
Applying MATLAB to Computer Graphics and CAGD. Application to a
Visualization Problem in the Automotive Industry.

Akemi Gálvez1, Andrés Iglesias1,*, Flabio Gutiérrez2

1Department of Applied Mathematics and Computational Sciences, University of Cantabria
Santander, Spain

2Department of Mathematics, National University of Piura, Piura, Peru
* Corresponding author.

Abstract

Computer graphics are usually achieved by using some
traditional programming languages (Fortran, Pascal, C,
etc.). In this paper an extensive use of the general-purpose
numerical computation programs (NCPs) in the computer
graphics field is proposed instead of. The paper describes
the main advantages of this kind of programs, and several
examples of how they can be successfully applied to
computer graphics and visualization. Moreover, the paper
briefly introduces several functions and commands
developed by the authors, which will be successfully
applied to solve a visualization problem coming from the
automotive industry.

Keywords: Computer Graphics, MATLAB, CAGD.

1. INTRODUCTION

Computer graphics play a fundamental role in engineering
design, capturing the visual and quantitative aspects of the
geometric objects. For example, in the automotive industry,
one is interested not only to obtain the curves and surfaces
holding some prescribed constrains but also to join all these
geometric entities together and to visualize the resulting
picture in order to take care the aesthetic features and the
general look of the product.

Many of the most important programs for computer
graphics have been written in traditional programming
languages (Fortran, Pascal, C, etc.) However, in the last
recent years, the general-purpose numerical computation
programs (NCPs) are gaining more and more popularity.
Today, they are well established as a powerful alternative
to the traditional programming languages in many different
areas, as mechanical engineering, signal processing, quality
control, electronic circuits, etc.

In this context, it would seem natural to wonder if the
NCPs could be applied, instead of the traditional
programming languages, in the computer graphics field.
The present paper tries to answer this question by
following the next sequence: Section 2 describes the main
advantages of this kind of programs. In addition, the main
reasons to justify our choice of MATLAB as the NCP to be

used in this paper are also discussed in this section. Then,
Section 3 introduces some additional commands we need to
implement in order to solve some interesting problems
related to CAGD and computer graphics. This section also
includes a wide description of the main MATLAB
graphical commands, options and utilities that will be
useful for rendering surfaces. As an application, Section 4
shows how they can be successfully applied to solve a
given visualization problem coming from the automotive
industry. Today, many industries are concerned about the
possibility to transfer their information by Internet,
avoiding other possible and slower transference ways.
Section 5 discusses such a possibility for the visual
information, through the MATLAB-VRML connection.
Finally, the paper closes with the main conclusions and
remarks of this work.

2. ADVANTAGES OF THE NCP

In this section we show the main advantages of the NCPs,
which justify our proposal to apply them to the computer
graphics field. Then, we proceed to choose the program to
be used along the paper.

2.1 Why to use NCPs for Computer
Graphics?
There are many reasons to explain why we propose the
NCPs to be used in the computer graphics field. Some of
them are listed below:
• The NCPs are easier to use, because:
− they incorporate many mathematical and programming

commands and libraries
− their algorithms are very optimized
− they have a powerful and user-friendly interface
• The NCPs are very powerful, because:
− their programming languages incorporate not only the

procedural but also the functional programming
including, in several cases, pattern recognition and
object-oriented programming.

− they have a very remarkable graphical capabilities.

International Conference Graphicon 1999, Moscow, Russia, http://www.graphicon.ru/

Based on these considerations, our research group
undertook the ambitious task to apply the NCPs to
computer graphics. The following paragraphs are devoted
to show how this work has been performed, indicating the
main advantages of our approach.

2.2 Choosing the NCP: MATLAB
Evidently, not all the NCPs offer the same advantages and
features. Therefore, the first thing to be done in this line is
to choose the program to work with. After a careful
analysis, our final choice was MATLAB (see the
MathWorks Home Page at: http://www.mathworks.com). In
this choice we took into account some features as:

• Spreading. MATLAB is used for hundreds of thousands
of industrial, government and academic users around
the world. Its last versions are available for Microsoft
Windows 9x and NT, Macintosh and Linux personal
Computers, as well as UNIX workstations from Sun,
Hewlett-Packard, IBM, Silicon Graphics and Digital,
and Open VMS computers.

• Graphical capabilities, which raise many of the current
graphics-oriented programs (see Section 3.2).

• Since MATLAB is based on C, it runs faster than other
analyzed symbolic and numerical programs. Moreover,
its basic element is an array that does not require
dimensioning, so it takes less time to be computed.

It must be noticed that, in spite of our choice, the same
results can be obtained by using some other NCPs. For
example, SCILAB (see [1] for details) is a free software
whose programming and graphical capabilities are very
similar (although slightly lower for our purposes) to those
of MATLAB. However, we think this last one is more
popular and used in academic and industrial environments.

3. APPLYING MATLAB TO CAGD AND
COMPUTER GRAPHICS

The aim of this section is twofold: on the one hand, Section
3.1 introduces some additional commands we need to solve
a visualization problem described in Section 4 and other
interesting problems related to CAGD and computer
graphics. On the other hand, Section 3.2 describes the main
MATLAB commands, options and utilities that will be
useful for rendering surfaces.

3.1 Building numerical libraries for CAGD
Once the program is chosen, the following task to be done
is the implementation of an extensive set of numerical
libraries for CAGD. By "extensive" we mean the libraries
must contain all the relevant geometric entities in the sense
that if a given geometric entity is useful in CAGD, it must
be incorporated to the system. Of course, libraries must be
continuously updated, so the system must be flexible

enough to allow the programmer to improve the algorithms
and codes in an efficient, quick and easy way.

MATLAB incorporates some useful commands for CAGD.
For instance, its kernel includes a basic command for
interpolation through cubic splines and some other
commands for interpolation in one and several variables.
However, the system lacks of many of the most important
mathematical entities for CAGD, such as Bézier and B-
spline curves and surfaces, which must be implemented.
The powerful MATLAB functional programming offers us
the possibility to implement these functions in a short,
elegant and simple code. As an illustration, the following
script calculates and displays the Bézier curve of a given
set of two- or three-dimensional points:

function Bezier(ptos) % main function
[n,d]=size(ptos);
n=n-1;
bt=ptos'*mij(n)*ti(n);
if d==2
plot(bt(1,:),bt(2,:),ptos(:,1),ptos(:,2),'r-.p')
else
plot3(bt(1,:),bt(2,:),bt(3,:), ...
 ptos(:,1),ptos(:,2),ptos(:,3),'r-.p')
end
rotate3d

function T=ti(n) % generating the t^i
m=1;
t=0:0.05:m; % step=0.05
T=[];
for i=0:n
 T= [T;t.^i];
end

function M = mij(n)
for i=0:n
 for j=0:n
 M(i+1,j+1)=(-1)^(ji)*binom(n,j)*binom(j,i);
 end
end
M=M(1:n+1,1:n+1);

function c=binom(n,i) % defining the binom function
if i==n | i==0
 c=1;
elseif i<n & i>=0
 c=factorial(n)/(factorial(i)*factorial(n-i));
else
 c=0;
end

function f=factorial(n) %defining the factorial function
if n==1
 f=1;
else
 f=n*factorial(n-1);
end

Table 1: MATLAB code for the Bézier curves.

International Conference Graphicon 1999, Moscow, Russia, http://www.graphicon.ru/

We remark that this example has been chosen primarily for
simplicity, rather than to correspond to a valuable code or a
very complicated algorithm. However, some questions
deserve to be pointed out: as the reader may appreciate, we
use the matrix form for the Bézier curves (see, for example,
[2] pag. 58). This is not a chance: MATLAB handles
vectors and matrices in a straightforward and intuitive way.
Furthermore, there are typically many different ways to
formulate a given problem in MATLAB; in almost all
cases, however, the best performance is expected when
matrix formulation is applied. The simple idea of
organizing data in a matrix form yields to programs that are
more efficient and easier to understand. Thus, Table 2
shows the corresponding code for Bézier surfaces (which
can be easily derived from Table 1):

function SupBezier(ptos)
[m,n,o]=size(ptos);
for k=1:3
b(:,:,k)=ti(m-1)'*mij(m-1)'*ptos(:,:,k)...
 *mij(n-1)*ti(n-1);
end
surf(b(:,:,1),b(:,:,2),b(:,:,3)), hold on,
mesh(ptos(:,:,1),ptos(:,:,2),ptos(:,:,3)),
hidden off
plot3(ptos(:,:,1),ptos(:,:,2),ptos(:,:,3),'bp')
rotate3d

Table 2: MATLAB code for the Bézier surfaces.

In MATLAB each command or group of them is stored
into a file, which is called a M-file. When several M-files
for solving similar problems of a certain field are written
(as it is our case) they can be collected together into special
directories (Toolboxes). The toolbox for CAGD developed
by the authors and described in this paper deals with the
following functions and topics:

• Bézier curves. As shown before, the toolbox deals with
two- and three-dimensional curves. The cases of single
and composite Bézier curves are also considered.
Curves can take both the rational and non-rational form.

• Bézier surfaces. As in the case of curves, Bézier
surfaces have been implemented in MATLAB (see
Figure 6 for an example).

• B-spline curves. Commands work with two- and three-
dimensional curves, for any order and knots vector
(periodic, non-periodic or non-uniform), and different
weights (rational curves). NURBs are therefore
considered here as a particular case.

• B-spline surfaces. All the options described for B-
spline curves are also available here (for example,
Figures 1 and 2 corresponds to a B-spline and a NURB
surface, respectively).

• Two- and three-dimensional transformations. Since
all these transformations are not available directly in
MATLAB, they were implemented in the toolbox.

• Projections and perspectives. MATLAB only
supports some kinds of projections and perspectives.
The toolbox incorporates all of them.

3.2 MATLAB graphics commands
MATLAB provides a set of powerful high-level graphical
routines for displaying both two- and three-dimensional
graphics. However, since we are mainly concerned about
the three-dimensional pictures, the following description is
restricted to this case (which includes the 2-D case for
many commands). In the following we describe the most
important MATLAB features for computer graphics (the
corresponding commands are denoted in courier font style).

(1). Plotting 3-D data. They can be displayed as line plots
(plot3 command) or rectangular grids (mesh, surf).
The mesh command generates a wireframe view of the
surface (as in Figure 2). On the contrary, surf shows a
colored, faceted view. For example, Figure 1 shows a 3x3-
order B-spline surface (obtained by using the commands
described in Section 3.1), defined by the z-coordinate of
points above a grid in the x-y plane.

Figure 1: A 3x3-order periodic B-spline surface with:
(left) a faceted shading; (right) an interpolated shading.

(2). Hidden line removal. In MATLAB, mesh plots
remove hidden lines by default. You can disable hidden
line removal through the hidden off command. A
typical example is shown in Figure 2: on the left, a NURB
surface is displayed as a wireframe plot. On the right, the
hidden line removal is off, so the back part of the surface
becomes visible now.

0 1 2 3 4 5 6

0
2

4
6
1

1.5

2

2.5

3

3.5

4

4.5

0 1 2 3 4 5 6

0
2

4
6
1

1.5

2

2.5

3

3.5

4

4.5

Figure 2: Example of a NURB surface with the hidden line
removal: (left) on; (right) off.

(3). Color. User may enhance the information content of
the surface plots by changing their colors, either using the

International Conference Graphicon 1999, Moscow, Russia, http://www.graphicon.ru/

RGB triplets or a predefined range of colors called
colormap. Moreover, colors can be assigned by means of
a relevant function. For example, the del2 command
applies the same color to regions exhibiting similar
curvature. This effect can be visually established by a
simple comparison of Figures 3 (left) and (right).

Figure 3: Using color for geometric information. Color

indicates:(left) heights; (right) curvature.

(4). Texture mapping. By this, we mean a technique for
mapping a 2-D image onto a 3-D surface by transforming
color data so that it conforms the surface plot. Texture
mapping has become a very important topic, allowing to
applying a texture, such a wood grain, to a surface. In
MATLAB, to apply texture mapping is as easy as setting
the FaceColor option of the three-dimensional surface to
texturemapping.

f=imread(‘rusia.jpg’);
f2=double(f)/255;
a=SupBSpline(3,3); %generates a Bspline surface
surface_handle=surf(a(:,:,1),a(:,:,2),a(:,:,3));
set(surface_handle,'EdgeColor','none',...
 'FaceColor','texturemap','cdata',f2);
set(gca,'box','on');

Table 3: MATLAB code for the texture mapping.

Table 3 lists a simple code for texture mapping and Figure
4 illustrates this process: the image in the middle is mapped
onto the surface, giving the picture on the right. Note that
the color data can be any image; in this case, a scanned
photograph. Furthermore, you can map any image onto the
surface, no matter their sizes. Finally, the mapping process
can be total or partial (in this last case, you must indicate
the size of the image to be mapped).

(5). Patches. Figure 5 shows two typical patches, obtained
in MATLAB from the patch command. A patch is a
graphic object that consists of one or more polygons that
may or may not be connected. Patches are useful for
modeling real-world objects such as airplanes or
automobiles. In MATLAB, a patch is defined by specifying
the coordinates of its vertices and some form of color data.
Such coordinates can be introduced in two different ways:
either indicating the coordinates of the vertices of each

polygon (MATLAB connects them to form the patch) or
indicating the coordinates of each unique vertex and a
matrix specifying how to connect the vertices to form the
faces.

++

Figure 4: Texture mapping.

Coming back to Figure 5, it consists of two pictures: the
first one is displayed with the faceted option, whereas
for the second one the selected option is interp, which is
based on interpolation, so better quality is expected when
using this option (as already appreciated in Figure 1).

Figure 5: Choosing different options for the patch and the

lighting: (left) faceted, gouraud; (right) interpolated, phong.

Finally, we remark that many of the surfaces features (as
features (4) and (7)) are shared by the patches too. Other
example is the light sources appearing in Figure 5, which
are described in the next section.

(6). Lighting. This feature adds realism to a graphical
scene. MATLAB supports three different ways for lighting
calculations (the reader is referred to Chapter 16 of [3] for
a more complete description about the shading models):

• flat. Produces uniform color across each of the faces
of the object. It is specially indicated for faceted
surfaces.

• gouraud. This algorithm calculates the colors at the
vertices and then interpolates color across the faces (see
Figure 6(left)). It is ideal for curved surfaces.

• phong. This method interpolates the vertex normals
across each face and then calculates the reflectance at
each pixel (see Fig. 6(right)). This algorithm produces
better results than gouraud but takes longer to render.

International Conference Graphicon 1999, Moscow, Russia, http://www.graphicon.ru/

These shading models have been applied to Figure 5,
namely, gouraud for the left picture and phong for the right
one. In addition of the previous commands, there are others
for creating light sources. You only must specify three light
properties:

• Color. The color of the light.

• Style. It can be infinite (when the light source is
placed at infinity, which means that light shines from
the specified direction with parallel rays) or local (the
light source is a point source, which radiates from the
specified position in all directions).

• Position. For infinite lights, indicates the direction.
For local lights, the position of the light source.

For example, Fig. 5(left) exhibits an infinite light. On the
contrary, Fig. 5(right) receives four different lights: a local
yellow light, in the front of the face, and three (two yellow
and one green) infinite lights. This second figure also
exhibits other light effects. For this reason, its
corresponding code has been listed in Table 4.

load vert_mann -ascii
load faces_mann -ascii
f=faces_mann+1;
v=vert_mann;
p=size(v);
h=superf(f,v);
set(h,'edgecolor','none', ...
'SpecularStrength',4,'DiffuseStrength',2, ...
 'AmbientStrength',1,'SpecularExponent',15, ...
 'SpecularColorReflectance',0.2, ...
 'FaceColor','interp');
colormap(copper(p(1,1)))
lighting phong
light('Style','Local','Color','y', ...
 'Position',[3 -4 0]);
light('Color','y','Position',[1 -2 -1]);
light('Color','g','Position',[-3 -1 1]);
light('Color','y','Position',[0 0 6]);
material shiny
axis vis3d off
rotate3d

Table 4: MATLAB code of Figure 5 (right).

MATLAB enables to control the amount of both the
specular (SpecularStrength command) and the
diffuse reflection (DiffuseStrength command) from
the object. Their values are shown in Table 4.

Another interesting light property is the ambient light, that
is, a directionless light that shines uniformly on all objects.
In this paper we uses the AmbientStrength command,
which determines the intensity of the ambient light on the
particular object (the head in this case) and the
SpecularExponent command, which determines the
size of the specular highlight spot (the lower the parameter

value is, the bigger the spot size). Finally, the
SpecularColorReflectance command is used to
determine the color of the specularly reflected light, ranged
from a combination of the color of the object (defined by
the colormap command in Table 4) and the color of the
light source to this last one only.

(7). Reflectance properties. The reflectance properties of
a object are described by the material command, which
can take three different values: shiny, dull and metal,
meaning that objects are made shiny, dull and metallic,
respectively. Figure 5 corresponds to the first case.

(8). Contouring. In scientific computing, the contour lines
(obtained through intersections between a number of
parallel planes and a given surface) are often of great
importance. Relevant examples can be found in the medical
area, for reconstructing and displaying the external surface
of the organ under investigation (see [4] and references), in
pattern recognition and computer vision [5], etc. The
MATLAB contour and contour3 commands display
the 2-D and 3-D isolines generated from values given by a
matrix of heights in two and three dimensions, respectively.
Figure 6 shows a contouring example: the Bézier surface
on the left is intersected with a set of planes z=z0 for 30
different values of z0. These intersections give a set of
curves, which are shown in Figure 6 (right).

-0.1
0

0.1
0.2

0.3

2.5
2.6

2.7
2.8

1

1.2

1.4

1.6

Figure 6: Example of a Bézier surface contouring.

(9). Files management. This is a very powerful MATLAB
feature. This program reads and writes images data in
TIFF, JPEG, BMP, PCX, XWD and HDF formats. Thus,
the imread command reads an image from a file in any of
these formats. You can also save the image data using the
imwrite function. Finally, the iminfo enables you to
obtain information about graphic files, including the name
of the file and its path, format, version, size (in bytes),
width and height and number of bits. Additional
information could be obtained, depending on the type of
file you have. All these capabilities will be applied to create
an IGES-MATLAB converter (see Section 4.1) and to
transfer our MATLAB files to VRML (see Section 5).

(10). Animation. Animation is one of the most important
features in computer graphics. In automotive industry, the
design process often requires to visualize the piece to be
constructed. Sometimes, projections are enough to perform
this task but some of the features of the piece can be more

International Conference Graphicon 1999, Moscow, Russia, http://www.graphicon.ru/

easily appreciated by animating it. Although this paper
cannot show any animation, it is interesting to point out
that MATLAB allows to create movies either saving a
number of different pictures and then playing them back or
by continually erasing and then redrawing the objects on
the screen. Of course, the first option is more advisable in
situations in which each frame is fairly complex and cannot
be redraw rapidly.

Another interesting animation possibility comes from the
new virtual reality programming languages. Since
MATLAB can read many different file formats, this task
becomes now easier for us. It just consists of translating the
graphical MATLAB output to some of these languages. It
allows a better visualization, since the designer can
"navigate" by the graphical environment of the piece. This
option is especially valuable when looking for piece
defects, after the design process, and will be discussed in
the next section.
(11). Other properties. Of course, the previous MATLAB
graphical commands list is not intended to be exhaustive.
Some other interesting and useful properties are also
available in MATLAB. For a more complete information
about this topic, the reader is referred to [6].

4. APPLICATION TO AN AUTOMOTIVE
EXAMPLE

A year ago, our research group, at Cantabria University
(Spain) established an agreement with CANDEMAT S.A.
(http://www.candemat.com), a company devoted to both
the automotive and the aerospace industries. The agreement
includes the use of the previously described numerical
Toolbox based on MATLAB and the implementation of the
other ones for solving the problems arising in the company
daily work. CANDEMAT builds moulds of pieces of cars
and planes, which will be used later for testing by other
associated companies. For doing this work, this company
receives files (that are electronically transferred from the
automotive and aerospace companies) containing the
geometric information of the pieces to be shaped. This
information is then processed by using the program CISC,
developed at CANDEMAT and written in Visual BASIC.

In general, CISC has been successfully used for many
different tasks, being able to read these electronic files and
apply numerical routines for dealing with the different
geometric entities defined therein. However, the program
has some strong limitations that can be improved in several
directions. One of them refers to the visualization process.
They would like to visualize the pieces under the following
conditions:

1. Although at the beginning the company worked with
UNIX workstations, the software they required became
more and more expensive. Today, company’s policy is
oriented to the use of personal computers (PCs). This
imposes the software for visualization to be available

for personal computers and cheap enough to be
installed in all the computers.

2. The software should incorporate a powerful
programming language and almost all the facilities
described in the previous sections.

3. If possible, the graphical output should be transferable
to Internet, in order to visualize (even manipulate) it
without having the same software and/or hardware.
This question will be discussed in Section 5.

Fortunately, all these conditions are satisfied when
applying MATLAB and the added numerical routines. In
the next paragraphs we are going to describe the steps we
followed to perform this task.

4.1 IGES-MATLAB Converter
In many industrial areas, geometric information is given by
employing different standard formats (IGES, DVA, SET,
CATIA, etc.). A format is a way to express such an
information as an alphanumeric text, following some well-
established rules. Therefore, these formats represent the
real-world objects, as the different pieces of a car (doors,
bumpers, wings, etc.), in a mathematical formulation and
are stored in electronic files (see Figure 7).

Figure 7. Step I. The IGES files store the geometric

information of the real-world objects.

Of course, there are many different formats to be used,
although they are reduced, in practice, to some few, that are
considered as standards. Each of these standard format
systems supports a different representation. Thus, IGES [7]
only supports the B-spline representation, whereas VDA
[8] uses the monomial one.

Usually, CANDEMAT works with IGES files, so in the
following we restrict ourselves to this standard format. This
means that for being able to work with IGES files, we
firstly need to create an IGES-MATLAB converter (see
Figure 8).

International Conference Graphicon 1999, Moscow, Russia, http://www.graphicon.ru/

Figure 8. Step II: Now, the IGES file is converted to

MATLAB.

This converter is a code written in MATLAB that extracts
the useful part of the IGES file, in such a way that only the
basic information for the curves and surfaces to be drawn is
taken. Thus, as the section S only includes comments and
user information, this part of the IGES file is ignored.
Some information of the D section can also be removed.
For more information about what these sections are and, in
general, how a IGES file is organized, we refer the reader
to [9] (see also [7] for more details).

4.2 Using the CAGD toolbox for
visualization
Once the IGES file is converted to MATLAB, the next step
(shown in Figure 9) consists of applying the commands and
utilities described in Section 3.

Figure 9. Step III: The commands from the CAGD toolbox

are applied for displaying the curves and surfaces.

This will give us a numerical and graphical output of the
curves and surfaces forming the different pieces to be built.
Figure 10 shows a typical output. In this example, a
wireframe model of the back door of a car is obtained. The
data file was read with the converter described in the
Section 4.1. Then, the commands for B-spline curves
defined in the Section 3.1 were applied to the obtained file.

1000

1500

2000

2500

-1000
-950

-900
-850

-800
0

500

1000

1500

2000

2500

Figure 10. Car door defined by 1727 B-spline curves.

5. VISUALIZATION IN INTERNET

The Virtual Reality Modeling Language (VRML) is a
standard language to describe interactive 3-D objects and
integrate them into scenes and virtual worlds. In the context
of our project, VRML allows us to create interactive
simulations and physical movement of the different pieces,
looking for defects in the piece under analysis. Moreover,
scenes and virtual worlds can be distributed and visualized
throughout Internet by means of some plug-ins developed
for Web browsers. Following the same way that in Section
4.1, before using VRML we needed a MATLAB-VRML
converter to transfer our files to the VRML format.
Fortunately, we did not need to do that. There is a free
software called VRMLplot, from Craig Sayers, (see [10])
for generating VRML files from the graphical MATLAB
output (see Figure 11).

Figure 11. Step IV: Using converter MATLAB-VRML.

These files can be easily read by a Web browser, such as
Netscape Navigator, and then, the interactive visualization
is available (see Figure 12). Figure 13 shows an example of
this visualization process.

International Conference Graphicon 1999, Moscow, Russia, http://www.graphicon.ru/

Figure 12. Step V: Using a Web browser, the VRML files

are displayed on the screen.

Figure 13. Example of a VRML scene.

6. CONCLUSIONS AND REMARKS

In this paper we propose the use of the NCPs (in particular
MATLAB) as a powerful alternative to the traditional
programming languages in the computer graphics field.
This idea has been supported by recent announcements of
the use of MATLAB and Simulink by, among others,
DaimlerChrysler and Motor Ford Company (see [11] for
details). Other news in this line are arising around the
world. Therefore, it is expected, for the next years, a strong
growth of similar approaches to the one described in this
paper.

7. REFERENCES
[1] SCILAB Home page: http://www-rocq.inria.fr/scilab/

[2] G. E. Farin. Curves and Surfaces for Computer Aided
Geometric Design, 3rd ed., Academic Press, San Diego (1993).

[3] J.D. Foley, A. Van Dam. Fundamentals of Interactive
Computer Graphics. Addison-Wesley, Massachussetts (1982).

[4] A.B. Ekoule, F.C. Peyrin, C.L. Odet. "A Triangulation
Algorithm form Arbitrary Shaped Multiple Planar Contours",
ACM Transactions on Graphics, Vol. 10, pp. 182-199 (1991).

[5] J. D. Boissonat. "Surface reconstruction from planar cross-
sections", Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 393-397 (1985).

[6] The MathWorks, Inc. Using MATLAB Graphics, (1997).

[7] IGES/PDES Organization. The Initial Graphics Exchange
Specification (IGES). Version 5.1. National Computer Graphics
Association. Virginia, USA (1991).

[8] VDA Working Group CAD/CAM. VDA Surface, Data
Interface. (VDAFS) Version 2.0. Verband der Automobilindustrie.
(VDA). Frankfurt (1987).

[9] D. Basu, S. Kumar. "Importing mesh entities through
IGES/PDES", Advances in Engineering Software. Vol. 23, pp.
151-161 (1995).

[10] http://www.dsl.whoi.edu/DSL/sayers/VRMLplot/

[11] http://www.mathworks.com/company/pressroom

Acknowledgments:
Authors would like to thank the Comisión Interministerial
de Ciencia y Tecnología CICYT, of the Spanish Ministry
of Education (project TAP98-0640), the program TIC of
FEDER funds (project 1FD97-0409) and University of
Cantabria for partial support of this work.

Author(s):

Andrés Iglesias (*corresponding author) holds a Ph.D. in
Mathematics and currently is associate profesor at the
Department of Applied Mathematics, E.T.S.I. de Caminos.
Avda. de los Castros, s/n 39005 University of Cantabria,
Spain. Tel: 34 (942) 201723 / Fax: 34 (942) 201703. E-
mail: iglesias@ccaix3.unican.es.

Akemi Gálvez is a Ph.D. candidate at the Department of
Applied Mathematics, Cantabria University (Spain). She
holds a B.Sc. in Chemical Engineering at U.N.T. (Perú)
and a M.Sc. in Computation at Cantabria University. E-
mail: uc8031@cclx1.unican.es

Flabio Gutiérrez is also a Ph.D. candidate at the
Department of Applied Mathematics, Cantabria University
(Spain). He also holds a B.Sc. in Mathematics at U.N.T.
(Perú) and a M.Sc. in Computation at Cantabria University.
He teaches at National University of Piura, (Perú).E-mail:
flabio@tallan.unp.edu.pe

International Conference Graphicon 1999, Moscow, Russia, http://www.graphicon.ru/

	1. INTRODUCTION
	2. ADVANTAGES OF THE NCP
	2.1 Why to use NCPs for Computer Graphics?
	2.2 Choosing the NCP: MATLAB

	3. APPLYING MATLAB TO CAGD AND COMPUTER GRAPHICS
	3.1 Building numerical libraries for CAGD
	3.2 MATLAB graphics commands

	4. APPLICATION TO AN AUTOMOTIVE EXAMPLE
	4.1 IGES-MATLAB Converter
	4.2 Using the CAGD toolbox for visualization

	5. VISUALIZATION IN INTERNET
	6. CONCLUSIONS AND REMARKS
	7. REFERENCES

