Visual understanding of a scene by automatic movement of a camera

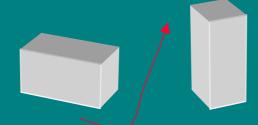
22/09/2007

The problem

Some scenes are difficult to understand because of their complexity and the difficulty of positioning a 3D scene on a 2D screen.

First solution: Methods for automatically computing a good view.

The problem (continued)

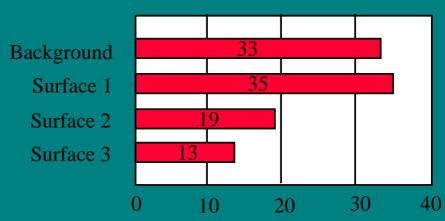

Computing a good point of view is not entirely satisfactory because a single view point is not sufficient for understanding a complex scene.

■ A possible solution: Using a virtual camera flying over the scene in order to discover interesting views of the scene.

Two possibilities for exploring a scene with a camera:

The camera moves on a sphere surrounding the scene.

■ The camera visits the interior of the scene.


Requirements for the camera 's movement

- Choose good view points.
- Fast computation of good view points
 - Avoid sudden changes of direction.
 - Avoid discontinuities.
 - Avoid returns to the starting point.

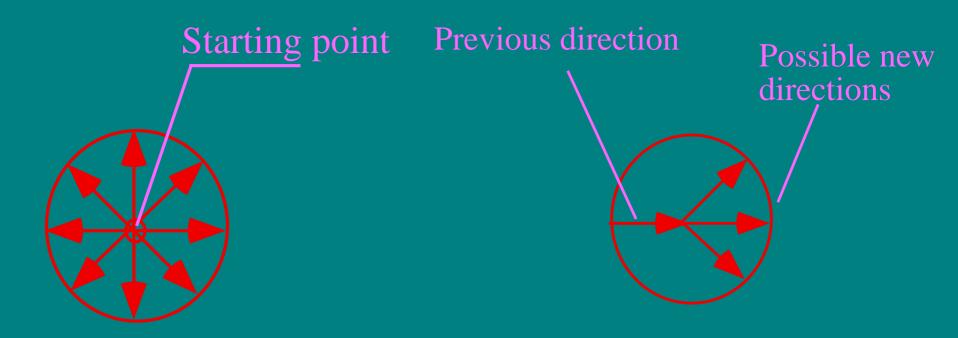
Impementing fast computation of a good view point

- Use of the OpenGL graphics library and its integrated z-buffer.
- A distinct colour is given to each surface of the scene.

<u> </u>			<u> </u>	U	U		U		
		0							
0	0	0	ক	3	3	3	3	3	0
0	3	3	3	3	3	3	3	2	0
0	1	1	1	1	1	2	2	2	0
0	1	1	1	1	1	2	2	2	0
0	1	1	1	1	1	2	2	2	0
0	1	1	1	1	1	2	2	2	0
0	1	1	1	1	1	2	2	2	0
0		1							
0	1	1	1	1	1	1	0	0	0

22/09/2007

Formula to compute importance of a view point

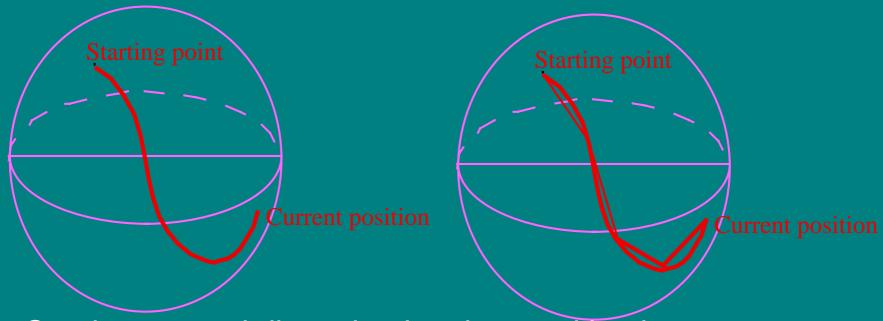

$$I(V) = \frac{Sum_{i=1}^{n} \left[\frac{P_{i}(V)}{P_{i}(V)+1} \right]}{n} + \frac{Sum_{i=1}^{n} P_{i}(V)}{r}$$

where:

- \blacksquare I(V) is the importance of the view point V,
- Pi(V) is the number of pixels corresponding to the polygon number i in the image obtained from the view point V,
- r is the total number of pixels of the image (resolution of the image),
- n is the total number of polygons of the scene.

In this formula, [a] denotes the smallest integer, greater than or equal to a. 22/09/2007

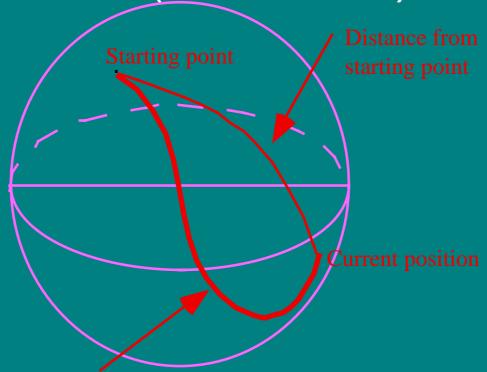
Possible directions of the virtual camera.


Heuristics guiding the camera 's movement.

In order to give the user a good knowledge of the scene's properties, a maximum of interesting regions of the scene must be viewed by the camera, with a minimum displacement from the starting point.

Fast return to the starting point must be avoided.

Heuristics guiding the camera 's movement (continued).


Use two kinds of distance

Continuous and discretised path traced by the camera

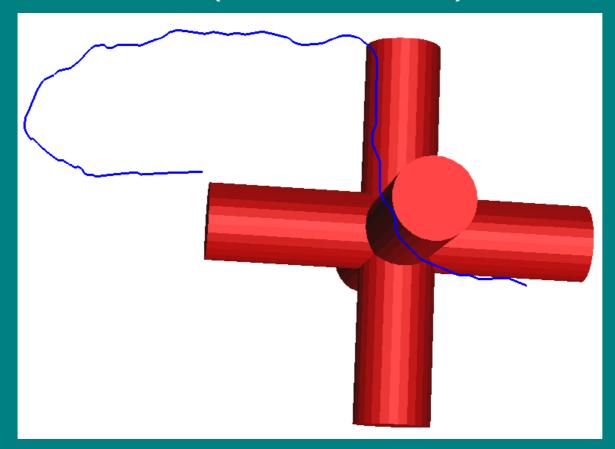
22/09/2007

Heuristics guiding the camera 's movement (continued).

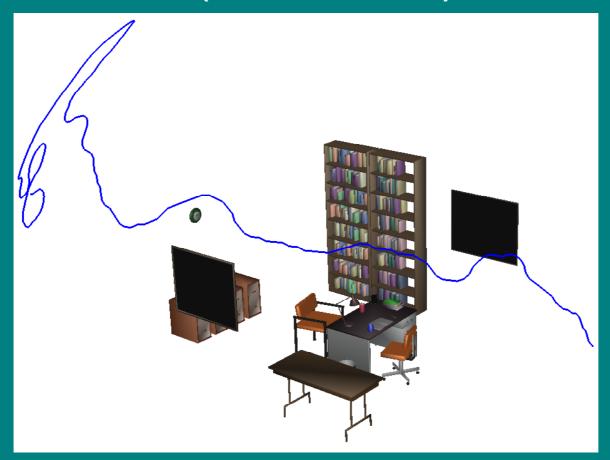
Path of camera's

Minimal length arc between the starting point and the current position

Heuristics guiding the camera 's movement (continued).


- The heuristic function takes into account :
 - The global view direction note for the camera's position (n_c).
 - The path traced by the camera from the starting point to the current position (p_c).
 - The distance of the current position to the starting point (d_c).

$$w_{c} = \frac{n_{c}}{2} \left(1 + \frac{d_{c}}{p_{c}}\right)$$


Results

- Results are satisfactory for scenes we have tested.
- Sometimes, the trajectory of the camera is deteriorated at the end of the movement.
- In any case, the scene is generally well understood before movement's deterioration.

Results (continued)

Results (continued)

Future work

Improvement of the « good direction » criterion.

Integration of learning mechanisms.

Development of scene visiting techniques.