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Abstract

Voluminous CAD models are produced in industry and archi-
tecture to design complex mechanical and architectural struc-
tures. The use of these models to set up virtual worlds is
a rather tedious and laborious work. To simplify this task,
we have combined a series of tools which help us to build in a
rapid and e�cient way virtual world experiments from complex
CAD models. These tools perform various operations such as
de�ning the objects which populate the scene, grouping similar
objects in categories, giving shape, physical and functional at-
tributes to these categories, de�ning activities by a set of tasks
to perform and a set of means to use, reducing graphics com-

putations by various techniques: use of levels of detail and of
culling methods. The resulting virtual world can be visualized

in various interactive ways.

1 Introduction

Our work has been done in the double context of our collab-

oration with the engineering company TECHNIP and of a re-
search project on 3D graphics toolkits and standardization of

description languages for virtual worlds.

1.1 Collaborative work with TECH-

NIP

TECHNIP, which is the leading French engineering company,
builds huge oil re�neries in various parts of the world. This

company has to answer the following question: how to replace
real scale models by virtual ones ? Before actually building
such a plant, a model at 1=30 scale is made in Paris. Such

a model can take six months to be built and can be larger
than 10� 10 meters as the actual oil re�nery can extend over

1� 2:5 kilometers. These scale models are necessary to check
various spatial and ergonomical properties such as accessibility

and transportability.

1.2 Standardization Issues For Build-

ing and Exploring Virtual Worlds

A lot of e�orts are made in order to standardize the building
and exploration of interactive virtual worlds.

Techniques in 3D graphics are well known. They are now
available in some standard graphics libraries. Futhermore, the

visual features of virtual worlds can be described in some de-
scription languages like VRML which are becoming more and
more common. Such �le formats integrate a lot of non graph-
ical features, sounds, etc. Some are particularly adapted to

speci�c activity domains such as the Flight format which is
very appropriate for simulators.

In the same time, a lot of work is being done in the �eld
of communication protocols such as DIS for interconnecting
people in virtual worlds.

The success of the Web leads also to various e�orts in stan-
dardization of �le formats for multimedia documents and of
protocols for transfering them over the Internet, possibly in
real time.

There is a need to integrate these competing or comple-
mentary standardization e�orts into an uni�ed model. In this

context, we have combined the use of various tools which are
aimed at providing the best compromise between e�cienty and

standardization.

1.3 Outline of this Work

This work will be described in several parts. We begin by

presenting a platform to experiment virtual reality concepts.
We then suggest a general model for describing what a virtual

world is and how participants can exploit and use this world.
Some speci�c techniques to extract speci�c objects from the
scene and to optimize the visual rendering of this world have

been used. Finally, we describe some examples of activities
made possible in virtual oil re�neries and then some imple-

mentation issues with commercial software packages (Open In-
ventor, Clovis).

2 A platform to experiment

virtual reality concepts

2.1 General Framework

To conduct virtual experiments, several steps can be de�ned
and numerous tools can be involved at each step. It is common
to distinguish three basic steps:

� Various types of data must be de�ned to populate the
virtual world. Data may consist of geometric objects but
also of functional objects, tools, activities, people, etc.
The aim of a virtual world must also be precisely stated.

� Data of various origins must be integrated into the scene.

� The scene must be rendered and interactively explored.

A lot of software tools are available to perform speci�c tasks
involved by all these steps.

� Speci�c and numerous tools are available to model spe-
ci�c data. Sounds and images can be generated by var-

ious means. Geometric data can be created by various
3D modelers such as Alias, Multigen, AutoCad, Euclid,

Page 1
International Conference Graphicon 1998, Moscow, Russia, http://www.graphicon.ru/



Catia and many other tools. Object trajectories can be
generated by animators such as Explore of Wavefront,
etc. Simulators can be used to provide various data in
real time.

� The integration of many types of data into a scene is a
di�cult task, as it requires both the knowledge of many
areas of activity (graphics, physics, behavior, sounds, etc)
and their uni�ed treatment inside a global model. This
model can be either expressed in some low-level program-
ming languages like C with a graphics library or more ef-
fectively in some description language like VRML 2.0 or
the Flight format of Multigen.

� The exploration of a virtual world can be achieved by
various types of software tools:

{ If a programming language such as WorldToolkit
or Performer is used to express the mechanism of a
virtual world, this language can be either compiled
or interpreted.

{ If a �le format like Open Inventor or Flight is used
we only need an appropriate browser which is able
to read such formats. This browser can include a
language interpretor if scripts written in program-
ming languages can be embedded in a description
language format like VRML.

In our experiments, we suppose that most data have already
been generated in an initial step.

Step 2 is performed in several stages:

� CAD models are converted in Open Inventor format

� geometric and management operations on graphical
databases are performed with Open Inventor library

� data are integrated with a C program in a description �le
format which is more appropriate for our purposes

� this �le format is then translated into Clovis code and
geometric data in Wavefront �le format

At the present time, step 3 is often performed by Clovis
browser [4,5] which is able to interpret scripts written in a
speci�c language and which we are going to described soonly.

Occasionnaly, we use also somw viewers of SGI like pery in
Performer for large models and Open Inventor tools (ivview,

gview, etc) for small models and various VRML browsers: i3d
[1], webview [11], vrweb [8], etc.

2.2 Clovis: a powerful browser for in-

teractive virtual worlds

To o�er practical solutions for exploring large and complex

virtual worlds with current technology, some prerequisitesmust
be full�lled. Apart from the graphics hardware which must

be able to render a lot of polygons at interactive frame rates,
several considerations have guided us in the choice of software

tools:

� Instead of writing these tools from scratch for this partic-
ular application, it could be interesting to use an existing
software packagewhich was able to o�er a partial solution
to our initial problem, without any programming.

� This software package must not be limited to navigation
tasks. It must allow us to specify various interaction

tasks.

� To specify particular interaction tasks, this software pack-
age must be exible enough in order to provide as many
new features as could be wished. It was necessary to be

able to augment its capabilities as the uses of a virtual
are numerous and cannot always be de�ned in advance.

For these reasons, we have chosen to use Clovis software
package of the French company Medialab [5,6] because it has
both the ability to display various types of graphical data (ge-
ometry, materials, textures, light sources, objects trajectories,
etc) and to interpret programming scripts aimed at specifying
various navigational and interaction tasks.

Clovis has been experienced with 1=20 of an oil re�nery,
which consists of 650 objects made of 450 000 polygons.

The main of Clovis for industrial applications is to give a
personal experience to an user which has to deal with a virtual
environment through various real and virtual tools. To set up
this experiment, several steps can be distinguished.

In a �rst step, the experimentwe want to achieve is precisely
described. To perform this task, we obviously specify the ob-
jects which constitute the scene and their properties (materials,
etc). But we have also at our disposal a exible language anal-
ogous to a subpart of C++ and a set of about 300 functions.
It is possible to write programming scripts either directly in
this language or indirectly by using "script generators" which
transform some simple commands into scripts. Such generators
are mainly used to perform usual tasks such a management of
several universes and simple grabbing and displacement tasks.
For example, it is possible, as in dVise of DIVISION, to specify
the degrees of freedom with which an object can be displaced
(x; y; z translations or rotations) with some joystick for exam-
ple.

In a second step, before actually performing the �nal experi-
ment but after having launched Clovis with the �les previously
written in step 1, we can interactively change various parame-

ters through a 2D-interface (which can also be enriched in the
�rst step). For example, materials can be modi�ed, textures
can be precisely positioned, objects can change of materials,

locations, etc. This step allows in fact to update the 3D scene
but not the strategies used to interact with it.

In the �nal step, after a speci�c 3D scene has been set up, it
can be fully experienced in real time with the various methods

described in the programming scripts. It is important to notice
that several methods or con�gurations can be de�ned, and that

the 2D-interface allows to choose between them. For example,
the same universe can be explored either with a keyboard in-
terface for non-immersive experiments or with 6 DOF-trackers

for immersive walkthroughs.

2.3 Scene Generation: the use of

Open Inventor to manipulate

scene graphs

The Open Inventor graphics library is a very rich toolkit which
allows to perform various manipulations on hierarchical graph-

ics databases called scene graphs. We used this library to per-
form the various operations on the data which populate the

world:

� Splitting of CAD �les into as many �les as there are ob-
jects we want to distinguish in the �nal Clovis experi-
ment.

� Geometry simpli�cation of each object in order to gener-

ate several levels of detail

� Cleaning of defectuous polygons and generation of nor-

mals.

� Conversion from Open Inventor format to obj or geo for-
mats of Wavefront.

After objects have been generated and organized in the �nal
scene, various other data from numerous origins must be inte-

grated into the global model. In particular, this model must
take into account the activities which are aimed at performing

various tasks with speci�c sets of tools and the people who
practice these activities.
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3 Functional Space: a descrip-

tion language for repetitive

virtual models

We describe here some characteristics of a description language
for virtual worlds which contain a lot of repetitive objects. It is
called 'FunctionalSpace' to express the fact that a virtual space
can be of some usefulness only if it is inhabitedby objects which
possess functionalities as in the real world. Before de�ning
more complex aspects of the world, physical appeareances and
fonctionnalities of objects allow to de�ne various scenarios to
take part in this world.

This language is built on an underlying object-oriented
model of software system for building and controlling a virtual
world. Today, this model is only implemented in Functional
Space description language but we intend to use it in the li-
brary of classes used by a parser for generating virtual worlds
which could be used by commercial 3D visualization tools such
as Clovis or any VRML browser.

This model includes the following considerations:

� It is important to be able to describe in a simple way
the characteristics which are shared by classes of objects.
In this way, Functional Space is a compact �le format
which allows us to abstract common properties into cat-
egories. This abstraction mechanism, more practical to
use than the DEF instancingmethod of Open Inventor, is
similar to the concepts of prototype in VRML 2.0 and of

class in object-oriented languages, but it is rarely found
in graphical �le formats where all objects are indepen-

dently de�ned. It simply reects the fact that the real
world is also full of similar objects, made of many simple
possibly articulated components. Catalogs of objects and

of components can be easily de�ned.

� Geometry is not described in this model. Open Inventor

is used for this task. This model is aimed at describing
the functionalities rather than the shape of objects.

� We cannot dissociate a virtual world and the tools a soft-

ware system must possess to control this virtual world.
For example, 2D control panels are part of an interactive

exploration of a virtual world and must be taken into
account in its description.
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Figure 1 - Example of objects classi�cation in Functional
Space

Basically, we consider that a virtual world is made of decora-

tive or functional objects, of activities that can be performedto
change aspects of these objects and of people who exert several
of these activities during some period of time. These activities
imply the use of speci�c tools that can be some of the objects
which populate the world or physical devices, control panels or
external programs.

3.1 Space Hierarchy

First of all, we consider a large world which can be splitted
into a hierarchy of subdivisions: countries, regions, etc. The
user can choose the number of levels and the names given to
the levels of this hierarchy. Terminal nodes of this hierarchy
can be regularly subdivided into cubic or parallelepipedic cells
to allow culling methods.

Nodes can be used to store large portions of the world into
disk. Only the speci�c nodes which are currently displayed can
be kept in memory.

Objects are then patitioned into the terminal nodes of the
spatial hierarchy.

3.2 Functional objects

We de�ne a functional object as being characterized by the
following features:

� shape

� physics

� operability

� use

A decorative object is only de�ned by its shape.

Let us give some examples of the features of a functional
object.

� Shape is given by the combination of these two basic fea-

tures: a geometry and an appearance which can be ani-
mated in time in an arbitraryway (simulation, animation,

real-time capture). These two features can be precisely
de�ned by using computer graphics concepts such as the
concepts used in the VRML �le format. An object can

be made of several parts, which are themselves objects.
Either these parts are rigidly linked together or some de-

grees of freedom can be de�ned.

� A mass can be associatedwith an object. We can also de-

cide if an object will be considered for collision detection
during walkthrough. In the case of an articulated body
made of several subparts, the constraints between these

subparts must be de�ned.

� It is di�cult to describe the operability of any object, the

way it works. Let us give the simplest and most common
example: the selection or motion of some subpart can

change the aspects of some other parts. For example,
this technique allows us to change the direction wheels of
a car by moving the steering-wheel.

� Some uses of an object can be easily characterized at this
level which does not take into account the �nal actors of

the virtual scene. For example, an object can be used to
navigate inside a scene in some speci�c ways. In a build-

ing, staircases or ladders can be climbed up and down.
Other types of objects can be used to view this scene in
speci�c ways, as is the case of glasses. To implement these

uses, various algorithms must be used. In the VRML 2.0
description language, this requires to write speci�c scripts
in Java for example.

As it can be di�cult to separate the physics, operability
and use of objects, we consider that they can be integrated to
de�ne physical and behavior properties.

Objects can be regrouped into classes in order to associate

various characteristics with each class instead of specifying
them for every individual object. This approach is performed

with the help of classes of properties (Fig.1). We regroup ob-
jects in classes and we de�ne properties for each class. In this
way, we do not have to de�ne for each object its particular
properties. Our parser for Clovis code has then a mechanism
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to automate the assignment of properties to all objects of a
class.

A simple example can be found in the appendix.

3.3 Activities

We de�ne an activity as as being characterized by a set of tasks
to perform and a set of means to perform these tasks. These
means comprise:

� 3D Virtual Objects

� 2D Control Panels

� Devices

� External Programs

For example, an external programhas been used in our stud-
ies for displaying a oor map of an oil re�nery on a speci�c
screen along with the 3D representation of the plant on an-
other screen. Standard communication protocols link these
two programs.

The most common tasks are the following:

� vision

� motion

� selection

Examples of selection tasks include the grasping of objects
with the hook of a crane or the choice of an object with a pencil
in order to add comments to this object.

4 Semi-Automatic Extraction

of Scene Objects from CAD

MegaModels

Extraction of signi�cant objects from CAD models is not an
easy task. Basically, we have a three-level hierarchy composed
of the universe, objects and geometric primitives (Fig. 2, 3).

Primitives are solid shapes such as spheres, cylinders, cubes,
etc. Objects are built by instancing and combining these prim-

itives. This operation can be performed with CSG boolean op-
erations. Objects can be regrouped into units or equipments

but we will not take such regroupings into account in this study.

�
�

�
��	 ?

@
@
@
@@R

a Ladder a Chair an Object

�
�
�
�
�
��

?

B
B
B
B
BBN

Cube
Cube

Cylinder ...

�
�
���
?

C
C
C
CCWCube

Cube ....

�
�
�
�
�
��

C
C
C
C
C
CW

Sphere ........

Universe -

Objects -

Primitives -

My House

Figure 2 - The three-level hierarchy of a world

To perform speci�c operations on speci�c objects, we need
to identify them.

Futhermore, in Clovis, separate objects are stored in sepa-
rate �les. There are many interests in having a lot of objects.

For example, speci�c properties like color or texture can be
given to an object (but not to one of its subparts).
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Figure 3 - Another way to de�ne the Hierarchy

Only an object can also be grabbed and displaced during
interactive walkthrough with Clovis. Moreover, an internal
Clovis feature allows to cull objects which are outside the �eld
of view. To fully exploit this feature, it is important to have
many small objects.

The most crude technique to separate Open Inventor scene
graphs into myriads of objects is to generate these objects from
all the nodes which are located at a speci�c level. This could

give rise to too many objects. Some other cues can be used to
distinguish objects in a scene graph. Ideally, each object must

be properly designated with some signi�cant name during the
world modeling phase which has given rise to DXF and IV �les.
These names can be stored as labels in a iv �le. In this case,

it is easy to separate into distinct �les all objects which have a
speci�c and meaningful name (which has been stored in a list

of meaningful names).
Unfortunately, in many cases this interesting information is

missing in CAD �les. We cannot restore it but two cues are
used to split the CAD �le: we distinguish parts of an OpenIn-
ventor scene graph which have di�erent materials or which are

geometrically separated.
To check this second feature, a simple and not very general

stratagem (that will be improved in the future) is used. At a
given level of the scene graph, we compute the bounding-boxes

of all subsequent nodes. Then we determine all the connected
components made by these bounding-boxes.

To be more explicit, let us consider that two bounding-boxes

A and B communicate with each other if there is a series of
bounding-boxes starting fromA and going toB which intersect

one another two after two along this chain. A connected com-
ponent of bounding-boxes is then the greatest set of bounding-

boxes which communicate one with another. Such a connected
component is considered here as being an object which will be
stored in a separate Open Inventor �le.

In some circumstances, CAD �les can contain a few large
objects that cannot be splitted by the previous strategies. Even

in this case, it can be useful to partition such an object into
several smaller ones. This can be done in various ways. In

our case, we simply store in terminal �les the contents of the
terminal nodes.

5 Graphics Rendering Opti-

mization

To improve frame rates, common stratagems are used, such as

culling of back-facing polygons and of objects that are outside
the �eld of view.
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In virtual reality applications it is not unusual to de�ne
several distinct universes linked by virtual doors and such that
when the user is inside one of these universes he sees and he
interacts only with the objects which belong to this universe.
He can then go to another universe by opening the virtual door
which links them.

This idea works well for buildings which contain a lot of
closed rooms. This is not the case of oil re�neries for example
and similar situations where lots of objects are de�ned in a
large and open space.

For these reasons, we have combined the use of some other
techniques to reduce the amount of polygons that are drawn.
When the user moves, many objects disappear or lose their
details. Futhermore, we consider a spatial subdivision of our
model to compute cells that are outside the �eld of view.

5.1 Data Simpli�cation

The geometric representation of distant objects can be simpli-
�ed. Originalmodels are solid objects representedby polygonal
surface boundaries. Resulting simpli�ed models can consist of
lines, points, polygonal objects and also textured objects. We
have implemented some simpli�cation methods but we let the
opportunity to add user de�ned methods with dynamic shared
libraries.

We can distinguish two main methods to simplify data, sub-
stitution methods and algorithmic methods.

- User De�ned Methods
- Generalized Cylinders
(Schroeder, Rossignac ...)

- Polygonals Models

General Methods

- User De�ned Methods
- Parametrized Primitives
- Reverse Engineering

Speci�c Methods

Algorithmic Methods
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- Texture Method
- Pre-Built Models
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CAO Models
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Figure 4 - The Simpli�cation Process

5.1.1 Substitution Methods

These methods take a CAO model and substitute it by another

model.

Pre-Built Models In this case, we simply have a cat-

alog of object classes and for each object class we have a set
of prede�ned geometries. These geometries have their proper
coordinate system. Let us consider a global coordinate system:

each geometry and each object of the scene are positioned in
this coordinate system.

To simplify a given scene object at a speci�c level of detail,
we must perform the following tasks:

� Determine its class and select the appropriate geometry

� Compute the proper geometric transformation from this
geometry to this object

� Apply this transformation to the given geometry

To obtain speci�c geometries, various methods are possible
but generally they are crafted by hand.

Texture Method In some cases, as for example ladders,
fences and other particular objects well adapted, it is possible
to de�ne simple geometries such as parallelepipedsand to apply
some proper textures on these shapes. We obtain textures
by projections of objects on several planes. Moreover, it is
possible to simulate the fact that sometimes we can have holes
in an object, as for fences or ladders, by using alpha image
component. This solution is appropriated to a machine where
textures are cabled.

5.1.2 Algorithmic Methods

These methods take a CAO model and work on its vertices and
faces to obtain a simpli�ed model.

Reverse Engineering In some particular cases, it is
possible to �t a simple geometric shape to a given set of points.
For example, if we know that a given shape is a cylinder, it is
possible to compute the characteristics of this cylinder (posi-
tion, rotation, scaling) from these points. The scaling factor
gives us the height and radius of the cylinder. Then we can
perform simpli�ed cylinder with tranformation informations.

Parametrized Primitives Parametrized primitives
are solid objects de�ned in a very precise way. For example,

they can be always de�ned with the same number of vertices,
and these vertices are always ordered in the same way. The

exact knowledge of the way such objects are built allows us to
de�ne simpli�ed objects by suppressing or combining speci�c
vertices.

The following example represents the Ishape primitive -12

quad meshes-(see Figure 5). We allow four other levels of de-
tails -LOD- for this shape. The order of Ishape vertices is al-

ways the same, so we have de�ned some proper LOD primitives
-respectively : 8, 6, 4 quad meshes and one line-(see Figure 6).

Figure 5 - The Ishape primitive

Figure 6 - The four LOD Ishape primitives
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Generalized Cylinders An usual way to de�ne com-
plex surfaces is by sweeping a 2D cross-section through a curve
in space. The boundary of a cross-section is de�ned by a series
of vertices.

With such methods, it is possible to de�ne shapes such as
cylinders or torus parts.

As the number of times a cross-section is repeated and the
number of vertices of each cross-section can vary, this gives us
an easy way to simplify geometries.

The concept of generalized cylinder can be extended to cre-
ate half-spheres or spheres simply by adding isolated points at
one or the two extremities (Fig. 7). Such primitives can also
be easily simpli�ed.

Figure 7 - To simplify a sphere

Our algorithmfor simplifying such geometries has the following
parameters:

� number of times a cross-section is repeated

� number of vertices of each cross-section

� wished number of times a cross-section is repeated

� wished number of vertices of each cross-section

� ordering of vertices of each cross-section: clockwise or
counterclockwise

� two booleans for closing or not the two extremities of the
cylinder

� speci�cation of one or two apices to create pyramids at
the extremities

Polygonal Models Polygonal models can be simpli�ed

by various techniques which have been reviewed in [6].

We mainly use a robust and e�cient algorithm which has
been described in [9]. The principle is the following: all points

which are close to each other are merged to give only one point.
The points which are considered as being close to each other

are the points which lie inside the cubes of a regular subdivi-
sion of the bounding box which surrounds the object to sim-
plify. Although this algorithm is rather brute-force (it does
not preserve topology except for simple convex shapes and it
is not invariant under translations and rotations), it has the

advantage of being easy to implement and fast to excecute.
Moreover, it seems to work well for simple convex shapes as is

often the case in industrial plants.

Another well-known algorithm, which has the advantage of
preserving topology, has been described by Schroeder in [10].

This iterative algorithm suppresses vertices which do not con-
tribute to the salient features of a shape and replace the holes
thus created by new triangulations.

Some more elaborate algorithms, such as the one designed
by Varshney [13], have the ability to build surfaces wich are
constrained to lie whitin some speci�ed epsilon distance from
the original surface.

5.2 Culling Methods

Clovis uses a general culling method which computes, possibly
on several precessors, the intersection of the bounding boxes
of scene objects with the viewing pyramid in order to alleviate
the graphics computations.

For our speci�c purposes, three general methods have been
tried to choose which objects to display and with which levels
of detail. In an initial stage objects are de�ned at various levels
of detail with the preceding algorithms.

In the �rst method, all computations are made in real time.
We calculate for each object a criterionwhich allows us to know
if this object must be displayed and if so with which level of
detail. We use a simple criterion: the distance of the viewer
to the object. There is a maximum distance, beyond which
all objects are invisible. Despite of its simplicity, this criterion
involves toomany computations as there are more than 650 ob-
jects in the oil re�nery. To improve frame rates, computations
are not made at every frame, but at constant time intervals
and only a portion of the database, some number of randomly
chosen objects, is taken into account in these computations.

In the second method, a precomputation phase has been
used to split the space into several regions and to compute
various levels of detail. The principle of this method is to limit
the number of polygons inside each region. After a quota of
polygons is chosen for each region, various methods are used
to choose the size and position of these regions and also the
objects and levels of detail associated with each region. The
important thing to notice is the goal we want to achieve in this

way: with such algorithms interactivity is independent from
the number of initial polygons because the user sees always

less polygons that the quota that has been �xed in a �rst step.
The method works as follows. The ground of the oil re�n-

ery is subdivided into several subdomains which contain about

the same number of polygons. When the user moves inside
one of these subdomains he sees all objects which are inside

this region and only some objects in neighboring subdomains.
These objects can be displayed with various levels of detail, de-

pending on their size and on their distance to the center of the
region. When the user stops, all objects are rendered with full
details. In this way, after all regions and their corresponding

objects are determined in an initial step, the only computation
that is made during visualization consists in determiningwhich

region the user is walking in.
The di�erent regions of the ground are arranged either reg-

ularly or in a quadtree which is computed in a recursive way.
A maximum number of polygons per region is �xed. Then the
initial ground which is rectangular is subdivided into four rect-

angles if it possesses more polygons than this number. Then,
all four rectangles are examined successively with the same cri-

terion. If one of them possesses more polygons than wished, it
is subdivided into four parts, etc.

In our third and more e�cient method, the objects are par-
titioned into a regular subdivision of the scene into cells and

two methods have been tried to know which cells are inside the
viewing pyramid.

� Rays are shot from the eyepoint with a Bresenham algo-
rithm to determine which cells are intersected. At some

distance, some cells may not be detected and then less
little objects are drawn. It is such as a natural selection

between little, big objects and distance from the eyepoint.

� In the 2D case, computations may be done in hardware.
Cells become pixels and by drawing a triangle into a
bu�er it is easy to determine which cells are included in
this triangle. In general case, we don't have to perform
a 3D computations because of the global form of virtual
worlds : vertical or horizontal and sometimes the both.

Figure 8 - What do we watch in virtual world ?
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(a map program to show and to select the position where we
are and what we can see -third method-)

These methods are well adapted to open spaces. More com-
plex visibility precomputations can be done for closed and oc-
cluded spaces [16]. Another general method, hierarchical z-
bu�er visibility [3], consists in embedding the scene in a octree,
projecting the bounding box of an octree node and, if this pro-
jection visible, examining the subnodes of this node until some
objects to display can be found.

6 Some Implementation Issues

6.1 Cleaning of defectuous polygons

and generation of normals

One of the speci�c Clovis features is that it doesn't accept
arbitrary polygons. Various constraints must be taken into

account. For this reason, in this step, the following tasks are
preformed:

� verticeswhich appear two times in a polygonare removed.

� polygons with less than three vertices are removed.

� non-planar polygons are splitted into triangles.

� vertices which are given in a wrong order are reordered.

This problem is due to the way the simpli�cation algo-
rithm has been implemented.

� After the polygonal database is corrected, faces are prop-
erly oriented and normals are generated with a recursive

algorithm which works as follows. We know which faces
are shared by any edge of a polygonal object. An ar-

bitrary face is initially selected and clockwise oriented.
All faces that are adjacent to this initial face are then
clockwise oriented and so on for the faces which share
edges with the faces already examined. At the end of
the process, all faces share the same orientation. If these

faces constitute a closed surface normals must be directed
towards the outside. To know if all faces are correctly ori-

ented, a "pseudo-volume" of the object is computed. If it
is negative, the orientation is reversed. It is important to
notice that this rather complex algorithm has been made
available by SGI as an example of C++ class built to deal
with Open Inventor scene graphs. In this way, it was very
easy to use it in our Open Inventor program.

Normals are then intensivelyused by Clovis either to com-
pute polygonal shading or to cull back-facing polygons.
In the initial CAD database, approximately 1=2 of the
faces were badly oriented and were thus corrected.

6.2 Clovis Scripts Generation

Clovis is able to interpret programming scripts which are used
to set up a virtual world experiment.

As the programming scripts are very speci�c to the way
Clovis works and to the experiments that are described in the
next section, we will just give a list of some of the elements
that must be known by Clovis in our study:

� the hierarchies of objects used by Clovis: the 3D scene,
the virtual counterpart of the Clovis user, the tools ma-
nipulated by the virtual user (for example, a crane, its
control panel, an arrow to select objects, etc).

� the displacement areas the user is constrained to walk on

� the di�erent areas the universe is split into in order to
facilitate walkthroughs

� the methods used to navigate into the scene for immersive
or non-immersive exploration

� the objects of the 3D scene that can be manipulated and
the way this can be done

� the detection areas of the ladders and staircases and the
methods used to climb them

7 Bringing Life to a Virtual

Oil Re�nery: some signi�cant

examples

Speci�c programs in Clovis code have been used to perform

speci�c tasks. Let us give two examples.

7.1 Navigation

Our main aim is to simulate the walk of a human being inside

the oil re�nery. In a rather realistic way, his viewpoint is always
at the same height from the ground he is walking on, except

when he encounters a ladder or a staircase, in which case he
can go from a oor to another. To allow such behavior, the

following algorithm is used. A detection polygon is located
under every ladder. When the user walks on such a polygon,
he has then a new degree of freedom: he can go up, he is no

longer constrained to move on a plane. He has the choice either
to move farther away from the ladder or to climb it up. In the

second case, he is made prisoner of the ladder as soon as he
has climbed some centimeters. He can then only go up or down

until he has reached either the top or the bottom of the ladder.
At the top of the ladder he can walk on a limited area which
de�nes a oor of the building. The perimiter of this area has

been bounded in order to prevent him from falling down on
the ground. He can stay there or use other ladders to continue

his walk.

7.2 Interaction

Interaction tasks in a virtual environment can be made in var-
ious ways with Clovis. For example, we have simulated the
use of a crane. The virtual control panel of this crane can be

manipulated to displace a hook which is used to seize objects
which can then be moved from one place to another.

Such manipulations can be done during immersive or non-
immersive walkthroughs. In the �rst case, the head of the
viewer is tracked by a Polhemus, and is used to update the
viewpoint while his hand holds a 3D-joystick which helps him
to press the buttons of the control panel.

In non-immersive simulations, viewpoint and objects manip-
ulations are driven either by a 2D-joystick or by the keyboard.
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8 Conclusion

This study gives rises to several types of conclusions.
From an application point of view, the combination of var-

ious tools has proven to be if great use to give a convenient
solution to the complex problem of simulating maintenace op-
erations inside complicated plants. Although some progress
remains to be done, the main steps are now clearly de�ned.
Appropritate solutions will certainly be very common in some
years.

From a software point of view, some conclusions can be
drawn on the use of Open Inventor C++ library and Clovis
software package.

Open Inventor is of great interest to deal with CAD data at a
high level. Abstract ideas can very rapidly give rise to e�cient
implementations. But Open Inventor is not very appropriate
for high rendering performances. With this respect, Clovis
is preferable. It integrates some powerful functions such as
parallel computation of the objects that are outside the view
in order to cull them. An important feature of Clovis is also its
ability to interpret programming scripts and to be connected
to external programs via shared memory or TCP�IP protocol.
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Appendix - Funtional Space �le

format : a simple example

SpaceHierarchy {

World

Region

}

World Earth {

gravity

}

Region France {

world Earth

Subdivision 4 4 1

bboxSize - - -

bboxeCenter - - -

}

}

ObjectClasses {

Filter {

Appearance wood

Behaviors {

Movable {

translationAxes axes(Object)

rotationAxes axes(Object)

initialPosition

initialOrientation

translationConstraints { free, free,

-getbbox(Object).sixeX/2. , getbbox(Object).sizeX/2.,

-getbbox(Object).sizeY, free }

rotationConstraints { 10, 70,

free, 14,

free, free }

}

}

}

Ladder {

Appearance wood

Behaviors {

Climbable {

language clovis

script ladder.cod

parameters {

var1 getbbox(Object)

var2 ...

}

}

}

Crane {

Parts part2, part2, part3, part4

Appearances {

part1 wood

part2 steel

part3

part4

}

Behaviors {
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part1 Movable {

translationAxes axes(World)

rotationAxes axes(World)

}

part2 Movable {

translationAxes axes(part1)

rotationAxes axes(part1)

initialPosition { getbbox(part1).minX + getbbox(part1).sizeX*2./3.,

getbbox(part1).sizeY/2.,

getbbox(part1).maxZ }

initialOrientation 30, 0, 0

translationConstraints FIXED

rotationConstraintsAroundY { -45, 45 }

}

part3 Movable {

translationAxes axes(part2)

rotationAxes axes(part2)

initialPosition { getbbox(part2).maxX, getbbox(part2).maxY, getbbox(part2).maxZ }

initialOrientation 0, 40, 0

translationConstraints FIXED

rotationConstraintsAroundY { -45, 45 }

}

part4 Movable {

translationAxes axes(part3)

rotationAxes axes(part3)

initialPosition { getbbox(part3).maxX, getbbox(part3).maxY, getbbox(part3).maxZ }

initialOrientation 0, 40, 0

translationConstraints FIXED

rotationConstraintsAroundY { -45, 45 }

}

}

}

}

Objects {

ladder {

objectclass Ladder

region Unit3

bboxSize - - -

bboxCenter - - -

lodCount -

pointsCount ...

linesCount ...

polygonsCount ...

files ...

}

crane {

objectclass Crane

region Plant

parts object1, object2, object3, object4

}

}
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