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Abstract 

This paper presents a computer program that displays a 
virtual landscape consisting of flatlands, mountains, hills, 
lakes, and sky as a pilot would see it while flying on low 
height over the surface. It highlights the terrain generation 
and rendering algorithms of the implemented program. 

Keywords: Terrain Generation, Real-time Rendering, Level 
of Detail Optimization, Flight Simulation. 

1. INTRODUCTION 

The purpose of the implemented software is the 
development of techniques that are required in simulators 
for the training of pilots. Whereas many commercially 
available products are expensive and often require 
sophisticated hardware, this simulator is intended to run on 
different platforms, for instance on ordinary personal 
computers. It therefore complies with the "OpenGL" 
graphics standard, and in order to reduce dependency on 
geographical databases requiring large amounts of storage 
space, the simulator is able to combine real geographical 
data with randomly generated terrain. Its main features are 
the ability to create fairly realistically looking terrain and 
the optimization of the real time rendering algorithm to 
work on limited graphic resources. 

2. TERRAIN STRUCTURE 

In order to simulate the movement of the viewer, the 
program has to render frames displaying the pilot's view 
from continuously changing positions. The viewer's 
position for every frame is calculated using the current 
speed value and direction and the difference between the 
current time and the time of the last update. 

Every time the current position (determined by speed and 
current time) or angle (modified by user keyboard 
interaction) of the viewer changes, the area covered by the 
view has to be adapted. Parts of the viewed area disappear, 
and new parts enter into view. The whole viewed terrain 
consists of single fixed-sized square blocks. Therefore, 
squares entering into view have to be generated and 
squares dropping out of view have to be removed to save 
memory and avoid unnecessary rendering calls. The square 
blocks covering the current view area are stored in a list 
that is updated with every new frame. 

From the viewer's position and angle, the 4 corner 
coordinates of the visible terrain trapezoid are calculated. 
The far end of the trapezoid is then limited to a reasonable 
distance. In order to hide this artificial terrain border from 
the viewer, fog effects are used during rendering. The 
calculated trapezoid area is then filled with the necessary 
number of square terrain blocks. 

Viewer    Viewed Area 

Figure 1: The dynamic list of square blocks filling the 
current field of view. 

3. RANDOM TERRAIN GENERATION 

The whole visible terrain consists of fixed-sized squares, 
each of which is created as an entity. Every square block 
contains a regular grid of height values, stored in a two-
dimensional array. The characteristics of the new terrain – 
mountains, water, and roughness – are determined by a set 
of parameters that can be changed by the user at runtime. 
As it enters into view, a new terrain square is added to the 
existing list of squares. Its borders are fitted to the borders 
of already existing neighbor squares, and the rest of the 
array is then filled with random height values, using the 
currently active parameters. 

New height values are calculated by the method of 
recursive subdivision: First, the corners of the height array 
are determined (level 0). During the next step (level 1), the 
midpoints between every pair of corners are set by linear 
interpolation of the two corner heights and adding or 
subtracting from this mean height a random displacement 
value. During consecutive steps, the midpoints between 
already determined points are set, until all points have been 
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processed. Since the distance between processed points is 
divided into half with every new level of detail, the 
displacement range of the midpoint is reduced with every 
step. The algorithm thus requires that the dimensions of the 
square array equal a power of 2. 

a)        b) 

 

Figure 2: (a) The first two recursive steps of determining 
height values between already calculated points. (b) How 
recursive midpoint displacement transforms a straight line 

into a smooth surface. 

Height values can be positive or negative. At rendering 
time, points below sea level are covered with water at 
height 0. 

The height value for one new point is calculated using the 
following formula: 
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where 

H is the resulting new height value 

A is the interpolated average height of the neighbor points 
calculated during the previous step 

R is a random value between 0 and 1 

L is the level of recursion, starting from 0 

W, M, E are variable parameters 

Three parameters determine the characteristics of new 
terrain: 

• M: Maximum height. M determines the range of new 
height values. M > 0. 

• E: Level Exponent. E determines terrain roughness. 
New height values between two near points are 
displaced less than new values between two more 
distant points. E determines by how much this 
maximal displacement is reduced for consecutive 
steps: a value of 2 means reduction by half with every 
step; smaller values result in rougher terrain. E > 1. 

• W: Water. W determines the amount of lakes in the 
terrain. A height value proportional to W is subtracted 

from the displacement to obtain negative values 
covered by water at sea level (height 0). 0 ≤ W ≤ 1. 

The interpolated height of the neighbor points is used as a 
base value. A random value is added. To obtain values 
below sea level, Parameter W is subtracted. The random 
value R (between 0 and 1) is multiplied by parameter M in 
order to reach the desired maximal height. For every level, 
i.e. as the distance between the already existing neighbor 
points is divided into half, the displacement is divided by 
parameter E. In order to obtain rougher terrain in the 
mountains and smoother plains in the lower regions, higher 
values must be modified to a larger extent; this effect is 
obtained by multiplying the displacement by a value 
corresponding to the interpolated average height A. 

A square in the middle of already generated terrain shares 
the points of its 4 borders with neighbor squares to the left, 
right, bottom and top. In addition to that, the 4 corners are 
shared with 4 diagonal neighbors. Whenever a new square 
has to be generated, the list of already existing squares is 
first searched for these 8 neighbors. After its allocation in 
memory, corner and border points of the new square are 
first of all preset with corresponding points. Only points 
that have not already been set are then calculated using the 
random generator. 

4. OPTIMIZATION AND RENDERING 

The optimization algorithm explained in this chapter 
basically corresponds to those described in [2] and (to a 
smaller extent) in [1]. 

Rendering the generated height fields requires transforming 
them into connected triangles forming the terrain surface. 
In order to speed up rendering performance, the triangles of 
every square are connected to one single strip – a list of 
triangle vertices, where every vertex occurs only once – 
and stored in a pre-compiled command structure that can 
be executed several times from changing viewer positions, 
a so-called display list. During the triangulation process, 
one display list per square is generated, already existing 
display lists of the previous frame are updated, and 
obsolete squares dropped out of view are deleted. At 
rendering time, all these display lists are executed in turn. 

The rendering speed and thus the achievable frame rate 
depend heavily on the number of rendered triangles. 
Therefore, during triangulation their quantity is reduced by 
an optimization algorithm that removes those details, which 
do not considerably contribute to image quality. Whenever 
possible, two small triangles located next to each other are 
joined to form a larger one. The same process is recursively 
repeated with the resulting triangle until no further 
optimization can be made without substantial loss in image 
quality. 

Two optimization criteria are applied. The first one is based 
on the horizontal dimension of the rendered triangles, 
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without considering the height values of the vertices. In a 
square block far away from the viewer, the distances 
between points of the height grid are smaller than the 
screen resolution. This means that the smallest triangles of 
the grid may all be joined with their neighbors to form 
larger ones, and the same test may be applied to these 
larger triangles again recursively. Since the height array is 
a regular grid, the projected horizontal dimensions of all 
triangles of a certain level within a square block are 
approximately equal. So one can from the block's distance 
to the viewer quickly determine a "level of detail" for every 
block, indicating how many times the process of joining 
small triangles to larger ones may be repeated without 
notable image difference. 

The second criterion is applied to the remaining triangles. 
But this time, triangles are joined to larger ones if they 
approximately lie in a plane, which is determined by 
looking at the height values of the vertices. For every 
triangle pair, the algorithm considers the vertical amount 
by which the common vertex moves after the join. If the 
distance is small enough, the join is performed. This 
optimization step depends not only on the horizontal 
distance, but also on the height distance of the block and its 
terrain roughness. 

a)      b)         c) 

d)      e) 

Figure 3: (a) Straightforward triangulation, but without 
possibility of joining triangles. (b) Hierarchical formation 
of triangles allows optimization by joining small triangles 
to larger ones. (c) Possible formation after optimization. 
(d,e) Two triangle pairs must be joined simultaneously in 

order not to produce any gaps. 

 

While joining triangles along block borders, the algorithm 
has to ensure that on both sides of the common border joins 

occur simultaneously. Otherwise, inconsistent borderlines 
would be produced. Therefore every block has to be treated 
together with its neighbor blocks. 

The rendering algorithm draws every square block by 
connecting all triangles created during optimization to one 
continuous triangle strip. Since a block after optimization 
may contain triangles of different sizes, these have to be 
processed in hierarchical order. The rendering algorithm 
starts with the four quadrants of the block and divides each 
of these triangles into two. Each of the resulting triangles is 
again recursively divided, until the size is reached that has 
been determined by optimization, upon which the triangle 
is rendered. 

The triangle area is filled by a texture pattern. In the current 
implementation, one single black/white texture bitmap is 
repeatedly applied in all directions. The height and local 
inclination of the terrain determine the color of a triangle 
vertex: points located above a limit and parts of steep 
mountains are colored like rocks, the rest like grass. To 
achieve a realistic shading effect, a light source is 
positioned above the terrain, and the exposition of every 
triangle vertex is determined by the average of the 
surrounding triangles' normal vectors. 

In the end, water and sky are rendered. The water surface 
consists of a blue textured rectangular plane that is drawn 
at sea level. Terrain points with negative height are covered 
by the water. Sky consists of another rectangular plane, 
drawn at a constant height above the viewer. 

5. RESULTS 

Achieved frame rates depend on terrain type, image 
resolution, and rendering hardware. On a 300 MHz 
Pentium II, 64 MB RAM computer with NVIDIA RIVA 
TNT, 16 MB RAM graphics adapter, the following typical 
frame rates have been obtained for a full screen image: 

Mountain terrain: 14 f/s 
Hills:  18 f/s 
Plains:  24 f/s 
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Figure 4: Sample screen display of the program, showing 
mountain regions. 
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