

Fast Neural Network Emulation and Control of Physics-Based Models

Radek Grzeszczuk¹ Demetri Terzopoulos^{2,1} Geoffrey Hinton²

¹ Intel Corporation Microcomputer Research Lab ² University of Toronto, Dept. of Computer Science

Physics-Based Animation

Animation through physical simulation

- Inanimate objects:
 - rigid models
 - articulated models
 - deformable models
- Animate objects:
 - animal models
 - human models

Pioneering work

(Hahn88, Baraff89)

(Barzel88)

(Terzopoulos37, Platt83))

(Miller88, Tu95)

(Annstrong35, Wilhelms37, Hodgins95,)

Physics-based Models

Simulate Newtonian mechanics

- Benefits
 - offer unsurpassed realism
 - automate motion synthesis
- Drawbacks
 - incur high computational costs
 - difficult & expensive to control
- Moore's Law is on our side!

NeuroAnimator

A neural network approach to physically realistic animation

- Learns to approximate physical models by observing their actions
- Yields outstanding efficiency
 - fast synthesis of physically realistic motion
 - fast synthesis of motion controllers for animation

Example NeuroAnimators

Motivation

Is there a more efficient alternative to animation by simulation?

- Numerical simulation of a dynamical system evaluates a high-dimensional map Φ at every timestep
- In principle (Cybenko89), neural networks can learn to approximate arbitrary, complex maps Φ

Motivation

 $\mathbf{v}_{t} + \mathbf{g}(\mathbf{u}_{t}, \mathbf{f}_{t})$ $\mathbf{v}_{t} \,\delta t + \mathbf{x}_{t}$

Animation through numerical simulation

Discrete-time dynamical systems

$$\mathbf{S}_{t+\delta t} = \Phi(\mathbf{S}_t, \mathbf{u}_t, \mathbf{f}_t)$$

$$\mathbf{S}_{t+\delta t} = \mathbf{I}_{\mathbf{S}_t} \mathbf{I}_{\mathbf{S}_t$$

 Example: Implicit Euler time-integration method

Learning Dynamics

The NeuroAnimator learns dynamics by observing sample state transitions

Emulation

super timestep $\Delta t = n \, \delta t$ $\mathbf{S}_{t+\Delta t} = \mathbf{N}_{\Phi}(\mathbf{S}_t, \mathbf{u}_t, \mathbf{f}_t)$ NeuroAnimator approximation of Φ

Why is the NeuroAnimator efficient?

- The emulation step is relatively cheap
- The NeuroAnimator can emulate super timesteps

 up to 100 times faster than numerical simulation
- N_{Φ} is analytically differentiable
 - dramatic efficiency for animation controller synthesis

Talk Overview

- Introduction
- Artificial neural networks
- From physical models to NeuroAnimators
- NeuroAnimator based controller synthesis
- Conclusion and future work

Talk Overview

- Introduction
- Artificial neural networks
- From physical models to NeuroAnimators
- NeuroAnimator based controller synthesis
- Conclusion and future work

Neural Networks

Seminal work in the field

Perceptrons

(Widrow60, Rosenblatt62, Minsky69)

 Backpropagation learning algorithm (Rumelhart86) (Bryson69, Werbos74, Parker85)

 backpropagation through time (Rumelhant86)

Artificial Neural Networks

Neuron

Feedforward Network

Backpropagation

Adjusts the weights of a neural network

- Approximation error:
- Weights update formula:

$$E^{\tau}(\mathbf{w}) = \left\| \Phi(\mathbf{x}^{\tau}) - \mathbf{N}_{\Phi}(\mathbf{x}^{\tau}, \mathbf{w}) \right\|^{2}$$

$$\mathbf{w}^{l+1} = \mathbf{w}^l - \boldsymbol{\eta}_w \nabla_{\mathbf{w}} \boldsymbol{E}^{\tau}(\mathbf{w}^l)$$

Talk Overview

- Introduction
- Artificial neural networks
- From physical models to NeuroAnimators
 emulation results
- NeuroAnimator based controller synthesis
- Conclusion and future work

NeuroAnimator Structure

Active dynamic, nondeterministic forces \mathbf{s}_{t}

Active dynamic, deterministic forces \mathbf{s}_{t} \mathbf{u}_{t}

Passive dynamic, nondeterministic forces

 $S_{t+\Delta t}$

 \mathbf{S}_{t}

Passive dynamic, deterministic forces

Emulation

Sequence of network evaluations \mathbf{S}_t $S_{t+\Delta t}$ $\mathbf{S}_{t+\Delta t} = \mathbf{N}_{\Phi}(\mathbf{S}_t, \mathbf{u}_t, \mathbf{f}_t)$ S_{M-1} SM S₂ **S**₃ S_{M+1} U \mathbf{u}_{M-1} **u**₂ \mathbf{u}_{M}

Predict state changes

Invariance to translation and rotation

Predict state changes
Invariance to translation and rotation
Normalize inputs and outputs

Hierarchical Emulators

Human model

Hierarchical Emulators

Dolphin model

Training NeuroAnimators

Offline backpropagation training of networks

- "Xerion" public domain neural network simulator software from the University of Toronto
- Initialize networks with random weights
- Generate training examples with "short-time" physical model simulations from random initial conditions

can reduce training times by sampling state, force,
 & control inputs that occur most often in practice

Example NeuroAnimators

Emulation Examples

Emulation Performance

Speedups for a NeuroAnimator with supertimestep $\Delta t = 50 \delta t$

- Passive pendulum 94.0x physical simulation
- Active pendulum 75.3x "
- Truck 69.7x "
- Lunar lander 53.7x "
- Dolphin 66.3x "

- approximation error holds ~steady with Δ t

Talk Overview

- Introduction
- Artificial neural networks
- From physical models to NeuroAnimators
 emulation results
- NeuroAnimator based controller synthesis
 control learning results
- Conclusion and future work

Control of Physical Models

- Inverse dynamics (Isaacs87,Barzel88))
- Constraint optimization (Brotman88))
- Hand-crafted controllers (Miller88, Lee95, Tu94, Wilhelms87, Hodgins95)
- Controller synthesis (Goh38, Pandy92, Panne93, Ngo93, Grzeszczuk95)
- Connectionist robotic control (Mendel70, Werbos74, Barto37, Jordan33, Nguyen39 - "truck backer-upper")

Our approach

Controller Synthesis

(Grzeszczuk & Terzopoulos 95)

Controller Synthesis

Optimization of an objective function

Objective function

Controller quality Motion quality

$$J(\mathbf{u}) = \mu_u J_u(\mathbf{u}) + \mu_s J_s(\mathbf{s})$$

Controller adjustment rule

$\mathbf{u}^{l+1} = \mathbf{u}^l - \eta \nabla J(\mathbf{u}^l)$ Trained NeuroAnimator yields gradient analytically

Controller adjustment consists of two steps...

1) Forward Step

Emulates the forward dynamics

2) Backward Step

Computes gradient using backpropagation through time

2) Backward Step

Computes gradient using backpropagation through time

Control Learning Results

Controller Learning Performance

Talk Overview

- Introduction
- Artificial neural networks
- From physical models to NeuroAnimators
 emulation results
- NeuroAnimator based controller synthesis
 control learning results
- Conclusion and future work

Conclusion

The NeuroAnimator can be a powerful complement to physics-based animation

- NeuroAnimators accurately emulate various physical models up to 2 orders of magnitude faster than numerical simulation
- NeuroAnimator based controller learning algorithm synthesizes motions satisfying prescribed animation goals with up to 2 orders of magnitude fewer iterations

Future Research

- NeuroAnimators for Artificial Life graphical characters
 acquiring "mental models" of dynamic worlds
- NeuroAnimation by motion capture
 - learning approximations of complex biomechanics

- Connectionist controller representation
- Hierarchical emulation and control

One More Thing...

"The Eagle has Landed?"

Acknowledgements

Intel Corporation

- Richard Wirt, Fellow & MRL Director
- Edward Langlois
- Steve Hunt
- Sonja Jeter
- Mike Gendimenico
- Michael Shantz, Dave Sprague
- Baining Guo
- John Funge
- Xiaoyuan Tu
- Alexander Reshetov
- Feng Xie
- Bob Liang

University of Toronto

- Zoubin Ghahramani
- Michiel van de Panne
- Mike Revow
- Drew van Camp

Natural Sciences & Engineering Research Council of Canada

Steacie Memorial Fellowship