
Clustering for Parallel Volume Visualization

Cemal Köse
Department of Computer Engineering,

Black Sea Technical University,
61080 Trabzon,

TURKEY.
kose@osf02.ktu.edu.tr

Abstract

Volume visualization is a powerful engineering tool.
However, the visualization of a three dimensional volume
is computationally expensive taking significant amounts of
time to produce the images on conventional computers.
Parallel processing offers the possibility of rendering the
volume in acceptable times. This paper discusses
hierarchical and distributed clusteral models with dynamic
cluster re-sizing and caching which are used in
combination with dynamic task and data management
strategies to provide an efficient parallel implementation
for volume visualization on a large distributed memory
multiprocessor system.

Keywords: Parallel, Volume Visualization, Data
management, Task Management, Load balancing,
Clustering

1. INTRODUCTION

Volume visualization enables users to “peer” into complex
three dimensional volume data sets and extract meaningful
information as to their structure and complexity [3,5]. By
manipulating a view point the user can examine the
volume from any direction. Such a tool is increasingly
important as volume data, for example, medical data from
CAT or MRI scanners, is used more frequently.

One straightforward method of representing volumetric
data sets is by a three-dimensional regular grid of volume
elements (known as voxels). As the view point is moved,
volume rendering techniques are used to produce an image
of the volume from each new viewing position. The
computational effort required to render a single image of a
complex volume is significant and may take many
minutes, even hours, to render on a conventional machine.
Parallel processing offers the potential of significantly
reducing this rendering time. However, volume data sets
exhibit certain characteristics which complicate their
visualization on multiprocessor systems:

 The volume data is typically very large - far larger than
can be accommodated on a single processor. Thus, a
parallel implementation of a volume rendering algorithm

must be able to cope with data sets which are distributed
amongst many processors. The correct distribution of the
data, and the minimization of the communication latency
associated with a remote data fetch, are fundamental to
any efficient parallel solution to volume visualization
[6,12,16].

 In a parallel implementation of volume visualization,
the tasks required to render one image may be quite
different from that necessary to produce the image from
a different view point, and may vary in computational
complexity. Therefore, efficient load balancing schemes
will be necessary to maximize overall system
performance.

If anything approaching an interactive visualization system
is to be achieved on a distributed memory multiprocessor
system then the issues of data and task management and
communication must be effectively addressed. This paper
discusses a number of strategies and shows how coherence
in task distribution requirements can be exploited to
improve significantly the overall performance of the
parallel solution.

2. RAY CASTING

A number of techniques have been developed for volume
rendering. The “splatting method”, for example, although
frequently used for sequential implementations [17],
require large overlapping of data portion of each
processing elements for large splat sizes which is
important for a good quality picture. For an efficient
volume visualization with splatting, a large amount of data
redistribution is necessary to achieve even load balancing
across the parallel system. Ray casting, on the other hand,
is a simple technique, well suited for parallel processing
[3,7,9,14].

An early ray casting model for volume rendering was
presented in [9]. The renderer casts a group of rays from
the view point through the image plane to the volume data.
Each ray now travels through the volume data. The
renderer interpolates this data to generate new sample
points at the intersection points along the path of the ray.
The path terminates when the volume data is exhausted or
the accumulated opacity along the ray equals one. The

International Conference Graphicon 1999, Moscow, Russia, http://www.graphicon.ru/

early termination of the process allows optimization of the
ray casting method. Opacity and intensity are accumulated
along the rays during these processes. Finally, the volume
is shaded according to light transmission and reflection.

The volume data is usually sampled at a regular interval by
rays sent into the volume data from the view point passing
through each pixel in the image plane, as shown in Figure
1. An interpolation function is used to reconstruct the
object from the discrete values at the image space. In a
sequential implementation for rendering the discrete
volume data, the process proceeds pixel by pixel.

Figure 1: Ray casting

The rendering algorithm traces the rays through the voxels
until they hit a surface and then assigns an intensity
inversely proportional to the distance from the eye. The
radiation transfer equation with single scattering
approximations is used to simulate transmission of light
through the volume and model reflectance from the
layered volume. Opacity and inverse transparency are
defined as scalar functions and evaluated at the nearest
face of each cell along the ray's path. This path is stepped
along until the entire cell has been traversed with
evaluations of the scalar field, shading function, opacity,
and texture mapping [9].

3. PARALLEL IMPLEMENTATION

Recently, many parallel algorithms for volume rendering
have been developed, for example [11,12]. Early parallel
approaches targeted volume rendering directly on
specialized, and thus expensive, hardware. Here, we
consider parallel volume visualization on a general
purpose MIMD system; a network of transputers.

A single computational element of a parallel rendering
algorithm may be chosen as the calculation of the local
color and opacity contribution of an intersection of a voxel
of the volume data with a ray cast through a pixel of the
image plane. Parallel volume rendering may now be
classified as either image partitioning or volume
partitioning depending on how these computational

elements are combined as tasks in the parallel
implementation [13]. Figure 2 shows the difference
between these two approaches in two dimensions. In this
figure we assume there are three processing elements and
that a third of the volume data is accommodated at each
processing element.

Figure 2: Division of data and tasks (a) Image partitioning
(b) Volume partitioning

 Image-partition techniques initially partition the image
plane evenly amongst the processors. Each processor
calculates the pixel values for its image portion. The
work load at each processor is proportional to the
number of scan lines of the image plane to be computed.
As can be seen in Figure 2 (a), with large distributed
volume data sets, image partitioning may require a
processing element to fetch data items from other
processing elements in order to complete its tasks.

International Conference Graphicon 1999, Moscow, Russia, http://www.graphicon.ru/

 To ensure an even load balance it must be possible to
migrate some tasks from those processing elements
allocated complex tasks to those whose initial allocation
contained scan lines which were computationally easier
to compute. As each processing element is responsible
for the rendering tasks of its region, there is no need for
an additional combination of partial results to produce
the final image.

 The volume-partition method performs the
reconstruction and re-sampling tasks with the portion of
the volume data held at each processing element.
Because there is no world model, processing elements
may only compute partial results of the tasks from their
allocated portion of the volume data. In order to
rendering the final image, it is necessary, therefore, to
combine the partial results computed by several
processing elements, as shown for a single pixel in
Figure 2 (b).

 The advantage of this method is, of course, there is no
need for a processing element to fetch potentially large
amounts of volume data from other processing elements.

In this paper we have used volume partitioning for our
parallel implementation in order to reduce the need to
communicate data across the system. To exploit the task
and data coherence that such an approach offers, clusteral
models with dynamic cluster re-sizing and clusteral
models with caching have been introduced.

3.1. Task Management

Volume partitioning requires each processing element to
perform the local color and opacity calculations for the
intersection of the rays with the volume data held at that
processing element. This volume data is evenly distributed
amongst the processing elements prior to the start of any
visualization. This data remains in situ at the processing
elements throughout the entire volume visualization,
however, the nature of the tasks associated with this data
will vary according to the selected view point.

Volume partitioning does have a disadvantage. This
technique is unable to fully exploit the “early termination”
optimization of ray casting. Early termination may occur
if an opaque layer hides the rest of the volume from a cast
ray or the opacity accumulation exceeds a certain level. A
front-to-back opacity accumulation technique is able to
determine this situation and thus stop any further
computation of tasks on the path of the considered ray.
Such early termination may save a substantial amount of
computation, especially when considering high density
objects [10]. With volume partitioning, processing
elements can still take advantage of any early termination
within the tasks they are considering, but the significance
of this will vary according to the current view point.

Exploiting any early termination and the position of the
view point means that tasks have variations in
computational complexity. Such variations may result in
significant load imbalances within the system unless a load
balancing scheme is adopted [2,4,15]. Task management
ensures that tasks may migrate from processing elements
which are struggling with high complexity tasks to those
which have finished all their less difficult tasks. Migration
of tasks implies that the data associated with the tasks
must also be fetched to the task receiver. Therefore, care
must be taken to ensure that tasks migrate to processing
elements which are physically “close” to the task's source
in order to maintain the benefits of low communication
overheads of volume partitioning.

For further improvement of the clusteral model for parallel
volume visualization on a distributed memory parallel
system, dynamic cluster re-sizing and caching strategies
are introduced. Dynamic cluster re-sizing rearranges the
task grain size for each sequential frame by re-sizing of
each processing elements clusters' portion. Thus,
efficiency of parallel volume visualization will be
improved gradually. In the course of volume visualization,
after a few frames, the system will reach an even load
distribution. A second strategy uses caching technique so
that a task migration policy ensures that the same task
must migrate to the same processing elements. Such a
caching strategy may reduce the amount of data
redistribution and may improve system performance by
making reuse of data previously fetched.

3.2. Data Management

Applications with data requirements which are such that
the total number of data items is small enough to be
accommodated at each processing element, termed a world
model, may be solved without recourse to additional
fetching of data items. Volumetric data sets are typically
represented by a three-dimensional regular grid of voxels.
The size of data for even a moderately complex volume
data is substantial, precluding a world model. Thus, a
parallel implementation of a volume rendering algorithm
must be able to operate on data sets which are distributed
amongst many processors. The correct distribution of the
data, and the minimization of the communication latency
associated with a remote data fetch, are thus fundamental
to any efficient parallel solution to volume visualization
[6,7,8].

Volume partitioning allows the distribution of the data
amongst the processing elements to be determined in
advance. The data associated with the tasks allocated to a
processing element is known and available locally
[7,8,18]. Even when tasks migrate to other processing
elements in the course of load balancing, the data
requirements for these tasks can specified in the migrating

International Conference Graphicon 1999, Moscow, Russia, http://www.graphicon.ru/

task packet. This enables the necessary data items to be
prefetched from the task's source. Provided these known
data item can be fetched sufficiently quickly, they should
thus be available in the local memory of the processing
element executing the task when required. The efficiency
of the underlying communication system is fundamental to
the rapid delivery of data requests and this can be
increasingly effective with the correct choice of
configuration [2].

3.3. Caching for Clusteral Models

In the data management strategy, the local memory at each
processing element, which we term the local cache,
assumes the röle of the cache memories of conventional
processors. The purpose of the cache, which has an access
time of up to ten times faster than main memory, is to store
those portions of the main memory contents which are in
current use by the processor. The use of a cache with
careful design can improve the average access time of the
memory considerably, and this is directly attributable to
the property of locality of reference. Thus, the access time
for a data manager to fetch data item from a remote
“memory” location will be substantially higher than a
fetch from its local cache. Coherence is used to ensure a
high “cache-hit” ratio.

The spatial coherence in the problem domain and the
temporal coherence together with the preferred biased task
allocation provides the data manager with a good estimate
of the future data requirements of the tasks being
computed at a processing element. The data manager can
now use this information to prefetch those data items
which are likely to be used by subsequent tasks being
performed at that processing element. If the data manager
is always correct with its prediction, then a data item will
always be available locally when required by the
application process and thus the process is never delayed
awaiting a remote fetch.

A cache normally consists of the cache directory and the
random access memory. The cache is divided into a
number of block frames of equal size which correspond to
the blocks which make up the main memory. Information
in the cache directory identifies the contents of the cache
at any particular time. Two key design parameters
characterize a cache memory: the placement policy, and
the replacement policy. For cache management four basic
placement policies have been used, namely direct, fully-
associative, set-associative and sector mappings. Only the
first three are suitable for data management in message
passing systems.

Set-associative mapping represents a compromise between
the simplicity of the direct mapping and the performance
of the fully-associative mapping [6,7]. A simple mapping
technique comparable with direct mapping is used to

determine the set in which a data item may reside. The set
must then be searched to test if the data item is present.
Here, the set-associative organization attempts to provide
the performance of full-associativity with the simplicity of
a direct mapped cache, and has become the most common
placement policy for memory management systems.

A replacement policy is necessary to determine which
cache positions will be overwritten when the cache
becomes full. In cache management systems, Least
Recently Used (LRU) has been the most popular of the
replacement policies. When a data item is referenced, it is
marked as being the most recently used, and all the others
are modified accordingly. Then when a write occurs the
least recently used entry is selected for overwriting.

3.4. Clusteral Models

Initial task allocation is implicit with the volume
partitioning approach, that is, the tasks to be done at a
processing element are determined by the portion of the
volume data that was assigned initially. As shown in
Figure 2 (b), the partial results of these tasks will need to
be combined in order to produce the desired pixel values
for rendering the image. Here we discuss two clusteral
models, hierarchical and distributed, which may be used to
facilitate this combining process.

The need to combine the partial results may be solved by
sending them all to the system controller where they can
be combined prior to rendering. For a large number of
processing elements, such an approach can cause a serious
bottleneck at the system controller and lead to a significant
degradation of overall system performance. A more
efficient solution is to distribute at least some of the
combining computations to the processing elements and
have the system controller perform only a limited number
of these operations.

A straightforward approach to distributed combining
would be to divide the image plane into a number of
conceptual regions. Specific processing elements can now
be assigned the job of combining all the partial results for
one such region. While such an approach will avoid the
bottleneck at the system controller, this static allocation
takes no account as to how the tasks may be distributed
within the system. The tasks which constitute a particular
ray are determined by the current viewpoint. In volume
visualization, this viewpoint is constantly moving.
Therefore, the partial results may need to be sent from the
processing elements where they were calculated, to the
physically remote processing element which is doing the
combining.

The clusteral model exploits the coherence within task
allocation to reduce "long distance" communication. A
number of processing elements within the configuration

International Conference Graphicon 1999, Moscow, Russia, http://www.graphicon.ru/

are conceptually grouped together to form a cluster, as
shown for the 16-processing element torus in Figure 3. All
the partial results from the processing elements of a cluster
are combined within this cluster.

A hierarchical cluster model allocates one processing
element of the cluster to perform all the combinations
within that cluster. Combining the partial results at this
“central” combining processing element reduces
communication within the cluster to a near-neighbor
pattern. The additional computational effort required by
this processing element to combine the partial results
means that some of its own tasks may have to migrate to
other processing elements in order to maintain an optimum
load balance within the system. The implementation
ensures that, where possible, a task will migrate to
processing elements within the same cluster. This means
that the movement of the data associated with the task only
needs to be fetched from a neighboring processing
element. In the event that load balancing requires that
tasks should migrate outside a cluster then the system will
allocate these tasks to idle processing elements as “close”
as possible to where it originated. The partial results from
these migrated tasks are returned to the appropriate cluster
for combining.

A distributed clusteral approach attempts to reduce the
need for load balancing by having all processing elements
within each cluster perform an equal portion of the
combining operations. Although this may reduce the need
to migrate tasks and their associated data, such a
distributed model does have the disadvantage that the
partial results are no longer passed to a neighbor, the
central processing element, but may now be required to be
passed further. In configurations where there is no
alternative route between processing elements within a
cluster, sending the partial results to the appropriate
processing element will place an additional
communication burden on the central processing element.

3.5. Configuration

The performance of a distributed memory multiprocessor
depends in large part on the efficiency of the message
transfer system that provides the interface between the co-
operating processing elements. To achieve the most
efficient performance, the configuration chosen should be
well suited to the communication patterns inherent in the
parallel implementation [2]. The communication patterns
implicit in the clusteral models suggest either a tree or a
torus would be the most suitable configuration for our
parallel implementation of volume visualization.

A tree of degree d and height h consists of a single
processing element at the top level, the root processing
element, connected to d other processing elements, each of
which is a ”root” processing element of a subtree of degree

d and height (h-1). The processing elements at the lowest
level of the tree, the leaf processing elements, are only
connected to their “parent” tree. Any leaf processing
element wishing to communicate with another leaf
processing element must thus do so via branch processing
elements further “up” the tree.
The hierarchical structure of a tree configuration makes it
well suited to the clusteral approach. Each branch
processing element combines the partial results from its
immediate “children” and passes this result upwards. The
system controller is situated at the root of the tree and
performs any final combining of results before passing the
newly computed pixel values to be rendered.

Figure 3: Clusters within the 16-processing element torus

A torus configuration consists of rings of rings of
processing elements. To minimize the diameter of the
torus it is preferable that the number of processing
elements within the horizontal rings is approximately the
same as the number of processing elements in the vertical
rings. Figure 3 shows how the clusters may be defined
within a 16-processing element torus. The system
controller, labelled SC in the figure, once more performs
any final combination of partial results prior to rendering.

Table 1: Comparison of configurations

Although tree configurations are conceptually better suited
to the clusteral model, tori have lower diameters and
average interprocessor distances, as shown in Table 1. The
torus configurations are thus more appropriate for complex

International Conference Graphicon 1999, Moscow, Russia, http://www.graphicon.ru/

communication patterns, such as those required for the
parallel implementation of volume visualization [2].

4. RESULTS

To show the performance improvements that the clusteral
approach can provide by reducing communication
overheads, two volume data sets: a volume frame of the
Mandelbrot set in the quaternion, shown in Figure 8; and,
a medical MRI scan of a human head, Figure 9, were
visualized. The results have been obtained on a Meiko
system of sixty four T800 transputers arranged in both tree
and torus configurations with a volume data size of 128 X
128 X 128 voxels for rendering and of 256 X 256 X 256
voxels for visualization. For visualization the volume data
was rotated about an arbitrary axis and a set of frames
were visualized.

Figure 4: Tree configurations with and without
hierarchical clustering

Figure 5: Hierarchical clustering on tree and torus

configurations

The advantages of the clusteral approach can be seen in
Figure 4. This graph compares the speed-up obtained
using a random volume partitioning strategy with the
hierarchical clusteral model on tree configurations. The
inherent bottlenecks for global communication in the tree
configurations have an increasing effect on the system
performance as the number of processing elements is
increased. Nevertheless, the benefits of using hierarchical
clusters can clearly be seen.

Figure 5 shows how the choice of configuration influences
overall system performance. The graph shows speed-up
obtained using hierarchical clustering on both tree and
torus configurations. For lower numbers of processing
elements the choice of configuration has little effect.
However, for the larger systems, the lower diameters and
average interprocessor distances of the torus
configurations, and their lack of bottlenecks, provides an
increasing improvement in system performance.

Figure 6: A comparison of the clusteral approaches

Figure 7: A comparison of the clusteral models with and
without dynamic cluster re-sizing and caching

International Conference Graphicon 1999, Moscow, Russia, http://www.graphicon.ru/

Figure 6 shows the speed-up obtained on the torus
configurations for the distributed and hierarchical clusteral
approaches, compared with no clustering. For the sake of
clarity, only the results for the medical volume data are
shown. As can be seen in the graph, for large
configurations, the increasing communication overheads
have an increasing effect on overall system performance.
The hierarchical clustering implementation for rendering
on the 64 processing element system produced a speed-up
of 53.5, better than the distributed approach which had a
speed-up of 44.1, and a significant improvement over the
speed-up of 39.4 obtained for the implementation without
the clusteral model.

Finally, Figure 7 shows the speed-up on a torus for
distributed clustering, hierarchical clustering, hierarchical
clustering with dynamic cluster re-sizing and hierarchical
clustering with caching. Hierarchical clustering with
cluster re-sizing offers the best performance for parallel
volume visualization. Therefore average speed-up for
volume visualization are given to show that the speed-up
of parallel systems is improved by using cluster re-sizing.
For a few frames, system performance may not be good as
expected but for a large number of image frames
performance will be better as can be seen from the figure.

On the other hand, a caching technique for clusteral
models may be needed for further performance increase
but this performance increase is limited for small rotation
angles. For large rotations, cache coherence may be loosed
so that caching may not be useful for large rotations.
However, most of the volume visualization process can be
taken as a sequence of small rotations. The hierarchical
clustering implementation with cluster re-sizing for
visualization on the 64 processing element system
produced a speed-up of 50.1, better than the clustering
with caching which had 48.6, hierarchical clustering which
had speed-up 47.8, and a significant improvement over the
speed-up of 41.2 obtained for the implementation with
distributed clusteral model.

5. CONCLUSION

The results presented in this paper show that an efficient
parallel implementation of volume visualization is possible
using the volume partitioning method of allocating tasks.
Addition of a clustering scheme to this approach reduces
the communication overheads by enabling the combination
of partial results to occur on processing elements which
are “physically close” to those processing elements which
performed the corresponding tasks. Although limited,
there is still a need to communicate data amongst
processing elements to facilitate load balancing. The
results confirm that, for large multiprocessor systems,
torus configurations are better suited than tree
configurations for such a communication need.

Despite the good performance that has already been
achieved (a speed-up of 53.5 for volume rendering and
50.1 for volume visualization on 64 processing elements),
improvements will still need to be made if the
visualization of volumes on our system is to be made
interactive. Future work will examine complexity
reduction schemes which will render an approximation of
the volume data between successive view points. Once the
desired new view point has been reached, progressive
refinement techniques will be used to obtain desired image
quality from these approximations. Recent developments
in hardware and software also make it possible to
implement volume visualization techniques on
heterogeneous distributed parallel systems by using Java
technology. For an interactive visualization, these
techniques will be implemented on a heterogeneous
system by using Java technology in a future work.

6. REFERENCES

[1] Chalmers A. G., Evaluation of interconnection
 networks, The 2 Austrian-Hungarian Workshop
 on Transputer Applications, Budapest, 1994.
[2] Chalmers A. G. and Tidmus J. P., Practical
 Parallel Processing: An introduction to problem
 Solving in parallel, International Thomson
 Publishing, London, 1996.
[3] Goel V. and Mukherjee A., An optimal parallel
 algorithm for volume ray casting, Visual
 Computer, 12(26):26-39, 1996.
[4] http://www.k isit.or.jp/ppram, 1997.
[5] Kaufman A., Höhne K., and Schröder P.,
 Research issues in volume visualization, IEEE
 Computer Graphics and Applications, pages 63-
 67, 1994.
[6] Köse C. and Chalmers A., Dynamic data
 management for parallel volume visualization,
 UK Parallel 1996, Springer Verlag, 1996.
[7] Köse C. and Chalmers A. G., Memory
 management strategies for parallel volume
 rendering, In B. O'Neil, editor, 19.th World
 Occam and Transputer User Group meeting,
 Nottingham, 1996.
[8] Köse C. and Chalmers A. G., Profiling for
 efficient parallel volume visualization, Parallel
 Computing special edition on Parallel Graphics
 & Visualization., 23:943-952,1997.
[9] Levoy M. S., Volume rendering: display of
 surfaces from volume data, Computer Graphics
 and Applications, 8(3), 1988.
[10] Levoy M. S., Efficient ray tracing of volume
 data, ACM Transactions of Graphics, 9(3),1990.
[11] Ma K. L. and et al., Parallel volume rendering
 using binary-swap compositing, IEEE Computer
 Graphics and Applications, page 67-73, 1994.
[12] Mackerras P. and Corrie B., Exploiting data

International Conference Graphicon 1999, Moscow, Russia, http://www.graphicon.ru/

 coherence to improve parallel volume rendering,
 IEEE Parallel & Distributed Technology, pages
 8-16, 1994.
[13] Neumann U., Volume reconstruction and
 parallel rendering algorithms: A comparative
 study, Ph.D. thesis, The University of North
 Carolina at Chapel Hill, Department of
 Computer Science.1993.
[14] Neumann U., Communication cost for parallel
 volume rendering algorithms, IEEE Computer
 Graphics and Applications, pages 49-58, 1994.
[15] Reinhard Erik, Jansen F. W. and Chalmers
 Alan.G., Overview of parallel photo-realistic
 graphics, Eurographics Star-State of art Reports
 1998.
[16] Walker C., Hardware for transputer without
 transputers, 1996.
[17] Westover L. A., Splatting: A parallel, feed-
 forward volume rendering algorithm, Technical
 report, The University of North Carolina at
 Chapel Hill, Department of Computer Science,
 1991.
[18] Yagel R. and Machiraju R., Data-parallel
 volume-rendering algorithms, Visual Computer,
 11(6):319-338, 1995.

 Figure 8: Fractal image in the quaternion

Figure 9: Medical scan of a slice of a human head

International Conference Graphicon 1999, Moscow, Russia, http://www.graphicon.ru/

	Clustering for Parallel Volume Visualization
	Abstract
	1. INTRODUCTION
	2. RAY CASTING
	3. PARALLEL IMPLEMENTATION
	4. RESULTS
	5. CONCLUSION
	6. REFERENCES

