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Abstract 
We present a method for estimating optimal context templates that 
are used for conditioning the pixel probabilities in context-based 
image compression. The algorithm optimizes the location of the 
context pixels within a limited neighborhood area, and produces 
the ordered template as a result. The ordering can be used to 
determine the shape of the context template for a given template 
size. The optimal size of the template depends on the size of the 
image. We apply the method for the compression of 
multi-component map images consisting of several semantic 
layers represented as binary images. We estimate the shape of the 
context-template for each layer separately, and compress the 
layers as generic regions using standard JBIG2 compression 
technique. 
Keywords: context-based compression, statistical modeling, 
optimized context template, variable-size modeling 

1. INTRODUCTION 
The aim of statistical compression is to reduce redundancy in data 
by assigning shorter codes for symbols with higher probability 
and longer codes for symbols with lower probability. In an image, 
pixels form geometrical structures with appropriate spatial 
dependencies. Dependencies can be localized to a limited 
neighborhood defined by a local template. Statistical context-
based image compression utilizes spatial dependencies in the 
image. The compression consists of two distinct phases: statistical 
modeling and arithmetic coding [1]. 
In the modeling phase, we dynamically estimate the probability 
distribution of the pixel to be compressed. The probabilities are 
conditioned on the context that is determined by the combination 
of neighboring pixel values within the context template. The pixel 
configuration determines the context, and in this way, the model 
to be used in compression, see Figure 1. The pixel configuration 
in the context template is transferred to a binary number 
(11100100102 as in Figure), which gives the index (91410) of the 
model that is then used for compressing the pixel. In dynamic 
modeling, the statistical model is constructed adaptively during 
the encoding/decoding. It starts from scratch and is updated after 
each pixel has been coded. In this way, both the encoder and 
decoder have the same information and no side-information is 
needed for sending the model. 
Arithmetic coding assigns optimal code for the pixels in regards to 
the given statistical model [2]. The code size can be estimated by 
the information content of the model measured as the entropy [3]. 
An example of a context-based statistical compression is JBIG, an 
international standard for compression of binary images [4]. It 
uses the ten-pixel context template shown in Figure 1 by default.  
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Figure 1: Example of a 10-pixel context.  
The pixel to be compressed is marked by �?�. 

Theoretically, a more accurate probability model can be 
constructed using a larger context template. In practice, however, 
the use of larger templates does not always result in compression 
improvement [5]. The number of contexts grows exponentially 
with the template size; adding one more pixel to the template 
doubles the size of the model. This can lead to exessive memory 
consumption. In addition to this, context dilution problem may 
occur if the statistics are distributed over too many contexts, thus 
affecting the accuracy of the probability estimates. This is because 
the model must adapt to the statistics of the image before the 
model becomes efficient. The coding deficiency in the early stage 
of compression is known as learning cost problem. These two 
disadvantages can overweigh the improvement of the model if too 
large context templates are used. 
Optimal template size depends on the image size. The location of 
the template pixels, on the other hand, has no direct effect on the 
learning cost but they can greatly improve the accuracy of the 
model if properly designed. It is therefore feasible to optimize the 
location of the template pixels for the images to be compressed. 
Usually, the pixels are distributed in the neighborhood using the 
principle of minimal distance to the current pixel. Standard 
1-norm or 2-norm distance functions define two different 
templates that can be used, see Figure 2 [6]. These templates are 
well suited for mixed type images. However, they are not 
necessary the best choices for images of a specific type, and better 
templates can be obtained.  
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Figure 2: Default orderings of the context templates [6]. The 
pixel location to which the template is applied (seed pixel) is 
marked with �?�. 



Basic Fields 

  
Contours Water 

Multi-component image 

 
  

Figure 3. Illustration of the multi-component map image. The shown fragment has dimensions of 1000 × 1000 pixels. 

 
We consider multi-component map images. The images consist of 
several binary layers with different semantic content. Each layer 
consists of geometrical structures that do not necessarily match to 
the structures of another layer. In our experiments, we use 
topographic images from the NLS image database [7]. These 
images consist of four binary layers corresponding to the 
topographic data, fields, elevation lines and water area. The layers 
are combined and displayed to the user as color image, as shown 
in Figure 3. 
In this paper, we propose a method for optimizing the context 
template for a given image. The method optimizes the location of 
the template pixels within a limited neighborhood area, and 
produces the ordered template as the result. The ordering can then 
be used to derive the context template for any given template size. 
We apply the method in a static manner for the compression of 
multi-component map images. The template is optimized for each 
layer separately using a training image. The optimized context 
templates are then applied for the compression of a set of NLS 
images using the JBIG2 standard compression technique [7]. 

2. CONTEXT-BASED STATISTICAL 
MODELING 
The idea of statistical modeling is to describe the pixels of the 
image according to the probability distribution of the source 
alphabet (binary alphabet, in our case).  The information content 
of a single pixel can be measured by its self-entropy: 
 pH pixel 2log−= , (1) 

where p  is the probability of the pixel [3]. The self-entropy of 
the image can be calculated as the average entropy of all pixels: 
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where ip  is the probability of i-th pixel and n is the total number 
of pixels in the image. Self-entropy gives the optimal number of 
bits required for encoding a single pixel with a given model. 
The pixels in an image form geometrical structures with 
appropriate spatial dependencies. The dependencies can be 
localized to a limited neighborhood, and described by a context-
based statistical model [1]. In this model, the pixel probability is 
conditioned on the context C, which is defined as distinct black-
white configuration of neighboring pixels within the local 
template. For binary images, the pixel probability is calculated by 
counting the number of black, ( )CnB , and white, ( )CnW , pixels 
appeared in that context in the entire image: 
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Here, ( )CpB  and ( )CpW  are the corresponding probabilities of 
the black and white pixels. The entropy ( )CH  of a context C is 
defined as the average entropy of all pixels within the context: 

 ( ) ( ) ( ) ( ) ( )CpCpCpCpCH BBWW 22 loglog ⋅−⋅−=   (4)  

The entropy of an N-pixel context model is the weighted sum of 
the entropies of individual contexts: 
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In dynamic modeling, the encoder and decoder then adaptively 
construct the model during the compression/decompression on the 
basis of the preceding data. A uniform probability distribution 
( 5.000 == BW pp ) is assumed in the beginning. Time-dependent 

counters t
Wn  and t

Bn  start from zero and are updated after the 
pixel has been coded (decoded). The probability of a pixel is 
calculated on the basis of the observed frequencies using a 
Bayesian sequential estimator: 
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where t
Wn , t

Bn  are the time-dependent counters, t
Wp  , t

Bp  are the 

probabilities for white and black colors respectively, and δ = 0.45, 
due to JBIG. The model is inefficient at early stage of 
compression, since it takes time to adapt to the correct model, but 
the dynamic modeling is highly applicable for compression large 
volumes of data, such as map images. 

3. TEMPLATE CONSTRUCTION 
The optimal context template can be solved for a given template 
size k by compressing the image using all possible templates and 
selecting the one with best compression performance. However, 
this is not computationally feasible as there are approximately 

k32  different template configurations to be tested. Therefore we 
take a more practical approach and construct the template 
stepwise by optimizing the location of one pixel at a time. The 
sketch of the algorithm is shown in Figure 4.  
The algorithm starts with an empty template and expands it by 
one pixel at a time. At each iteration, we add a new pixel to each 
unoccupied location in the neighborhood area. We use the 40-
pixel neighborhood shown in Figure 5. For each candidate pixel 
location, we make a pass over the input image and construct the 
statistical model. We evaluate the models by estimating their code 
length using the equations (2) and (6). We then select the location 
providing minimum entropy, and add it permanently to the 
context template. The selected location is marked as occupied, 
and the process is then repeated until the template size reaches the 
predefined maximum kMAX. The process of the algorithm is 
illustrated in Figure 6. 
The result of the algorithm is not only the final template of kMAX 
pixels but also the ordering of the pixels. From the ordering we 
can derive all possible templates of the size 1 to kMAX. The size of 
the context template is a parameter of the compression method 
and it mainly depends on the size of the image. For example, the 
map images are very large and therefore relatively large templates 
can be applied without the risqué been weighed down by the 
learning cost and context dilution problems. 
The proposed method can be applied in two alternative manners: 
static and semi-adaptive. In the static approach, as taken here, we 

optimize the template using a priori knowledge of the image type. 
This is possible, as we know the type of the images to be 
compressed. The advantage of this approach is that the 
optimization can be done off-line. In the semi-adaptive approach, 
the template is optimized for the image to be compressed and the 
optimized template are stored in the compressed file. This would 
be a better solution when the image type is not known beforehand. 
The compression phase, however, would be very slow and 
therefore this approach is not suitable for applications, in which 
real-time compression is required. 
 

ConstructTemplate (kMAX,, SearchTemplate[]) 
variables: 

ContextTemplate[]: array; 
k, i, j: int; 

k ← 0; 
repeat 

k ← k + 1; 
for each i that SearchTtemplate[i] ≠ OCCUPIED 

CollectStatistics(i); 
l(i)=CalculateCodeLength(i); 

( )ilj
i

min← ; 

ContextTemplate[k] ← j; 
SearchTemplate[j] ← OCCUPIED; 

until (k = kMAX); 
return (ContextTemplate); 

Figure 4. Algorithm for estimating the optimal context template. 
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Figure 5. The neighborhood area used for optimizing the location 
of the template pixels. 
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Figure 6. Illustration of the context template construction. 
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Figure 7. Sample 100 x 100 pixels fragments of the layer images. 

4. EXPERIMENTS 
We evaluate the proposed method by compressing a set of map 
images from the NLS topographic database (Basic map series 
1 : 20,000). Each image is of the size 5000×5000 pixels, and 
represents a 10×10 km2 area. The images consist of four binary 
layers with different semantic meaning: 

• basic � topographic image, supplemented with 
communications networks, buildings, protected sites, 
benchmarks and administrative boundaries; 

• fields �  solid polygonal regions; 
• contours �  thin lines representing the elevations levels; 
• water �  solid regions, and various width lines 

representing lakes, rivers, swamps, water streams. 

In our experiments, we use five randomly chosen images from the 
database. The images corresponding to the map sheets No/No 
431306, 124101, 201401, 263112, and 431204. The image 
431306 contains most common geometrical structures, see Figure 
3 and Figure 7, and it is therefore used as the training image for 
optimizing the templates. The rest of the images are used for the 
actual compression. We use JBIG2 compression technique in its 
generic mode [8]. Objectives of the evaluation are to determine 
the compression performance using the constructed context 
templates in comparison to the standard 1-norm and 2-norm 
templates. The layers are compressed separately so that user 
would be able to decompress only the requested layers. 
The templates constructed using the proposed algorithm are 
shown in Figure 8 for the different semantic layers. The ordering 
of the pixels is illustrated by the numbering. The first ten pixels 
are colored by black color, and the next six pixels by gray color. 
The corresponding compression results are summarized in 
Figure 9, where the results are given for each layer separately. 
The results are obtained by varying the template size from 1 to 20. 
The resulting templates have different shapes corresponding to the 
geometrical structures of the images. The basic map includes wide 
variety of different elements: text, solid lines of different width, 
and single pixel dots, see Figure 7 for details. The optimized 
template is therefore virtually the same as the standard template of 
JBIG2, and the corresponding compression results are also close 
to each other. 
The fields, on the other hand, have a different template where only 
the most nearest neighboring pixels are utilized in the ten-pixel 
template. The most nearest pixels are enough to predict the 

existence of a field because the images contain merely large solid 
areas. Additional pixels are chosen far away from the current 
pixel. The optimized template improves the compression of the 
fields by about 12 %, on average. The simplicity of the structures 
also means that relatively small template sizes are sufficient for 
this kind of images. 
Contours layer consists of elevation lines, which are one or two 
pixels wide solid or dashed contours. There are no single pixels or 
larger structures in these images. Water layer contains also 
contour lines but they are always two or more pixels wide. In 
addition to that, there are larger black areas representing lakes. 
The optimized context templates for these two types of images are 
similar, and they provide moderate improvement in the 
compression. 
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Figure 8. Optimized context templates for the semantic layers. 

5. CONCLUSION 
A method for optimizing context templates for a given image was 
introduced. The algorithm optimizes the location of the context 
pixels within a limited neighborhood area, and produces the 
ordered template as a result. It was shown that the optimized 
templates can be quite different for different types of images. The 
method can be applied for the compression of multi-component 
map images, and moderate compression improvement was 
obtained for a set of map images. 
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Figure 9. Total size of the compressed files in Kilobytes for map layers using JBIG2 compression in generic mode  
with various context templates: 1-norm, 2-norm, optimized, and three standard templates (with sizes 10, 13, and 16) defined in JBIG2.

The next logical step would be to utilize dependencies between 
the layers by applying a multi-level context. It is likely that 
existence of a field is a strong indication of absence of water, and 
vice versa. The utilization of inter-layer dependencies requires 
that the images are compressed/decompressed in a predefined 
order. The optimization of the multi-layer context templates and 
the proper ordering of the layers is a topic of future research. 
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