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Abstract 
The generalization of the discrete orthogonal transforms with the 
basis functions generated in a pseudorandom way is the subject of 
the article. The examples of such transforms application in the 
field of videoinformation coding in the channels with the high 
level of «seldom» noise are also given. 
Keywords: Discrete orthogonal transforms, Image Compression, 
m-sequences. 

1. INTRODUCTION 
Discrete orthogonal transforms (DOT) 

 ,   ∑
−

=
=

1

1

N

n
m nhnxmx )()()() 110 −= Nm ,...,,  

are widely used in the fields of information coding, information 
transmission and discrete signals processing. Here  is the N-

periodic input sequence, {  are the basis functions 
orthogonal for some scalar (or Hermitian) product 
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In the real world channels the noise distorts the transmitted 
signals, especially those with the low numerical values. If the 
channel characteristics are such that some samples of the 
transmitted information can be irretrievably lost or strongly 
distorted regardless of their values then standard DOTs (Fourier, 
Hartley etc.) can hardly be used for information coding. The 
standard DOT properties depend on the correlation properties of 
the processed signal. Therefore the loss of some high amplitude 
components (for example Fourier components) during the 
videoinformation transmission results in a strong noise in the 
restored image. This noise has periodic structure for which the 
human vision is very sensitive. Another decision in this case is to 
code the information with the DOTs having such basis functions 

 for which the spectral components )(nhm { })(mx)  are 
«energetically equal». The notion of discrete M-transforms with 
the noise-like basis functions is introduced in [1]. The applications 
of such transforms for one- and two-dimensional information 
coding are considered in [2]-[4] (See also [5]). 
Such transforms do not lead to energy concentration in a few 
spectral coefficients do not lower the redundancy attributed to the 
statistical relations between the elements of the signal to be 
transformed and efficiently remove insignificant information. 
Particularly in the process of compression of videoinformation 
after the inverse transformation was applied, the noise affecting 
the image is less notable for the human vision than in case of 
Walsh transforms. The basis functions of such transforms are 
based on the m-sequences (recurrent sequences of the finite field 

elements with the maximum periods) The sequences of this kind 
are widely used for the pseudorandom numbers generation, 
cryptography etc [6]-[7]. 
The M-transforms with the basis functions taking two different 
values with the (nearly) equal frequencies are considered in the 
publications mentioned above. In our article we consider the 
generalized M-transforms with the basis functions taking  
different values. The one-dimensional transforms with the 
modified basis functions were announced in [8] and [9]. Some of 
the applications of such basis functions in image compression 
were considered in [10]. In this article we consider the two-
dimensional versions of the proposed structures. 

p

2. GENERALIZED ONE-DIMENSIONAL M-
TRANSFORMS 
Let  be the finite -element field. Let  be the pF p )(nϕ r -order 
recurrent sequence 

 )(...)()( rnanan r −ϕ++−ϕ=ϕ 11 , pj Fa ∈  (1) 

with nontrivial initial values ))(),...,(( 10 −ϕϕ r . 

Definition 1 Let  be the period of sequence (1). If  
then sequence (1) is called the m-sequence. 

N 1−= rpN

Using the slight modification of the corresponding proof Ref.[1] 
the following statement can be proven: 

Proposition 1 Let  be prime, . Let the numbers 
 satisfy the following relation 
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Then there exists the efficiently calculated constants  and  

such that the functions 
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Proof. Let us introduce the following notation 
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Let us take  and  that the orthogonality condition for the 

set { is held in the form  
0A 1−pA
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Since the functions  are obtained from each other by the cyclic 
shifts then the sum (3) depends only on . Therefore we can 
consider only the case of . 

τh
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Using (2) and (3) for  we get 0=τ
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Since  then using (4) we obtain ijji nHnH δ=)()(
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Let . Then we have  0≠τ
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The calculation of is the most difficult part of this poof. Using 
the standard method from number theory we can bring sum (7) to 
the trigonometric sum of the special kind. 
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Since )(nϕ  is the m-sequence then the sequences 

21 mnmn ⋅τ+ϕ+⋅ϕ )()(  are also the m-sequences for 01 ≠m  and 
02 ≠m . Thus the above relation expression can be transformed 

into  
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Substituting )(τijS  in (6) we get an explicit relation between A  

and . This relation together with (5) brings the system of 
equations for determining 

C
A  and  and therefore  and . C 0A 1−pA

The examples of the basis function  for different  and  
are shown on the Figure 1. 
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(a) 

 

 
(b) 

Figure 1: 

Function for (a) N=26, p=3, r=3; (b) N=24, p=5, r=2. )(nh0

 
Definition 2 The transform (1) with the basis functions { })(nhm  
defined in Proposition 1 is called the generalized M-transform 
(GM-transform). 

3. TWO-DIMENSIONAL GM-TRANSFORMS 
The one dimensional M-transforms introduced in the previous 
section can be used for two-dimensional digital arrays (images) 
coding after the standard digital image processing methods were 
applied. 
The N×N pixel images can be represented by one-dimensional 
arrays in a number of ways (Figure 2). 
 

 
 

 
 

Figure 2: Different ways of representing two-dimensional N×N 
array as a one-dimensional N2 – element array. 

 
The two-dimensional 127×129 -points basis function for 

and  is given on the Figure 3. 2=p 7=r

 
Figure 3. 

 
(a)  We can introduce the separable two-dimensional GM-

transform by the following relation. 
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In case (a) the two-dimensional N×N-points GM-transform 
calculation is reduced to the calculation of one-dimensional N2-
points GM-transform. In case (b) the two-dimensional N×N-points 
GM-transform calculation is reduced to the calculation of N one-
dimensional N-points GM-transforms. This calculation is done 
using the standard “row-column” (cascade) scheme: 
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The examples of two-dimensional N×N-points basis functions for 
different values of and p r  are given on the Figure 4. 

 
(a) 
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(b) 

 
(c) 

 
(d) 

Figure 4: 

(a) Function for N=80, p=3, r=4; ),(, 1121 nnχ 2

2

2

2

(b) Function for N=80, p=3, r=4; ),(, 100 nnχ

(c) Function for N=127, p=2, r=7; ),(, 122115 nnχ

(d) Function for N=124, p=5, r=3. ),(, 1511 nnχ

4. FAST ALGORITHMS FOR GM-
TRANSFORMS 
The main property of GM-transforms is the existence of fast 
algorithms of their calculation. 
Let us show that transforms (1) and (8) can be represented in a 
form of one- and two-dimensional convolution respectively. 

Let 2211 nnn =η−=η−=η ,, . 

The signal  and the functions  are N-periodic. Thus 
considering the introduced notation relations (1) and (8) can be 
rewritten in the form 
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Array (9) can be calculated in a standard way using the discrete 
Fourier transform (DFT). 
 

x(-η)

h0(-η)

DFT

DFT

Inverse DFT
(x*h0)(t)

)(ˆ tx

)(ˆ th0  

The drawback of this scheme is that can hardly be 
factored as 

1−= rpN
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The numbers  in (11) are primes. tpp ,...,1

The DFT calculation for  can be done using 
Good-Thomas decomposition [11]. According to it we have to 

calculate -point DFT (

j
tppN αα ⋅⋅= ...1

1

j
jpα tj ......1= ). 

In particular, to implement the M-transform of 255×257 image 
according to the scheme (a) we have used the (216-1) points DFT. 
Since 

2571753121212 8816 ⋅⋅⋅=+−=− ))((  

According to the Good-Thomas decomposition this transform is 
reduced to the calculation of 3-, 5-, 17- and 257-points DFTs. We 
can calculate 3- and 5-point DFTs using Vinograd algorithm. The 
calculation of 17-points DFTs is reduced to the 16-points 
convolution according to the Rader scheme [11]. This convolution 
can be calculated using standard FFT. In the same manner the 
calculation of 257-points DFTs is reduced to the calculation of 
256-points convolution which in turn can be calculated using the 
256-points FFT. 

To implement the M-transform of 255×255 pixels image 
according to the scheme (b) we have used the fast algorithms for 
(3×3), (5×5) and (17×17)-points two-dimensional Fourier 
transforms. 
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Another decision in this case is to calculate (9) and (10) using 
polynomial transform method [11]. 
The detailed discussion concerning the fast algorithms for 
calculation of (9) and (10) will be given on presentation.  

5. EXPERIMENTAL RESULTS 
Figures 5b-5d illustrate the reconstructed images after 70 of 
256×256 spectral components have been replaced by zeroes for 
Hartley transform (b), Hadamard transform (c) and GM-transform 
(d). The original image is depicted on Figure 5a. The «lost» 
transforms were chosen in a random way. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5:  (a)  Original image;  (b) Hartley transform;   
(c)  Hadamard transform;  (d)  GM transform. 

6. CONCLUSION 
In authors’ opinion the capabilities of GM-transforms are not 
limited to the examples given in the article. It is clear that GM-
transforms can be used for signal processing not only in the 
frequency field but also in the time field. Such problems arise 
when processing (in particular, when interpolating) non-uniform 
sampling signals [12]-[13]. 
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