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Abstract 
In VISC the volume models may be consisted of a large number 
of tetrahedrons. It is often required to reduce the number of 
tetrahedrons for approximating such objects. In this paper we 
present a new algorithm to reduce the number of tetrahedrons in a 
tetrahedron-based volume model. The key advantages of the new 
algorithm are: (1) it is simple to implement; (2) high reduction 
rates and excellent results can be achieved; (3) It allows a user 
defined simplification rate to generate a multi-resolution 
representation. This algorithm has been used in different 
application areas such as volume rendering, finite elements 
computation. 
Keywords: Tetrahedron, Simplification, Mesh, Finite Element. 

1. INTRODUCTION 
Tetrahedron meshes are one of the most popular representations 
of volume model for Visualization in Scientific Computing 
(VISC). There is an increasing set of data acquisition techniques 
which generates tetrahedron meshes as output, such as Delauny 
Tetrahedron Reconstruction, Spatial Mesh Reconstruction, Finite 
Element Generation. However, most of these techniques generate 
much more tetrahedrons than necessary to present the given object 
with a small approximation error. Such huge amount of data lead 
to problems on data storage, volume rendering and finite element 
computation. Animation and real time processing of such data set 
is almost impossible even on high performance hardware. 
Few researches on simplifying volume data have been developed 
until now while many techniques aiming at reducing surface 
complexity were published. Following, some general and valuable 
solutions are mentioned: 
� Hansen’s coplanar facet merging[6]: Coplanar or nearly 

coplanar data are searched, merged in larger polygon and 
then retrianglated into fewer simple facets. 

� Schroder’s mesh decimation[7]: all vertices that satisfy some 
criterion are removed and the remaining holes are 
retrianglated. 

� Turk’s mesh re-tiling[8]: a new vertices is inserted at random 
on the original surface mesh, and then moved on the surface 
to be displaced on maximum curvature locations; the 
original vertices are then iteratively removed. A retiled mesh, 
built on the new vertices only, is returned. 

� Rossignac’s point coalescence[9]: the ambient space is 
subdivides into smaller subspaces. Multiple vertices in a 
subregion are merged into a single vertex using a weighted 
approximation. The merged vertices are then reconnected 
with their neighbors to form a collection of facets. 

� Hoppe’s mesh optimization[10]: the mesh is evaluated by a 
global energy function and minimized either by 
removing/moving vertices or collapsing /swapping edges. 

All these algorithms are only available for surface simplification 
either by merging elements or by resampling vertices of the 
original object. Our work, on the other hand, provides a method to 
simplify the tetrahedron mesh of a volume model. The basis of 
our tetrahedron mesh simplification algorithm is to reduce the 
number of border tetrahedrons using surface vertex removal and 
then construct regular hexahedron mesh to replace the internal 
tetrahedrons of the original model. The resulting hole between the 
simplified surface and hexahedron mesh will be filled with 
tetrahedrons at last. 
The remainder of the paper is organized as follows. We outline 
the conception of volume data in the next section and 
implementation of our simplification algorithm in section 3. An 
Example is given to test our algorithm in section 4. Section 5 
concludes the paper with some remarks on future research 
directions. 

2. THE VOLUME DATA 
Volume visualization is a methodology used for realizing the 
inner structure and complex behavior of 3D volume objects. The 
Element in a volume data set can be a tetrahedron (called 4-nodes), 
a pentahedron (called 6-nodes), or a hexahedron (called 8-nodes). 
Tetrahedron data are most popularly used to approximate a 
volume model because of their ability to form any polyhedrons 
discretionarily. According to our paper, three types of 
tetrahedrons are defined, see Figure 1. Assume 0E  and 1E  are 
two parallel planes where each vertex of a tetrahedron is located: 
� T0-tetrahedron: three vertices of the tetrahedron are in the 

upper plane 0E  and the rest one is in the lower plane 1E . 

� T1-tetrahedron: three vertices of the tetrahedron are in the 
lower plane 1E  and the rest one is in the upper plane 0E . 

� T2-tetrahedron: two vertices of the tetrahedron are in the 
upper plane 0E  and the other two are in the lower plane 

1E . 

A polyhedron can be divided into several T0, T1 and/or T2 
tetrahedrons. For example, showed in Figure 2, a hexahedron is 
divided into two pentahedrons and each of the pentahedrons is 
divided into three tetrahedrons respectively. This decomposition, 
however, is not unique because the diagonal edges change across 
a polyhedron. Since the faces of a polyhedron are usually non-
planar, it is important to ensure that adjoining polyhedrons have 
matching diagonals to prevent gaps. 
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Figure 1: The T0, T1 and T2 tetrahedrons. 
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Figure 2: Decomposition of a hexahedron. 
 

3. DSCRIPTION OF THE ALGORITHM 
Differing from the traditional surface simplification, our volume 
simplification algorithm not only simplify complexity of the 
surface but the internal volume data as well. Sharp edges of the 
volume model must be preserved in course of simplification. In 
addition, the simplified tetrahedron mesh should be more regular 
than the original mesh in order that the post-processing such as 
force analysis, conflict detection, deformation computation and 
volume rendering can take advantage of its regularity. 
The input objects that our algorithm can accept and process are 
layered tetrahedrons gained from 3D reconstruction of layered 
scanning images (MRI or CT images). A layered tetrahedron is 
defined as a tetrahedron with vertices only on two adjoining 
planes parallel with each other, see Figure 3. 

3.1 The Main Loop 
Our simplification algorithm will establish a multi-resolution 
volume model depending on the user requirements of 
simplification rate. In this section, we adopt a layered 
simplification approach benefited from the independency of 
tetrahedrons between two arbitrary layers. After the original data 
and user defined simplification rate r have been read, the number 

of simplified layers SL  as well as the average number of 

simplified tetrahedrons per layer ST  is calculated as: 
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where r is a user defined simplification rate which is percentage of 
the reduced number of simplified tetrahedrons and the number of 
original tetrahedrons. TL  is the number of original layers and 

SL  the number of simplified layers. iT  denotes the number of 

original tetrahedrons in layer i and ST  the average number of 
simplified tetrahedrons per layer. 
Our algorithm starts by fetching M layers of tetrahedrons from the 
input (M = ST LL / ), once the manipulation to these 
tetrahedrons is completed, one layer of newly-generated  
tetrahedrons is output. We finish when all of the original 
tetrahedral data are processed. Therefore, the manipulation to 
each M layers of tetrahedrons is what we are interested in. First, 
all of the tetrahedrons are classified into two categories: border 
tetrahedrons and non-border (internal) tetrahedrons. We define 
the former as a tetrahedron that includes the surface facets of a 
volume model and the latter as a tetrahedron not including any 
surface facets. Next, a vertex removal approach is introduced to 
simplify those border tetrahedrons and the preservation of sharp 
edges should be considered. Then a number of hexahedrons will 
be substituted for those non-border tetrahedrons. Finally, the 
resulting hole between the simplified surface and substituent 
hexahedrons is filled with tetrahedrons. More detailed discussion 
can be seen in the following. Let Tetra1, Tetra2, … , TetraM 
denote tetrahedrons in layer 1, 2, … , M, with vertices located in 
M+1 layers denoting Layer0, Layer1, … , LayerM. 
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Figure 3: A layered tetrahedron model. Tetrahedron 4321 VVVV  

and 8765 VVVV  are called non-border (internal) tetrahedron and 
border tetrahedron respectively if the former does not include the 
model’s surface facet while the latter does. 
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3.2 Surface Simplification 
Our border tetrahedral simplification is a typical surface 
simplification algorithm, that is, it starts with the original surface 
and successively simplifies it. It removes vertices from Layer1 to 
Layer(M-1) and retriangulates the resulting holes until no further 
vertices can be removed. The triangle mesh left, with all vertices 
in Layer0 or LayerM, therefore, is the simplified surface that we 
need. Figure 4 illustrate if we remove a vertex Vr from the surface 
its adjacent triangles are removed and the remaining hole is 
retriangulated. 
 

Vr
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Figure 4: Removing vertex Vr and retriangulating the remaining 
hole. 
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Figure 5: The simplified surface where all of vertices are in 
Layer0 or LayerM. We call a triangle T0-triangle if its base-side 
in Layer0, otherwise call it T1-triangle. 
 

3.2.1 Vertex Removing 
One of the crucial parts in the algorithm is vertex removal because 
in this step not only have the vertices to be removed but also the 
new triangle mesh is built to approximate the surface. As Figure 4, 
let rC be the triangle set where each triangle adjoins the vertex 

rV  in Layer(n), }1,,2,1{ −⋅⋅⋅∈ Mn  and rS  the new 

triangle set produced by removing the vertex rV and triangulating 

the hole 654321 VVVVVV . Since there are only two vertices 3V  

and 6V  belonging to Layer(n) in rC , we connect them with their 

adjacent vertices to form two triangles 432 VVV∆  and 

651 VVV∆ . The rest hole 5421 VVVV  is then filled with triangles 

215 VVV∆ , 425 VVV∆  with base-sides in Layer(n+1) or 

Layer(n-1) . All of these triangles combine to form rS  that we 
finally need. 

Yet there exist some other algorithms to construct triangle mesh, 
e.g. the surface reconstruction by extracting the contour lines of 
Layer0 and LayerM, the main disadvantage of those algorithms is 
that they are more complicated and time-consuming. Also, it’s 
hard to handle topology ambiguity of the complicated volume 
model. 

3.3 Hexahedron Mesh Construction 
In this section we substitute regular hexahedrons for the internal 
tetrahedrons. The algorithm proceeds firstly by constructing a 
closing box for M layers of original tetrahedrons. The closing box 
is divide into 

STN =                                (3) 

sub-hexahedrons where ST  is the number of simplified 
tetrahedrons per layer. According to the tetrahedron each 
hexahedron includes, it falls into 3 classifications: A-hexahedron 
which does not includes any tetrahedrons of original model, B-
hexahedron which at least includes one border tetrahedron and C-
hexahedrons which only includes non-border tetrahedrons. We 
adopt all C-hexahedrons and subdivide each of them into 6 
tetrahedrons as the simplified non-border tetrahedrons. 
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Figure 6: Dividing the closing box of the original data into N*N 
hexahedrons. 
 

3.4 Filling The Resulting Hole 
The main problem in this section is how to fill the resulting hole 
between the simplified surface and hexahedrons we built with 
tetrahedrons (Figure 7a). While, in general, this is a very 
complicated task, it can be easily solved by keeping track of the 
correspondence between the simplified surface and hexahedrons. 
The correspondence is the clue to this problem. It allows all 
vertices in surface to be counterclockwise sorted and assigned as 

00V , 01V , 02V , 03V … if they belong to Layer1 or as 10V , 11V , 

12V , 13V … if they belong to LayerM. Correspondingly, each 
vertex in hexahedron mesh’s surface should also be sorted 
counterclockwise and assigned as 00M , 01M , 02M , 03M … 
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or 10M , 11M , 12M , 13M …. Note that in Figure 5, we define 
two kinds of triangles in simplified surface: T0-triangle with base-
side in Layer0 and T1-trinangle with base-side in LayerM. The 
essential steps of hole filling algorithm are as follows: 
 

Hexahedron mesh

Simplifed surface

Resulting hole

V00
V01 V02

V10
V11

M0i

M1i
M0j

M1j

 (a)

  (b)
 

Figure 7: (a) is the resulting hole between the simplified surface 
and hexahedron mesh. (b) is a method to fill the resulting hole. 
 

(1) We start with an arbitrary T0-triangle in the simplified surface 
and search for its adjacent triangle counterclockwise until we 
reach a T1-triangle. The combination of those continuous T0 and 
T1 triangles is defined as a triangle-set unit 0B . For example, 

two T0-triangles 100100 VVV∆ , 100201 VVV∆  and one T1-

triangle 021110 VVV∆  form a triangle-set unit 0B , see Figure 
7(b). Then we have to search every arris counterclockwise in the 
hexahedron mesh’s surface to find an arris ii MM 10  that is 

nearest to 0B . The distance between an arris ii MM 10  and a 

triangle-set unit 0B  is defined by 

[ ]),(),,(),( 0100010 BMdBMdBMMd iiii Max=                   
(4) 

where ),( 0BMd  is the distance between a point M and a 

triangle-set unit 0B  defined by 
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where [ ]T
iiii zyxv 10000 = , 

[ ]T
iiii zyxv 11111 =  are the vectors of vertices iM 0  

and iM1  respectively; [ ]Tdcbap =  indicates the 

plane equation 0=+++ dczbyax  of each triangle in 0B . 

Note that 1222 =++ cba . 

Now that we have got a polyhedron ii MMVVVVV 101011020100 , 

we can divide it into several T0-tetrahedrons 100100 VMVV oi , 

100201 VMVV oi , one T2-tetrahedron 101020 VMVM ii , and one 

T1-tetrahedron 0211110 VMVV i  to fill the resulting hole, see 

Figure 8(a). Indicated 0B  to be used. 
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Figure 8: Decomposition of a hexahedron. 

 

(2) If the next triangle adjacent to 0B  is a T1-triangle, keep on 
searching for T1-triangles counterclockwise in the simplified 
surface until we reach a T0-triangle, thus the next triangle-set unit 

1B , contrary to 0B , is the combination of several T1-triangles 

and one T0-triangle. Otherwise if the triangle adjacent to 0B  is a 

T0-triangle, 1B  is combined with several T0-triangles and one 
T1-triangel. Once in the hexahedron mesh’s surface an arris 
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jj MM 10  that’s nearest to 1B  is found, decomposition is done 

showed in Figure 8(b). A polyhedron 

jj MVVVMVV 113121100302  is divide into several T1-

tetrahedrons 0211211 VMVV j , 0211312 VMVV j , one T2-

tetrahedron jMVVV 1130203  and one T0-tetrahedron 

jj MMVV 100302 . Indicate 1B  to be used. In order to void 

tetrahedron intersecting, each counterclockwise search must 
resume the previous search from the previous ending position, and 
moreover, any arrises or triangle-set units having been indicated 
used must not be searched once again. 

(3) 11020110 VVMMMM jjii  is a pentahedron which is 

divided into 3 tetrahedrons to fill the hole, see Figure 7. Indicate 
arrises ii MM 00 , 1110 ++ ii MM  … jj MM 10  to be used. 

(4) Repeat step (1), (2), (3) until we reach the triangle-set unit 

0B  again. We complete when the resulting hole is filled without 
any gaps. 

3.5 Exception Control 
The rest triangles between the final triangle-set unit fB  and first 

triangle-set unit 0B  can not always form a triangle-set unit. We 

distinguish two cases assuming that the last triangle of fB  is a 

T1-triangle. 

Case 1: If the rest triangles are several T1-triangles (Figure 9a), 
we have to insert same number of T1-tetrahedrons between fB  

and 0B  (Figure 10a). 

Case 2: If the rest triangles are several T0-triangles instead 
(Figure 9b), we will insert same number of T0-tetrahedrons and 
one T2-tetrahedron between fB  and 0B  (Figure 10b). 

It should also be considered that C-hexahedrons do not exist if the 
user defined simplification rate are high enough. That case can 
also be solved using our simplification algorithm by degrading all 
C-hexahedrons to one arris. 
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Figure 9: The rest triangles between fB  and 0B . 
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Figure 10: Tetrahedron insertion. In (a), we add two T1-
tetrahedrons 2765 VVVV , 2867 VVVV  to polyhedron 

654321 VVVVVV  while in (b) we add two T0-tetrahedrons 

6372 VVVV , 6387 VVVV  and one T2-tetrahedron 7865 VVVV  to 
it. 

4. RESULTS 
An example is given to illustrate the results of our tetrahedron 
simplification algorithm, which have been very encouraging and 
are summarized below. Figure 11 illustrates tetrahedron mesh 
hierarchy of a pelvis with 16104 tetrahedrons. The original model, 
showed in Figure 11(a), is simplified with different simplified rate 
of 50%, 75%, 90%, 95%, 99%, so the resulting number of 
tetrahedrons in the simplified model is reduced. The simplified 
model is quit similar to the original one when the simplification 
rate is below 75%, and it’s acceptable when simplification rate is 
90%, and some main features still can be preserved when 
simplification rate rise to 99%. The simplification results are 
presented in Table 1, with the index specifying the corresponding 
model in Figure 11. 

Table 1: Simplification of a pelvis mode 
Index Simplification 

rate 
Layers Vertices Tetrahedrons

(a) Original model 23 2764 16104 

(b) 50% 23 1674 7302 

(c) 75% 12 661 2671 

(d) 90% 8 344 1227 

(e) 95% 6 232 714 

(f) 99% 3 84 179 
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Figure 11: Simplifed models with different simplification rate. (a) 
is the original model; (b), (c), (d), (e), (f) is the simplified ones 
with simplified rates of 50%, 75%, 90%, 95%, 99% respectively. 
 

5. CONCLUSION 
We have described an algorithm for solving tetrahedron 
simplification problem. The strengths of our method are that it (a) 
works for volume data; (b) can preserve sharp edges; (c) establish 
a multi-resolution volume data; (d) is easy to implement. 
This tetrahedron simplification algorithm has been applied to our 
virtual surgery simulation system. One we are currently exploring, 
is the use of multi-resolution object hierarchies in collision 
detection, cutting and suturing. The idea here is to recursively do 
operations among the multi-resolution description of object, 
starting from the lowest resolution representations and moving up 
to the higher resolutions. Furthermore, this hierarchical approach 
can be interrupted allowing us to trade accuracy for speed.  
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