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Abstract 

Metallic and pearlescent paints contain flakes and exhibit 
strong texture (spatial fluctuations of luminance) and spar-
kles (rare, extremely bright tiny points). We present an al-
gorithm for calculating these texture and sparkles during 
image rendering.  
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1. INTRODUCTION 

Nowadays the so-called "metallic finishes" are widely used 
in automotive and other industries. These materials are 
paints or plastics having metal or mica flakes in a transpar-
ent resin [1].  

Metallic paints have different macro and micro appearance. 
Macro appearance can be described by BRDF, which can 
be calculated using a virtual goniospectrophotometer [2].  

The main feature of the micro appearance of metallic paints 
is an irregular random texture looking like bright sparkles 
(whose color is different from that of the resin or the base 
coat) dusted on the paint [1].  

For majority of paints the sparkling granules (shining 
flakes) are very clearly visible. They are visible from the 
distance of several meters. Sparkles are visible in case of 
illumination with parallel light; under diffuse illumination 
they nearly vanish. 

2. OBJECTIVES 

In human perception of modern composite paints an impor-
tant role is played by "sparkling": under directional illumi-
nation, paint surface looks as if "dusted" with tiny shining 
sparkles, usually with colour different from that of "back-
ground". In other words, these paint have some texture. 
When observed from far distance, these sparkles get 

"merged" due to finite resolution of human eye, and we see 
exactly what is represented by BRDF.  

This texture is irregular, random fluctuations of brightness 
and, optionally, colour. It is due to presence of flakes. In-
deed, since composite paint is composed of substrate 

binder (resin) flakes dispersed in that binder then the light 
reflected by paint consists, roughly speaking, of three com-
ponents:  

• light reflected by substrate (shade component) 

• light reflected by binder surface (highlight compo-
nent) 

• light reflected by flakes (flip-flop or metallic com-
ponent) 

Certainly, besides these "pure" components their are vari-
ous "mixtures", e.g. the light reflected by the substrate then 
reflected by a flake backwards and then reflected by the 
substrate into the eye. But these components are inessential 
for the qualitative explanation below. 

The flake component is not uniform, because flakes do not 
cover the entire surface and thus one ray encounters a flake 
while another one misses it. So reflectance by flake ensem-
ble is non-uniform: it fluctuates and so "texturizes" the 
paint. 

The ray reflected by a flake can reach observer either di-
rectly (in one scattering), or after several scatterings (by 
other flakes or by the substrate or by the paint-air bound-
ary). However, each reflection substantially attenuates 
light, thus it is the flakes seen "directly" that are the bright-
est; it is them that look like sparkles. Under parallel illumi-
nation, they look like a mirror in a sunny day. Like that 
mirror, they are visible only if they have proper orientation; 
a slight deviation from it makes the reflected light missing 
the eye. Therefore, visible directly are only flakes with 
"proper" orientation; and thus they are rather rare. This is 
illustrated by the figure below: 
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Figure 1: Reflection by flakes. Only one flake 
is a "sparkle": the one that reflects light directly 
onto observer. The light reflected by other 
flake undergoes several reflections, thus it is 
attenuated and these flakes are not sparkles 

Let us summarize. If illuminated by parallel light, there are 
rather rare bright points that have the colour of flakes. They 
are "dusted" on the regular (uniform) background that has 
colour of substrate. Since these sparkles are rather rare (e.g 
each 100th flake), they are separated from each other by 
distance enough for an eye to distinguish between them. 
Thus we see individual sparkles, at least from close dis-
tance. But while watched from far distance, the eye merges 
them and so the fluctuations vanish (due to averaging). 

While illuminated by diffuse (ambient) light, the sparkles 
are also less pronounced. This is due to two reasons. Imag-
ine a mirror in a cloudy day. It is seen at any orientation, 
but never blinds one. Similarly, nearly any flake is visible, 
but its brightness is small. So "sparkles" are weak and 
dense; due to the last reason they can not be distinguished 
by eye; so it averages brightness over several sparkles and 
thus diminishes fluctuations even more.  

So we conclude that paint texture, while clearly visible 
under sun light, nearly disappears under ambient light. 

3. SIMULATION OF SPARKLING 

The idea of simulation is to calculate statistical characteris-
tics of fluctuations due to scattering by flakes and then re-
produce the paint texture by superimposing random fluc-
tuations on the image obtained by standard rendering. 

4. CONSTRAINTS 
1) Accurately as we can determine statistical characteris-

tics, because of hardware constraints (finite resolution 
and dynamic range of brightness), we shall be able to 
simulate the “close look” of paint only. 

2) Characteristics of distribution of brightness of sparkles 
are calculated accurately for top flakes only. To account 
for deeper flakes, which are “less visible” and make 
smaller contribution to sparkling, we use a simple, 
though quite artificial trick of scaling the top distribu-
tion (see Section 5.3.2). 

5. ALGORITHMS 

5.1 Definitions, notations etc. 
Sparkles are nothing but fluctuations of brightness. In a 
stochastic medium, when scattering particles have random 
position, orientation and size, the scattering conditions for 
different rays are different; and so is the brightness of re-
flected rays. It fluctuates, which we perceive as a sparkling 
texture. 

This phenomenon is rather particular. It is only for flat 
smooth flakes that some (rare) rays undergo single reflec-
tion before hitting the observer. These rays are much 
brighter than those that underwent several reflections and 
are therefore seen as shining sparkles. 

This is because sparkles are due to single reflection while 
texture is mainly due to multiple reflections, strongly de-
termined by correlations in position and orientation of 
nearby flakes. 
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5.2 Visibility of random textures and 
sparkles 

Despite any stochastic medium (e.g. milk) does represent 
fluctuations of brightness, they are only visible if their cor-
relation length is large enough, on the order (or better 
greater than) of an eye resolution. Otherwise, fluctuations 
are nearly suppressed due to spatial averaging. Since corre-
lation length is determined by the size of particles and dis-
tance between them, we may expect that a visible texture is 
more pronounced in case of paint thick with flakes of size 
>0.05 mm. 

One can calculate how the visibility of texture and sparkles 
decreases with distance. For texture, we shall assume that 
correlation length is very small, much less than the resolu-
tion of an observer. For sparkles which are very rare, it 
seems reasonable to assume that the typical distance be-
tween them is much greater that the resolution of an ob-
server. 

Let us begin with sparkles. Usually, these are rare, so a 
human eye can always distinguish different sparkles. 
Therefore, it suffices to consider a unique sparkle. A hu-
man eye perceives a tiny bright point (of actual size << 
than the eye resolution) as a light source that emits the 
same energy as original one, but with visible size exactly 
equal to ‘pixel’ size. 

Moreover, while in calculation of the luminance that en-
ergy must be divided by the solid angle of the cone of rays 
that reach the observer, i.e. by its squared angular size 
times π. 

Therefore, the visible luminance is  

 L
E

visible
o
2=

1
πΔ γΣ cos

 (1) 

where E is the energy emitted by the sparkle, Δo is the an-
gular size of the observer, Σ is the area of projection of the 
pixel onto the surface, and γ is the angle between observa-
tion direction and surface normal. 

Now let us come to regular texture. A human eye, as well 
as any optical device, performs averaging over the visible 
pixel. Assuming that flakes are statistically independent 
and their size is much smaller than the pixel size, we con-
clude that fluctuations of luminance are created by O(Σ) 
statistically independent sources, where Σ is the area of the 
pixel’s projection onto the surface, ∝ R2. Thus the devia-
tion of visible luminance scales as 

 
δL
L

∝
1
Σ

 (2) 

and so the visibility of sparkles decreases faster than that of 
regular texture. 

5.3 Sparkles as fluctuations of bright-
ness 

5.3.1 Topmost sparkles (thin layer) 

By topmost flakes we mean those which are neither shad-
owed nor masked by other flakes; thus no multiflake ef-
fects take place and it suffices to consider a single flake. 

Consider a flake (=tiny mirror) of size S and orientation 
(the angle between flake and paint normals) β, and denote 
the reflectivity of its surface as rp(α) where α is the angle 
of incidence with respect to flake’s normal. Since reflection 
is specular, the energy reflected by this mirror is 

 E
I

rp=
′

×
cos

cos (cos )
ϑ

α α S  (3) 

where ϑ′ is the angle of incidence counted from the paint’s 
normal, and I is illuminance of the paint surface, so I/cosϑ′ 
is the energy flux per unit area normal to the ray and 

I Scos cos′ϑ α  is the energy fallen onto the flake. 

Obviously, the above formula is only valid if the flake re-
flects the direct incident light into observer. That is, its 
normal must be close to 

 n
v v
v vf =

+ ′
+ ′

 

where v′ and v are the illumination and observation direc-
tions, and nf is flake’s normal. Admissible deviation of the 
normal from nf is determined by the angular size of the LS 
(we neglect that of the observer e.g. eye pupil): it is such 
variation of the flake’s normal that for fixed v the resulting 
deviation of v′ does not exceed angular size of the LS Δ.  

According to eq.(54) of [2], the relation between deviations 
is 

 d df
2 21

4
n v= ′

cosα
 

where α is the angle of incidence/reflection with respect to 
flake’s surface: cos ( )α = ⋅n vf . For an axisymmetrical LS, 

. d 2 2v = πΔ

The probability that flake’s normal belongs to this cone is 
P(nf)d2nf. The density P(nf) depends on the polar angle β of 
the flake’s normal (counted from the paint normal n) only, 
thus P(nf) = P(β)/2π and the probability of finding a flake 
with “proper” orientation is 

Pr( ) ( )
cos

( )
cos

specular reflection = =P Pβ
π α

β
α

ΔΩ Δ
8 8

2
 (4) 

The angle β can be calculated from obvious relation: 
cos ( )β = ⋅n nf . 
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Therefore, the energy emitted by a flake is “0” with prob-
ability 1–Pr(specular reflection) or E given by (3) with 
probability Pr(specular reflection). 

The value E is a function of two random variables: flake 
area S and its orientation β. We can therefore calculate it by 
picking two random deviates for S and β.  

The first one is usually a normal deviate. The angle β can 
be obtained with a uniform deviate. Indeed, the energy is 
distinct from zero only if β is in a tiny interval, and within 
this interval we can approximate any smooth distribution 
P(β) with a constant. Therefore, the conditional distribu-
tion of β, i.e. its distribution for sparkling flakes is uniform. 
As to the flake’s area, it usually has normal distribution so 
one can easily generate  

The idea of simulation is therefore like this: for a given 
cell, “cycle” over all flakes in it, choose the flake to be a 
sparkle with probability Pr(...); if yes, pick at random its 
size and orientation and calculate its energy. Should there 
be several sparkles, their energies are summed up. 

Such a straightforward approach is hardly sensible since 
there are thousands of flakes in mesh cell! And the prob-
ability of “success” is very small for the necessary range of 
orientation is very narrow. Thus we have a long series of 
trials with tiny probability of success. The number of “suc-
cesses”, i.e. sparkles N is therefore a Poisson deviate whose 
mean is the average number of sparkles per unit area, i.e. 
the probability Pr(...) times the number of the topmost 
flakes. Should we know the latter, we would be able to 
calculate 〈N〉, then pick N as a Poisson deviate with this 
mean, and then determine characteristics of these N (a 
few!) sparkles only. 

The difficulty is that the number of “topmost flake” is un-
defined. And this is because it is impossible to discard 
deeper flakes at all; they also contribute to sparkles but this 
contribution quickly decreases with depth. Below we shall 
consider two simple ways of how to take this into account. 

5.3.2 Accounting for deeper flakes. 

It is very difficult to calculate the distribution of sparkles 
due to deep flakes because that will require to take into 
account the masking/shadowing of deep flakes by the top 
ones, the more so that masking/shadowing is only partial 
since flakes may be transparent. In case of large density of 
flakes (a usual case with paints), this effect is strongly de-
termined by correlations between positions and orientations 
of nearby flakes which are unknown. We can certainly per-
form a sort of “mini ray-tracing” to find the distribution of 
the reflected light, but that will be too expensive. 

Happily, since the visible area of deep flakes is much less 
than that of the topmost ones; so their contribution to 
bright sparkles is not very substantial, and we can try a 
simple approximation. 

The idea is like this: we know that the light emitted from 
inside paint attenuates as e , where τ(ϑ) is the 
optical thickness per unit path of a ray with polar angle ϑ. 
Similarly, the incident radiation attenuates e

z−τ( ) /cosϑ ϑ

z− ′ ′τ( ) /cosϑ ϑ  
times.  

This attenuation also applies to sparkles, and can be attrib-
uted to: 

1) Decay of light, while the probability of facing a 
sparkle (of any energy) is independent of depth. 

2) Decay of probability of facing a sparkle (of any en-
ergy), while the light is not attenuated in the me-
dium: we assume that sparkles are flakes that are 
neither shadowed nor masked; the deeper the fewer 
such flakes. 

Both assumptions are extreme cases, but accurate treatment 
is too complex, and even unnecessary for visualisation. The 
first assumption seems more natural; however, we shall 
discuss both, referring to them as the model with mask-
ing/shadowing and the model without masking/shadowing. 

 In the model with masking/shadowing we treat 
deeper flakes just as the topmost ones, only both the illu-
minating and reflected radiation must be attenuated. There-
fore, the average number of sparkles per unit area of paint 
is 

 D DHPsparkles = ( )
cos

β
α

Δ2

8
 (5) 

In the model without masking/shadowing, there are fewer 
and fewer sparkles in deep layers, the total number of spar-
kles per unit area of paint is 

  D D
H

sparkles specular reflection direct= ∫Pr( ) Pr( , )
0

z dz

ϑ

where Pr(specular reflection) is given by (4), and the inte-
grand gives the number of sparkles in depth interval 
[z, z+dz]. That is, Pr(direct, z) is the probability (not the 
density of distribution) that a flake is neither masked nor 
shadowed (i.e. visible directly). In view of definition of the 
optical thickness,  

  Pr( , ) ( )( / cos ) ( )( / cos )direct z e ez z= ×− ′ ′ −τ τϑ ϑ ϑ

where the first factor is the probability of absence of shad-
owing (direct illumination) and the second term is the prob-
ability of the absence of masking (direct visibility). 

Therefore,  

D D
e

P
H

sparkles =
−

+ ′ ′

− ⋅ + ′ ′1
8

2[ ( )/ cos ( )/ cos ]

( ) / cos ( ) / cos
( )

cos

τ τ

τ τ
β

α

ϑ ϑ ϑ ϑ

ϑ ϑ ϑ ϑ
Δ

 (6) 

International Conference Graphicon 1999, Moscow, Russia, http://www.graphicon.ru/ 



Now, knowing the density of sparkles, we can calculate 
their mean count in the cell, and then pick their “actual” 
count N as a Poisson deviate for this mean. After that, we 
can calculate their energy. In the model without mask-
ing/shadowing it is immediately given by (3); in the model 
with masking/shadowing that introduces light attenuation, 
the result of (3) must be multiplied by the attenuation factor 

  e z− ⋅ + ′ ′[ ( )/ cos ( )/ cos ]τ τϑ ϑ ϑ ϑ

Here z is the depth; this is a random variable. In this model 
the probability of finding a sparkle is independent of depth, 
so z is a uniform deviate in [0, H]. 

5.3.3 Optical thickness of paint 

For uniform paint, that contains flakes and pigment parti-
cles (see eq.(44) and Section 11.5 of [2]), 

 
τ ρ κ

ρ

π( ) ( ) ,
( ) ( ) ( )
ϑ ϑ

ϑ ϑ ϑ

= 〈〈 〉〉 + +

≡ 〈 〉 − 〈 〉

DS c
s t

p

p p

16
3 1  

where ϑ is the polar angle of the ray direction with respect 
to paint surface, D is concentration of flakes, 〈〈DS〉〉 is av-
erage area of flakes (single-side!) per unit volume of paint, 
c1 is the weight of Rayleigh scattering by pigment particles 
(see [2] for details), κ absorption in the binder and 

 

(
)

〈 〉 ≡

× +

+ −

〈 〉 ≡

× +

× +

+

× −

× −

∫
∫

∫
∫

∫
∫

s d P

d

t d P

t d

d P

t

p

p

p

( ) sin ( )

cos cos sin sin cos

cos cos sin sin cos

( ) ( )sin

cos cos sin sin cos

( cos cos sin sin cos

( )sin

cos cos sin sin cos

( cos cos

/

/

/

/

/

/
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4

4

0

2
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2
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β ϑ β ϑ ψ

β ϑ β ϑ ψ ψ

ϑ β β β

β ϑ β ϑ ψ

β ϑ β ϑ ψ ψ

β β β

β ϑ β ϑ ψ

β ϑ

π
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π
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π
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where P(β) is the distribution of polar angle β of flake’s 
normal (counted from the normal to the paint surface) and 
tp(α) is transmittance of flake coating for angle of inci-
dence α (measured from flake’s normal). 

In an important case when 

• there are no scatterers but flakes, i.e. κ = c1 = 0 

• deviation of flake normal is small (i.e. P(β) is 
only distinct from zero for β << 1) 

we have approximately  

  τ π( ) ( (cos ))cosϑ ϑ≈ 〈〈 〉〉 −4 1DS tp

5.3.4 Taking into account refractive index of the 
paint. 

Usually, flakes are dispersed in a binder that has refractive 
index different from that of environment. In this case the 
unit vectors v′ and v of Section 5.3.5 are directions of the 
incident and refracted rays in the binder, that is, the direc-
tions to the LS and observer as seen from under the paint 
surface. The same applies to their sizes Δi and Δo. 

Now let us describe how to calculate these values. 

Let us begin with transformation of angular size; obviously 
it is the same for LS and observer. If we denote the direc-
tion of a ray in the binder as v and outside it as as V, then 
naturally the angular size of an object observed from the 
binder is 

 Δ Δ= ⋅actual
d
d

2

2
v
V

 

where Δactual is its size as measured from the environment. 
The same formulae applies to linear size of a round object. 

The relation between the differentials of solid angles can be 
easily derived using  Snell’s law for transformation of polar 
angles and their differentials and keeping in mind that azi-
muth angles are the same. This gives: 

 d d d2 2
2

2
2 2

1
v V

n V
n v

V= ×
⋅
⋅

= ×
−η η η

( )
( )

cos

sin

ϑ

ϑ
 

where ϑ is the angle of incidence in the environment, n is 
the normal to the paint surface, and η = ηbinder/ηenvironment is 
the relative refractive index of the binder.  

 Thus the size (either angular or linear) of a round 
object observed from the binder is  

 Δ Δ
ϑ

ϑ
= ⋅

− −actual
1

1 2 2η η

cos

sin
. (7) 

REMARK. For large angles of incidence, a round object is 
seen as an ellipse. We neglect that distortion of shape and 
treat the image as a round object. This is possible because 
if the observer is a human eye, its size is so small that we 
can neglect it. For a point observer, the flake is visible 
when the image of the observer (as reflected by the flake 
and then refracted by the binder) is somewhere within the 
illuminaire (as seen from the binder). In this case the shape 
of light source is inessential: the probability that the flake is 
visible is just the probability that the flake’s normal is 
within a the given solid angle. The shape of this element is 
inessential! And the part of light f that reaches observer is 
(Δo/Δi)2

.

Now let us come to the transformation of the directions 
ϑ

According to the Snell law,  
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v V
V n n V V n

v n v n
n V

n

|| ||

||

/
( ) cos

,

( ) sin

= =
− ⋅

=
−

= − = −
− ⋅

=
−

⊥

η
η η

η

η
η

ϑ

ϑ
1 1

12 2

2

2 2  

where subscript ‘||’ and ‘⊥’ refer to the component parallel 
and normal to the surface, respectively. The same trans-
formation is valid for v′ and V′. For the whole vectors, we 
have 

 
v V n

v V n

= + − −⎛
⎝⎜

⎞
⎠⎟

⎧
⎨
⎩

⎫
⎬
⎭

′ = ′ + − ′ − ′⎛
⎝⎜

⎞
⎠⎟

⎧
⎨
⎩

⎫
⎬
⎭

−

−

η η

η η

1 2 2

1 2 2

sin cos ,

sin cos

ϑ ϑ

ϑ ϑ
 (8) 

It is the transformed variables (7) and (8) that are used in 
calculations of Section 5.3.5 and Section 5.3.4: 

 
cos

cos

α

β

= ′ ⋅
′ +
+ ′

= ⋅
+ ′
+ ′

v
v v
v v

n
v v
v v

 

Similarly, the sizes must be calculated with (7).  

Note that in terms like τ(ϑ)/cosϑ one must replace ϑ and ϑ′ 
by the angles in the paint ϑp = arccos(v⋅n) and 
ϑ′p = arccos(v′⋅n) respectively. These can be easily calcu-
lated with the help of Snell’s law: 

 ϑ ϑ ϑ ϑp p= ′ = ′1 1
η ηarcsin , arcsin . 

At last, one must take into account that some part of light 
falling on the surface is reflected by the Fresnel interface; 
equally, some part of light reflected by the flake does not 
leave the binder. 

5.3.5 Rendering of a sparkling surface 

The picture to be obtained is a rectangular mesh of pixels. 
For each of them, the TBT draws a ray from the observer 
(backward ray tracing), with all its possible specular reflec-
tions, until it faces a diffuse surface. One can imagine the 
picture as a “mask” like the one used in cathode-ray tube, 
with rays from the observer running through its “holes” 
(pixels) to the scene.  

Let us begin with the case of one point or parallel light 
source. Indeed, for other kinds of light sources, illumina-
tion is diffuse and does not produce sparkles.  

This sparkles must be processed for 

• parallel light source (including the sun) 

• spot light source 

• point source  

In either case, calculation of sparkle energy is like this: 

1) Take the position (Cartesian coordinates) of mesh cell 
centre, observer and light source. Draw unit vectors 
V′, V from the centre to light source and observer, 
resp.  

 For parallel or spot light, V′ is the direction of emitted 
light, not the direction to the centre of light source 
(even if one exists). 

2) Check if the sign of direction is correct: (n⋅V′) and 
(n⋅V) must be positive. If not1, invert the sign of all 
components of the vector. 

3) Calculate the angles between paint normal and rays 
inside the paint: 

 ϑ ϑ ϑ ϑp p= ′ = ′1 1
η ηarcsin , arcsin  

4) Calculate refracted directions: 

 
( )
( )

v V n

v V n

= + −

′ = ′ + ′ − ′

− −

− −

η η

η η

1 1

1 1

cos cos ,

cos cos .

ϑ ϑ

ϑ ϑ

p

p

 

 and then the direction of flake’s normal for which 
specular reflection occurs: 

 n
v v
v vf =

+ ′
+ ′

 

 Calculate cosine of the polar angle of flake’s normal β 
(with respect to the local surface normal n): 
cos ( )β = ⋅n nf  and cosine of the angle of inci-
dence/reflection with respect to flake’s surface: 
cos ( )α = ⋅n vf . 

5) Calculate the angular size of observer and luminaire, 
as seen from the paint: 

 Δ Δ
ϑ

ϑ
= ⋅actual

p

1
η

cos
cos

 

6) Calculate the sum of optical thicknesses for these rays 
for unit flake depth : 

                                                           
1 This can occur for parallel or spot light, when V′ is direc-
tion of emitted light and thus is directed towards the sur-
face. 
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 where κ is absorption exponent of the binder, D〈S〉 is 
the total area of flakes in unit paint volume (it is this 
value that is usually known; besides, it is what OPPI 
library functions use), 〈s〉 is average projection area of 
a unit flake (see [2]) 〈tp〉 is average reflectance of 
flake coating (see [2]) and c1 is scaled Rayleigh scat-
tering coefficient of pigment particles (see [2]). 

 The rather complex functions 〈s〉(ϑ) and 〈tp〉(ϑ) are 
calculated with linear interpolation (using tabulated 
values prepared in advance). It is therefore reasonable 
to tabulate them as functions of cosϑ, thus obviating 
calculation of ϑp = arccos(cosϑp) like it was done in 
OPPI task. We can thus use interpolation arrays pre-
pared by ‘process_flakes()’ function of that li-
brary. 

7) Obtain the area of the cell (=projection of the pixel 
onto the surface) Σ and calculate the expectation of 
the number of sparkles in it 

 〈 〉 = ⋅N DHP iΣ
Δ

( )
( )
cos

β
α

2

8
 

 for the model with masking/shadowing, and  

 〈 〉 =
−

⋅ ⋅
−

N
e

tH
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tH
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Σ

Δ
( )

( )
cos

β
α

. 

 As already mentioned, the density P(β) is calculated 
with linear interpolation (using tabulated values pre-
pared in advance) thus obviating all calls to exponen-
tial functions. It is therefore reasonable to tabulate it 
as a function of cosβ thus obviating calculation of 
β = arccos(cosβ). 

3) In case 〈N〉 << 1 (namely < 0.1), pick a uniform devi-
ate ξ in [0,1]; if ξ ≤ 〈N〉, then N = 1, otherwise N = 0.  

 In case of greater 〈N〉, pick a N as a Poisson deviate 
with mean 〈N〉. 

4) Now if N > 0, we pick characteristics of N sparkles at 
random, calculate their energies (three energies for 
the R, G, B colours) and sum them up. 

 That is, for each of N sparkles: Pick at random flake 
area S as normal deviate. For the “model with mask-
ing/shadowing” (where light attenuation is taken into 
account), pick the depth of reflection z as a uniform 

deviate in [0, H]. Then calculate the energy of the 
sparkle (the scalar below is actually one of the colour 
components): 
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(cos ) cos

1 1η η

α α
 (9) 

 in the “model with masking/shadowing” (the ex-
ponential factor gives attenuation of light during 
its path to the flake and back to the surface). 

 In the “model without masking/shadowing” 
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Δ
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 In both cases I is illuminance of the cell (energy 
flux per unit surface area), so I/cosϑ′ is the en-
ergy flux per unit area normal to the ray and 

I Scos cos′ϑ α  is the energy fallen onto the 
flake. Then, rη(ϑ) is Fresnel reflectance for a ray 
that runs into a layer with relative refractive in-
dex η at the angle of incidence (outside the 
layer) ϑ. 

d) Add energy of this sparkle to the cumulate en-
ergy, and come to the next sparkle. 

5) The visible luminance of the sparkling pixel is related 
to the solid angle corresponding to the size of ob-
server and the area of the minimal visible element, i.e. 
the pixel (not to the area of the flake which is always 
beyond the observer’s resolution!): 

 L k
E

visible
i,actual

=
⋅

1
2πΔ Σ cos( )n V

 

 where k is the attenuation factor for the ray running 
from intersection point to the observer; Δ i,actual  is 

the angular size of the LS as seen from the environ-
ment (=outside the paint). The first denominator gives 
the solid angle in which the sparkle’s energy that 
reaches observer is emitted, and the second gives its 
visible area. 

REMARK. Maybe, it is reasonable to ascribe to the pixel 
the greatest among the diffuse luminance, highlight and 
sparkle luminance. Otherwise it may occur that in the high-
lighted area, sparkles will be dark points! 

REMARK. In case when the scene is not in vacuum, it 
may prove necessary to take into account attenuation of 
light on its way from light source to the sparkle and from 
the sparkle to the observer. 
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