
Generation and Rendering of Virtual Terrain

Harald Ammeter, Dr. Mikhail V. Mikhailyuk

Institute of Microprocessor Computer Systems RAS
Moscow, Russia

Abstract

This paper presents a computer program that displays a
virtual landscape consisting of flatlands, mountains, hills,
lakes, and sky as a pilot would see it while flying on low
height over the surface. It highlights the terrain generation
and rendering algorithms of the implemented program.

Keywords: Terrain Generation, Real-time Rendering, Level
of Detail Optimization, Flight Simulation.

1. INTRODUCTION

The purpose of the implemented software is the
development of techniques that are required in simulators
for the training of pilots. Whereas many commercially
available products are expensive and often require
sophisticated hardware, this simulator is intended to run on
different platforms, for instance on ordinary personal
computers. It therefore complies with the "OpenGL"
graphics standard, and in order to reduce dependency on
geographical databases requiring large amounts of storage
space, the simulator is able to combine real geographical
data with randomly generated terrain. Its main features are
the ability to create fairly realistically looking terrain and
the optimization of the real time rendering algorithm to
work on limited graphic resources.

2. TERRAIN STRUCTURE

In order to simulate the movement of the viewer, the
program has to render frames displaying the pilot's view
from continuously changing positions. The viewer's
position for every frame is calculated using the current
speed value and direction and the difference between the
current time and the time of the last update.

Every time the current position (determined by speed and
current time) or angle (modified by user keyboard
interaction) of the viewer changes, the area covered by the
view has to be adapted. Parts of the viewed area disappear,
and new parts enter into view. The whole viewed terrain
consists of single fixed-sized square blocks. Therefore,
squares entering into view have to be generated and
squares dropping out of view have to be removed to save
memory and avoid unnecessary rendering calls. The square
blocks covering the current view area are stored in a list
that is updated with every new frame.

From the viewer's position and angle, the 4 corner
coordinates of the visible terrain trapezoid are calculated.
The far end of the trapezoid is then limited to a reasonable
distance. In order to hide this artificial terrain border from
the viewer, fog effects are used during rendering. The
calculated trapezoid area is then filled with the necessary
number of square terrain blocks.

Viewer Viewed Area

Figure 1: The dynamic list of square blocks filling the
current field of view.

3. RANDOM TERRAIN GENERATION

The whole visible terrain consists of fixed-sized squares,
each of which is created as an entity. Every square block
contains a regular grid of height values, stored in a two-
dimensional array. The characteristics of the new terrain –
mountains, water, and roughness – are determined by a set
of parameters that can be changed by the user at runtime.
As it enters into view, a new terrain square is added to the
existing list of squares. Its borders are fitted to the borders
of already existing neighbor squares, and the rest of the
array is then filled with random height values, using the
currently active parameters.

New height values are calculated by the method of
recursive subdivision: First, the corners of the height array
are determined (level 0). During the next step (level 1), the
midpoints between every pair of corners are set by linear
interpolation of the two corner heights and adding or
subtracting from this mean height a random displacement
value. During consecutive steps, the midpoints between
already determined points are set, until all points have been

International Conference Graphicon 1999, Moscow, Russia, http://www.graphicon.ru/

processed. Since the distance between processed points is
divided into half with every new level of detail, the
displacement range of the midpoint is reduced with every
step. The algorithm thus requires that the dimensions of the
square array equal a power of 2.

a) b)

Figure 2: (a) The first two recursive steps of determining
height values between already calculated points. (b) How
recursive midpoint displacement transforms a straight line

into a smooth surface.

Height values can be positive or negative. At rendering
time, points below sea level are covered with water at
height 0.

The height value for one new point is calculated using the
following formula:

EL
MAWRAH *)1(*)(2+−

+=

where

H is the resulting new height value

A is the interpolated average height of the neighbor points
calculated during the previous step

R is a random value between 0 and 1

L is the level of recursion, starting from 0

W, M, E are variable parameters

Three parameters determine the characteristics of new
terrain:

• M: Maximum height. M determines the range of new
height values. M > 0.

• E: Level Exponent. E determines terrain roughness.
New height values between two near points are
displaced less than new values between two more
distant points. E determines by how much this
maximal displacement is reduced for consecutive
steps: a value of 2 means reduction by half with every
step; smaller values result in rougher terrain. E > 1.

• W: Water. W determines the amount of lakes in the
terrain. A height value proportional to W is subtracted

from the displacement to obtain negative values
covered by water at sea level (height 0). 0 ≤ W ≤ 1.

The interpolated height of the neighbor points is used as a
base value. A random value is added. To obtain values
below sea level, Parameter W is subtracted. The random
value R (between 0 and 1) is multiplied by parameter M in
order to reach the desired maximal height. For every level,
i.e. as the distance between the already existing neighbor
points is divided into half, the displacement is divided by
parameter E. In order to obtain rougher terrain in the
mountains and smoother plains in the lower regions, higher
values must be modified to a larger extent; this effect is
obtained by multiplying the displacement by a value
corresponding to the interpolated average height A.

A square in the middle of already generated terrain shares
the points of its 4 borders with neighbor squares to the left,
right, bottom and top. In addition to that, the 4 corners are
shared with 4 diagonal neighbors. Whenever a new square
has to be generated, the list of already existing squares is
first searched for these 8 neighbors. After its allocation in
memory, corner and border points of the new square are
first of all preset with corresponding points. Only points
that have not already been set are then calculated using the
random generator.

4. OPTIMIZATION AND RENDERING

The optimization algorithm explained in this chapter
basically corresponds to those described in [2] and (to a
smaller extent) in [1].

Rendering the generated height fields requires transforming
them into connected triangles forming the terrain surface.
In order to speed up rendering performance, the triangles of
every square are connected to one single strip – a list of
triangle vertices, where every vertex occurs only once –
and stored in a pre-compiled command structure that can
be executed several times from changing viewer positions,
a so-called display list. During the triangulation process,
one display list per square is generated, already existing
display lists of the previous frame are updated, and
obsolete squares dropped out of view are deleted. At
rendering time, all these display lists are executed in turn.

The rendering speed and thus the achievable frame rate
depend heavily on the number of rendered triangles.
Therefore, during triangulation their quantity is reduced by
an optimization algorithm that removes those details, which
do not considerably contribute to image quality. Whenever
possible, two small triangles located next to each other are
joined to form a larger one. The same process is recursively
repeated with the resulting triangle until no further
optimization can be made without substantial loss in image
quality.

Two optimization criteria are applied. The first one is based
on the horizontal dimension of the rendered triangles,

International Conference Graphicon 1999, Moscow, Russia, http://www.graphicon.ru/

without considering the height values of the vertices. In a
square block far away from the viewer, the distances
between points of the height grid are smaller than the
screen resolution. This means that the smallest triangles of
the grid may all be joined with their neighbors to form
larger ones, and the same test may be applied to these
larger triangles again recursively. Since the height array is
a regular grid, the projected horizontal dimensions of all
triangles of a certain level within a square block are
approximately equal. So one can from the block's distance
to the viewer quickly determine a "level of detail" for every
block, indicating how many times the process of joining
small triangles to larger ones may be repeated without
notable image difference.

The second criterion is applied to the remaining triangles.
But this time, triangles are joined to larger ones if they
approximately lie in a plane, which is determined by
looking at the height values of the vertices. For every
triangle pair, the algorithm considers the vertical amount
by which the common vertex moves after the join. If the
distance is small enough, the join is performed. This
optimization step depends not only on the horizontal
distance, but also on the height distance of the block and its
terrain roughness.

a) b) c)

d) e)

Figure 3: (a) Straightforward triangulation, but without
possibility of joining triangles. (b) Hierarchical formation
of triangles allows optimization by joining small triangles
to larger ones. (c) Possible formation after optimization.
(d,e) Two triangle pairs must be joined simultaneously in

order not to produce any gaps.

While joining triangles along block borders, the algorithm
has to ensure that on both sides of the common border joins

occur simultaneously. Otherwise, inconsistent borderlines
would be produced. Therefore every block has to be treated
together with its neighbor blocks.

The rendering algorithm draws every square block by
connecting all triangles created during optimization to one
continuous triangle strip. Since a block after optimization
may contain triangles of different sizes, these have to be
processed in hierarchical order. The rendering algorithm
starts with the four quadrants of the block and divides each
of these triangles into two. Each of the resulting triangles is
again recursively divided, until the size is reached that has
been determined by optimization, upon which the triangle
is rendered.

The triangle area is filled by a texture pattern. In the current
implementation, one single black/white texture bitmap is
repeatedly applied in all directions. The height and local
inclination of the terrain determine the color of a triangle
vertex: points located above a limit and parts of steep
mountains are colored like rocks, the rest like grass. To
achieve a realistic shading effect, a light source is
positioned above the terrain, and the exposition of every
triangle vertex is determined by the average of the
surrounding triangles' normal vectors.

In the end, water and sky are rendered. The water surface
consists of a blue textured rectangular plane that is drawn
at sea level. Terrain points with negative height are covered
by the water. Sky consists of another rectangular plane,
drawn at a constant height above the viewer.

5. RESULTS

Achieved frame rates depend on terrain type, image
resolution, and rendering hardware. On a 300 MHz
Pentium II, 64 MB RAM computer with NVIDIA RIVA
TNT, 16 MB RAM graphics adapter, the following typical
frame rates have been obtained for a full screen image:

Mountain terrain: 14 f/s
Hills: 18 f/s
Plains: 24 f/s

International Conference Graphicon 1999, Moscow, Russia, http://www.graphicon.ru/

Figure 4: Sample screen display of the program, showing
mountain regions.

6. ACKNOWLEDGEMENTS

This work has been made possible by cooperation between
the Institute of Microprocessor Computer Systems RAS,
Moscow, and SATW Swiss Academy of Technical
Sciences, Zurich, Switzerland. It is the result of an eight
months' exchange program by SATW.

7. REFERENCES

[1] Peter Lindstrom, David Koller, Larry F. Hodges,
William Ribarsky, Nick Faust, Gregory Turner. Level-of-
Detail Management for Real-time Rendering of
Phototextured Terrain. Georgia Institute of Technology,
1995.

[2] Peter Lindstrom, David Koller, William Ribarsky,
Larry F. Hodges, Nick Faust, Gregory A. Turner. Real-
time, Continuous Level of Detail Rendering of Height
Fields. Georgia Institute of Technology, 1996.

Authors:

Harald Ammeter, software engineer in an exchange
program by SATW, Switzerland, and

Dr. Mikhail V. Mikhailyuk, chief of department at the
Institute of Microprocessor Computer Systems RAS

Address:
36-1, Nakhimovski pr., Moscow, 117872, GSP7, Russia

Telephone: (095) 332 49 66
E-mail: mix@mail.ivvs.ru

International Conference Graphicon 1999, Moscow, Russia, http://www.graphicon.ru/

	1. INTRODUCTION
	2. TERRAIN STRUCTURE
	3. RANDOM TERRAIN GENERATION
	4. OPTIMIZATION AND RENDERING
	5. RESULTS
	6. ACKNOWLEDGEMENTS
	7. REFERENCES

