribution
	3.3 Decompression algorithm

	4. COMPRESSION ALGORITHMS
	4.1 Compression Algorithm
	4.1.1 Preliminary Clustering
	4.1.2 Preprocessing

	4.2 Iterative Conditional Mode

	5. CONCLUSION
	6. FUTURE WORK
	7. ACKNOWLEDGEMENTS
	8. REFERENCES

