Device-Independent Rendering in Display Color Space

> Konstantin Kolchin and Andrei Khodulev

Keldysh Institute of Applied Mathematics, Moscow

The Problem

- Reproduce colors of real objects on synthesized images
- Ensure identity of rendered colors on different displays (device-independence)

Solutions

- Render in some standard space, spectral or tristimulus (RGB or CIE XYZ), and convert the result to the RGB space of a current display.
 Drawback: graphics hardware cannot be used.
- Render in the display color space (in the trichromatic approximation). Drawback: lack of device independence.

How to make rendering in display space device-independent?

ANSWER: To make the surface color a matrix diagonal in some reference space (e.g. CIE XYZ) and non-diagonal in the display RGB space.

The reference space is chosen such that color calculation in it is sufficiently accurate. CIE XYZ meets this criterion (C.F. Borges, 1991).

Main assumptions

 Conversion from the reference space to the display space is linear (chromatic adaptation can be included)

$$\begin{vmatrix} \mathbf{R} \\ \mathbf{G} \\ \mathbf{G} \\ \mathbf{R} \\ \mathbf{K} \\ \mathbf{K}$$

 Light is a vector, so the color of a source is converted from the reference to display space as

$$\begin{vmatrix} \mathbf{L}_{\mathrm{R}} \\ \mathbf{L}_{\mathrm{G}} \\ \mathbf{L}_{\mathrm{B}} \end{vmatrix} = \mathbf{A} \begin{vmatrix} \mathbf{L}_{\mathrm{X}} \\ \mathbf{L}_{\mathrm{Y}} \\ \mathbf{L}_{\mathrm{Z}} \end{vmatrix}$$

Surface color is a matrix, diagonal in the reference space

$$\mathbf{C}^{\text{ref}} = \begin{vmatrix} \mathbf{c}_{\mathrm{X}} & 0 & 0 \\ 0 & \mathbf{c}_{\mathrm{Y}} & 0 \\ 0 & 0 & \mathbf{c}_{\mathrm{Z}} \end{vmatrix}$$

 This ensures trichromatic approximation in the reference space

What is the surface color in the display space?

 ANSWER: a matrix. Because we assume trichromatic approximation in the reference space (CIE XYZ), we have

$$\begin{vmatrix} \mathbf{L}_{\mathrm{R}} \\ \mathbf{L}_{\mathrm{G}} \\ \mathbf{L}_{\mathrm{B}} \end{vmatrix} = \mathbf{A} \mathbf{C}^{\mathrm{ref}} \begin{vmatrix} \mathbf{L}_{\mathrm{X}} \\ \mathbf{L}_{\mathrm{Y}} \\ \mathbf{L}_{\mathrm{Z}} \end{vmatrix}$$

and hence the surface color in the display space C is

$$\mathbf{C} = \mathbf{A}\mathbf{C}^{\mathrm{ref}}\mathbf{A}^{-1}$$

Advantages

- Device-independence
- Hardware implementation is possible
- In software implementation, interreflections are possible
- Spaces other than CIE XYZ can also be used as the reference space - RGB or, maybe, even spectrum
- Chromatic adaptation transforms other than relative colorimetric can be used

We ignored

Out-of-gamut colors

Gamma correction